Response to Anonymous Referee #1

The manuscript shows an interesting study on the use of multiangular spectral measurements to describe the physiological status of the vegetation canopy in a complex tree-grass ecosystem. In this context it contributes to the research done within scientific networks such as Fluxnet, SpecNet, Eurospec, Optimise, etc. that have worked on the integration and standardization of in situ optical and flux-tower measurements with the ultimate goal of determining ecosystem fluxes in a spatially and temporally continuous mode. It is extremely difficult to obtain accurate/reliable in situ spectral measurements, particularly in a continuous and multiangular mode due to a number of potential errors caused by instrumental and environmental factors. Therefore, the manuscript represents a substantial contribution in that field due to the scientific significance of the in situ dataset analyzed. Also the study site selected in this paper is very interesting from the remote sensing perspective as, in this savanna ecosystems, the estimation of biophysical properties is still an issue owing to the challenge of determining some variables in a highly heterogeneous canopy. The research questions addressed are relevant and clearly fall within the scope of Biogeosciences.

Response: We would like to take the opportunity to thank the reviewer for these valuable comments. We found the review to be highly constructive and after implementing most of the revisions we feel the paper has improved a great deal.

Specific comments addressing particular scientific issues:

1. Abstract and introduction are concise and summarize relevant research to provide context. However, in the introduction I miss a review of previous works on continuous multiangular hyperspectral observations for ecosystem monitoring such as the ones from T. Hilker using the AMSPEC system.

Response: A section reviewing previous works on continuous multiangular hyperspectral systems for monitoring ecosystems in situ is included in the revised introduction.

2. In the methods section some key information on data acquisition is missing. This information is necessary in order to properly interpret the results, especially in the case of the hyperspectral reflectance measurements but also for the ecosystem properties. In the manuscript there is only one paragraph describing hyperspectral reflectance data acquisition. Authors refer to the work of Huber et al (2014) for additional information, however, the importance of this data in the context of the paper justifies a more detailed description in the methods section. One of the key issues related with continuous spectral observations are the potential errors caused by instrumental and environmental factors. Those should be at least briefly described in the paper. Another important information which should be included regarding spectral measurements is the area observed by the sensor which, in this ecosystem, is assumed to be a mixture of trees, grass and tree-shadows at the different viewing angles (including nadir observations). This is a relevant issue because authors are building empirical models.
comparing spectral measurements with some ecosystem parameters as GPP which
results from the mixed contribution of the different ecosystem fractions and others (as
is the case in biomass) where the information comes only from the grass fraction.

Response: Thanks, we have provided more information regarding the biomass sampling, the
eddy covariance measurements, and the spectral radiometer measurements in the revised method
section. Possible errors in the measurements are also mentioned in the revised manuscript.
Thank you very much for pointing out to us that it was unclear regarding the instantaneous
field of view (IFOV) by the sensor; this requires a bit more elaborate explanation (also included
in the revised manuscript). There is no influence from trees in the hyperspectral data set used in
this manuscript as the entire IFOV constitutes of herbaceous ground vegetation. In the analysis
for relationships between seasonal dynamics in ecosystem properties and hyperspectral
reflectance, we used nadir observations. The site only constitutes of 3% tree cover, and there are
neither trees nor shading of trees in the IFOV for the nadir observations. For the analysis of
anisotropy, we used angular measurements measured between (12:00 and 14:00), and there is no
influence of trees nor any tree shading for this part of the day in the IFOV of the angular
measurements. It is emphasized in the revised manuscript that the IFOV covers only herbaceous
vegetation.

The biomass measurements is also only covering the herbaceous vegetation. The FAPAR
measurements are done in the vicinity of the tower containing the radiometers, and thereby
influenced by the same herbaceous vegetation as the radiometric measurements. GPP and light
use efficiency is based on eddy covariance data with a median 70% cumulative footprint of 388
m. These estimates are thereby influenced by both herbaceous vegetation and the tree cover.
However, as the tree cover is only 3%, we consider that the major part of these variables also
depend on the herbaceous vegetation. Information regarding the fetch and footprint of the
measured variables is included in the revised manuscript.

3. Another key issue in this paper is the representativeness of the empirical relations
found. There is an obvious limitation of the dataset in the spatial domain as it is only one instrument
providing spectral observations. However, for the temporal domain,
there are a large number of observations (1.5 years) that would allow an independent
validation by using only part of the observations to calibrate the statistical model and
another one to validate it.

Response: In the parameterisation of the statistical models, we used a bootstrap simulation
methodology where the datasets were copied 200 times (Richter et al., 2012). When bootstrapping,
a data set with the same number of data points as included in the original data set is created;
some of the data points are left-out, and some of the data points are included several times. We
used the data points that were included within each bootstrap run to parameterise the models,
whereas the remaining ones were used for validating the models. So for each of the 200 runs we
parameterised a statistical model, which was validated against the left-out subsample by
calculating a root-mean-square-error. We estimated a median and a standard deviation from the
200 runs. This information is emphasized in the revised manuscript.

4. Authors should better justify the negative correlations found between NIR bands
and biomass. Previous works have demonstrated negative correlations in the visible
but positive in the NIR both for total and green biomass (could the tree and shadow
fractions of the ecosystem included in the sensor FOV be influencing this relationship?)

Response: Thank you very much for pointing this out to us, this is very interesting. As there are
no trees in the IFOV of the sensors, the trees do not influence this relationship. The signal is
based on reflectance from a IFOV only containing herbaceous vegetation. When fitting a
correlation to vegetation water content, there is a positive correlation. But when the correlation is
done versus dry weight biomass, these positive relationships to NIR HCRF turns negative. It is
included in the revised discussion that these strong negative NIR HCRF correlation with dry
weight biomass should be studied further to better understand the respective importance of
canopy water and leaf internal cellular structure for the NIR HCRF of herbaceous vegetation
characterised by erectophile leaf angle distribution (LAD).

5. An interesting issue addressed by the paper is the effects of sun and sensor viewing
geometry on NDSI. Did the authors analyzed how the mixed effect of the different
ecosystem fractions (proportions) observed by the sensor at the different observation
angles is contributing to these directional effects? Discussion about the potential of
this dataset for BRDF modeling would be needed.

Response: The mixed effect of different ecosystem fractions is a very interesting point, and it
would make a very interesting future study. However, it would require that the entire system is
put on a higher tower. At the present height of the tower, only herbaceous vegetation is seen.
It is included in the revised discussion that this data set can potentially also be used for BRDF
(bidirectional reflectance distribution function) modelling.

Specific comments addressing formal/technical corrections: (Line/page numbers are
referred to the marked up version of the manuscript)

Abstract
Line 115. Use hemispherical conical reflectance factor (HCRF) instead of reflectance
(also throughout the paper)

Response: Thank you for mentioning this. We have now included the terminology of HCRF
throughout the manuscript and included a footnote in the introduction clarifying this.

Introduction
Lines 137-138. Review commas in these sentences

Response: This is taken care of.

Line 152-153. Suggest to change “: : indices are ratio type of indices” by : : “those
based on band ratios” in order to avoid repetition

Response: This is taken care of.

Response: This is taken care of.

Lines 177-179. Not only goniometers but also multiangular satellite data, as the one provided by Chris Proba, has been used to analyze these effects.

Response: We have now added the Chris-Proba, MISR and POLDER satellite instruments including refs.

Line 187. Avoid repetition in the same sentence “hyperspectral reflectance”

Response: This is taken care of

Materials and method

Line 220. Review the sentence. : : :grass and (other) herbaceous vegetation: : :?

Response: This is taken care of.

Line 259. The second sensor head is a cosine receptor? If so, please specify

Response: This is taken care of.

Lines 311-312. How the ANIF thresholds for data filtering were stablished?

Response: The threshold values of 0.8 and 1.2 indicate that the bias due to directional effects in the NDSI related to the variable view zenith angles are not larger than 20%. This is the same threshold value as was chosen for the effects of variable solar zenith angles. This is included in the revised manuscript. Honestly, the chosen level of 20% is somewhat arbitrary; it is a compromise between not incorporating too large bias, and not excluding too much data.

Lines 313-317. Move to section 2.4

Response: This is taken care of.

Lines 369-370. Those relationships obtained using filtered or not filtered data? Please specify also for other ecosystem properties.

Response: They are based on filtered data, this is specified in the revised manuscript.

Figures

Figure 1. I would suggest replacing pictures by a high resolution image with the location
of the towers and showing the area observed by the spectroradiometer. Additional
information on the location of the biomass sampling plots and the EC mean footprint
would be also useful.

Response: This is a very good suggestion. We have decided to keep figure 1, but we included
more photos in the figure. We have now photos of both towers, and the IFOV/footprint of both
the spectroradiometers and the Eddy covariance measurements. In addition, we added a high
resolution image including the location of the towers, the biomass sampling plots and the EC
footprint.

Figure 5. How the authors explain the correlations peaks in all the graphs at approximately
1200 nm? Also the information included in the figure caption would be quite
useful in a separated table in the methods section summarizing the main characteristics
of the different datasets (units, n) but also data range, aggregation (if any), data
gaps, etc.

Response: The correlation peak at about 1150 nm is caused by the water absorption peak around
this wavelength (Thenkabail et al., 2012). The lower the reflectance in this peak, the higher the
water content, and hence the higher the biomass. This information is included in the revised
manuscript.

A table is included in the revised method section with the requested information.

References:
Richter, K., Atzberger, C., Hank, T. B., and Mauser, W.: Derivation of biophysical variables from
Earth observation data: validation and statistical measures, APPRES, 6, 063557-063551-063557-
063523, 10.1117/1.JRS.6.063557, 2012.

The manuscript describes an interesting study using multi-angular hyperspectral data collected from a tower at a semi-arid savanna. Overall the study seems to have been undertaken in a scientifically appropriate manner and makes a valuable contribution to scientific progress. The scientific quality is high. And the presentation of the manuscript is of excellent quality.

While the data analysis is sound I have the following questions, comments and suggestions which should be addressed to improve the manuscript:

Response: We would like to take the opportunity to thank the reviewer for valuable comments that we believe helped improving the revised version of the manuscript.

The analysis of effects of varying sun/sensor geometry has been done over 15 days (of which 3 have been removed) during the peak of the growing season. This misses the highest zenith angles and times of different vegetation conditions. I suggest to repeat the analysis for other time periods as well to gain a full picture of sun/sensor geometry effects. Furthermore, why have only NDSIs been investigated and not the reflectances themselves? This information would help to understand the behaviour of the NDSIs and would support the claim in the discussion that NDSIs reduce angular effects.

Response: The reason for not doing the analysis of the varying sun/sensor conditions at the point in time with the highest zenith angles, is that this occurs during the dry season (two months prior to the onset of the growing season) where there are no vegetation (herbaceous) influencing the reflectance spectrum in the measured area. The focus of the manuscript is to investigate how NDSI is coupled with vegetation parameters, and we hence choose to use the point in time with most vegetation on the ground.

We agree that it would make a very interesting study to investigate how sun/sensor geometry influences NDSI differently across the year. However, this is not a minor task and this manuscript is long as is. We therefore feel that this is beyond the scope of this manuscript. But it is a very good idea for a future manuscript to investigate seasonal dynamics in anisotropy of both the reflectance spectrum on its own and on NDSI estimates. This is something that will hopefully be possible to do in a not too distant future.

The reason for focusing on NDSI, and not on the anisotropy on the reflectance values themselves is that it has already been done (Huber et al., 2014; Tagesson et al., 2015). The focus of the paper by Tagesson et al. (2015) is to present all research activities at the Dahra field site. Among them, a section of the anisotropy of the reflectance spectrum is presented. The aim of the paper by Huber et al. (2014) is to present the ASD set-up and investigate the quality of the measurements. A second aim is to study the effects of varying sun/sensor geometry on the reflectance spectrum. Therefore, in order not to present the same information two times, the effects of varying sun/sensor geometry part of this paper focus on the effects on the NDSI.

However, the comment is relevant and in the revised manuscript we have included a discussion regarding the behaviour of the NDSI in relation to the behaviour of the reflectance spectrum and referred to figures in Huber et al. (2014) and in Tagesson et al. (2015).
Why has the analysis of the relationship between reflectance / NDSI and ecosystem variables been restricted to a linear relationship? E.g. other studies found a non-linear relationship between reflectance and biomass due to saturation effects. Also why have only daily median reflectances / NDSIs been used when GPP, LUE and FAPAR were daily integrals? Averages would be more appropriate in these cases. And why have the off-nadir views not been analysed?

Response: In case the linear relationship is strong, it indicates limited issues with saturation. For wavelength regions where there are issues with saturations, exponential and logarithmic regressions could fit better. However, in case the aim is to find wavelength regions which are as sensitive as possible for investigating seasonal dynamics in an ecosystem property, wavelength regions with saturation issues should be avoided. Therefore linear models are better to use than non-linear models. This was the main reason for fitting linear rather than non-linear regressions. There is also a practical aspect to it, fitting the reduced major axis linear relationships using the bootstrapping methodology required a full month of processing for these 4 variables (GPP, LUE, FAPAR and biomass). In case we would try several other regression models, these would require several months of processing. Median values were used in order to minimise the influence of errors in the analysis. Median provides the most common model output and it is thereby more robust against outliers than average values. This info was provided in the manuscript, but it was not mentioned the first time that median values were used. Thank you for pointing this out to us, it has been corrected in the revised manuscript.

We have investigated the seasonal dynamics in the off-nadir views as well, but as seen in the figure below, there was no difference in seasonal dynamics for the different viewing angles. We thereby choose to only use the nadir one, as it would not make any difference in the analysis.
Some minor more specific comments:

page 3318, line 22: “Environmental conditions” usually mean variables like temperature, humidity, rainfall, etc. Do you mean reflectance in different wavelength regions have different sensitivity to “environmental conditions”? Or do you really mean “vegetation condition”?

Response: Thank you for pointing this out. We meant variables like stand structure, health status of the vegetation, direct/diffuse radiation, vegetation and soil water content. This has been clarified in the revised manuscript.

page 3320, section 2.1: It would be good to provide some information on the height of the grasses, trees and shrubs and the tree and shrub cover to get a better idea about the vegetation structure at the site.

Response: In the revised manuscript information regarding the height of the trees and the herbaceous layer is included. Much more information regarding the footprint and the vegetation in the instantaneous field of view of the spectroradiometers are provided in the revised manuscript.

page 3320, line 6: “(3%, of the land cover)”. remove comma.

Response: This has been taken care of.
page 3320, line 12: “rainfall (mm) was measured at 2m height”. Is the height relevant? Rainfall always has to be measured with the rain gauge not obstructed by any obstacles. What would be more interesting here is to know at what interval rainfall has been collected, i.e. daily, hourly, etc.

Response: All sensors were connected to a CR-1000 logger in combination with a multiplexer (Campbell Scientific Inc., North Logan, USA) and data were sampled every 30 s, and stored as 15 minute averages (sum for rainfall). This info has been included in the revised manuscript.

page 3320, equation 1: Please define “albedo_soil”. Has it been measured?

Response: Albedo_soil is defined as PAR albedo of the soil, and it has been measured as 0.20 (Tagesson et al., 2015). This info is included in the revised manuscript.

page 3321, line 19: Please define “VPD” on first use.

Response: This has been taken care of.

page 3322, section 2.4: The authors refer to Huber et al. (2014) for more detail on the spectrometer setup. However, the manuscript should provide some of the more fundamental information: 1. Were foreoptics used? 2. What are spectral resolution and spectral sampling of the spectrometers? 3. Have the seven different viewing angles been measured simultaneously? Or has a rotating or moving head been used? Was always the same target in the field of view? Or did the target change because of the rotating head? 4. How have solar irradiance measurements been made? Transmissive or reflective diffusor? 5. If multiplexing setup how long does it take to go through a whole measurement sequence? 6. Has solar irradiance been measured for each view angle measurement separately?

Response: Thank you very much for pointing this out. Much more information about the spectroradiometer set-up is given in the revised manuscript, including information regarding all the points raised above.

page 3322, line 22: Why have daily median reflectances been used? Why not an average over a certain time interval?

Response: As mentioned above. We consider median values being more robust as they are not as sensitive to outliers and hence less affected by errors in the data set.

page 3323, line 6: “median” over what? The 15 days?

Response: Yes the median of the 15 days. This has been clarified in the revised manuscript.

page 3323, lines 19-22: I suggest to move the last sentence to the start of the paragraph, i.e. before line 13 as the NDSI has to be calculated before the ANIF can be calculated.

Response: Thank you for this suggestion, it has been taken care of.
page 3325, line 5 + 22: Change “in the end” to “at the end”.

Response: Thank you for these suggestions, they have been taken care of.

page 3329, line 15: Change “accurate and extra” to “additional”.

Response: We meant that the absorption of red light saturates at higher biomass loads. This has been changed in the revised manuscript.

page 3329, line 25: Change “the majority” to “most”.

Response: Thank you again, this sentence is removed in the revised manuscript.

Response: We agree with you, and we are talking about the same thing, we are just using different phrasing, where you consider it from an equation point of view, we consider it from a leaf optical property point of view.

All vegetation indices using red will suffer from saturation problems. The reason for this is related to the fact that there are only so many photons striking a plant leaf and at a certain point, the chlorophyll absorbs nearly all the red energy to the point where no matter how much vegetation you add, more photons cannot be absorbed because they are already all absorbed. It is normally the red band that saturates. So any index using the red energy will suffer from the same limitation. For example, the Enhanced Vegetation Index (EVI) is not supposed to saturate as badly because in the equation empirical constants have been added to put more weight in the NIR spectrum that preserves sensitivity to higher loads of biomass (more layers of leaves) because here much more radiation is transmitted and reflected from the leaves.

Response: Thank you for pointing this out for us. You are correct, it is not the narrowness of the band which results in that saturation is avoided, it is which wavelength region that is chosen. This has been clarified in the revised manuscript.

Response: Thank you for these suggestions, they have been taken care of.

page 3330, line 12: “Peak” suggests it is lower again at very high biomass. Rephrase.

Response: We meant that the absorption of red light saturates at higher biomass loads. This has been changed in the revised manuscript.

page 3330, lines 11-14: This is not the reason for the saturation of the NDVI. The NDVI saturates at high biomass because the NIR reflectance is much larger than the red reflectance. NDVI therefore reduces to R_NIR / R_NIR which equals 1.

Response: Thank you again, this sentence is removed in the revised manuscript.

page 3330, lines 14-17: Again this is wrong. The saturation is not necessarily reduced with narrower bands. Narrow bands might even cause saturation earlier. Saturation can be reduced by selection of bands that show a smaller difference therefore avoiding the NDVI equation becoming 1 (see above).

Response: Thank you for these suggestions, they have been taken care of.

As fluorescence is competing with photochemical conversion: As fluorescence equals low photochemical conversion. The reality is more complex. And it looks like often the opposite is true. So either remove this sentence or formulate differently.

Response: Thank you again, this sentence is removed in the revised manuscript.
Fluorescence has been measured successfully with a spectral resolution of about 10nm. Whether very high spectral resolution is necessary depends on the method applied.

Response: Thank for this comment; this also explains why we see such a strong peak even though the spectral resolution of the ASDs are 3 nm. This has been changed in the revised manuscript.

The whole discussion only focuses on what is happening at the leaf level, i.e. reduced pigment contents. What about changes in vegetation cover?

Response: Ok thanks. It has been clarified in the revised manuscript that the discussion is on the canopy level.

Why are there gaps in the reflectance time series? Black vertical lines at the start and end of the rain seasons should be in all diagrams.

Response: The gaps are caused by technical issues due to loss of power supply, broken sensors or filtering of data due to bad weather conditions. This info is included in the revised manuscript. The black lines are included in all subplots in the revised manuscript.

References

Relevant changes made in the manuscript

- The word reflectance was changed to hemispherical conical reflectance factor.
- More information regarding the footprint/instantaneous field of view of the different sensor have been included.
- A table with sensor information has been included.
- More detailed information regarding the material and method has been included.
- A section reviewing previous works on continuous multiangular hyperspectral systems for monitoring ecosystems in situ is included in the revised introduction.
- A discussion regarding the behaviour of the NDSI in relation to the behaviour of the reflectance spectrum has been included.
- A discussion regarding the negative correlations between NIR HCRF and biomass has been included.
Deriving seasonal dynamics in ecosystem properties of semiarid savanna grasslands using in situ based hyperspectral reflectance

Torbern Tagesson¹, Rasmus Fensholt¹, Silvia Huber², Stephanie Horion¹, Idrissa Guiro³, Andrea Ehammer¹, Jonas Arđö⁴

¹Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark; E-Mails: torbern.tagesson@ign.ku.dk, rf@ign.ku.dk, stephanie.horion@ign.ku.dk, andrea.ehammer@ign.ku.dk

²Danish Hydrological Institute, DHI GRAS A/S, Agern Allé 5, DK-2970 Hørsholm, Denmark; E-mail: shu@dhi-gras.com

³Laboratoire d’Enseignement et de Recherche en Géomatique, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop de Dakar, BP 25275 Dakar-Fann, Senegal; E-mail: idyguiro@yahoo.fr

⁴Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden; E-mail: jonas.ardo@nateko.lu.se
*Correspondence to: Torbern Tagesson; torbern.tagesson@ign.ku.dk, Tel. nr: +46-704 99 39 36, Fax nr: +45 35 32 25 01, Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark
Abstract

This paper investigates how seasonal hyperspectral reflectance data (between 350 and 1800 nm) can be used to infer ecosystem properties for a semi-arid savanna grassland ecosystem in West Africa using a unique in situ based multi-angular dataset of hemispherical conical reflectance factor (HCRF) measurements. Relationships between seasonal dynamics in hyperspectral reflectance HCRF, and ecosystem properties (biomass, gross primary productivity (GPP), light use efficiency (LUE), and fraction of photosynthetically active radiation absorbed by vegetation (FAPAR)) were analysed. Reflectance HCRF data (ρ) were used to study the relationship between normalised difference spectral indices (NDSI) and the measured ecosystem properties. Finally, also the effects of variable sun sensor viewing geometry on different NDSI wavelength combinations were analysed. The wavelengths with the strongest correlation to seasonal dynamics in ecosystem properties were shortwave infrared (biomass), the peak absorption band for chlorophyll a and b (at 682 nm) (GPP), the oxygen A-band at 761 nm used for estimating chlorophyll fluorescence (GPP, and LUE), and blue wavelengths (FAPAR).

The NDSI with the strongest correlation to: i) biomass combined red edge reflectance HCRF (ρ705) with green reflectance HCRF (ρ587), ii) GPP combined wavelengths at the peak of green reflection (ρ518, ρ556), iii) the LUE combined red (ρ688) with blue reflectance HCRF (ρ436), and iv) FAPAR combined blue (ρ399) and near infrared (ρ1295) wavelengths. NDSI combining near infrared and shortwave infrared were strongly affected by solar zenith angles and sensor viewing geometry, as were many combinations of visible wavelengths. This study provides analyses based upon novel multi-angular hyperspectral data for validation of Earth observation based properties of semi-arid ecosystems, as well as insights for designing spectral characteristics of future sensors for ecosystem monitoring.
1. Introduction

Hyperspectral measurements of the Earth’s surface provide relevant information for many ecological applications. An important tool for spatial extrapolation of ecosystem functions and properties is to study how spectral properties are related to in situ measured ecosystem properties. These relationships found the basis for up-scaling using earth observation (EO) data. Continuous in situ measurements of hyperspectral reflectance in combination with ecosystem properties are thereby essential for improving our understanding of the functioning of the observed ecosystems. Strong relationships have for example been found between information in the reflectance spectrum and ecosystem properties such as, leaf area index (LAI), fraction of photosynthetically active radiation (PAR) absorbed by the vegetation (FAPAR), light use efficiency (LUE), biomass, vegetation primary productivity, vegetation water content, and nitrogen and chlorophyll content, and vegetation water content (e.g. Thenkabail et al., 2012; Tagesson et al., 2009; Gower et al., 1999; Sjöström et al., 2009; Sims and Gamon, 2003). In situ observations of spectral reflectance are also important for parameterisation and validation of canopy reflectance models, and space and airborne products (Coburn and Peddle, 2006).

Even though in situ measurements are fundamental for the EO research community, such datasets are still rare and at the present state they do not cover different biomes at the global scale (Huber et al., 2014). There are very few sites across the world exist with an instrumental setup designed for multi-angular continuous hyperspectral measurements. Even though continuous in situ measurements of multi-angular hyperspectral HCRF are fundamental for the EO research community, such datasets still only cover a limited number of biomes at the global scale (Huber et al., 2014). Leuning et al. (2006) present a system mounted in a 70 m tower above an evergreen Eucalyptus forest in New South Wales.
Australia, which measures spectral hemispherical conical reflectance factors (HCRF) throughout the year between 300 and 1150 nm at four azimuth angles. Hilker et al. (2007) and Hilker et al. (2010) describe an automated multiangular spectro-radiometer for estimation of canopy reflectance (AMSPEC) mounted on a tower above a coniferous forest in Canada. It samples spectral reflectance between 350 and 1200 nm year round under different viewing and sun angle conditions, achieved by and it is able to collection of data in a near 360° view around the tower with adjustable viewing zenith angles. Even though in situ measurements of multi-angular hyperspectral HCRF are fundamental for the EO research community, such datasets are still rare and at the present state they do not cover different biomes at the global scale (Huber et al., 2014).

There are many methods for analysing relationships between hyperspectral reflectance and ecosystem properties, such as multivariate methods, derivative techniques, and radiative transfer modelling (Bowyer and Danson, 2004; Ceccato et al., 2002; Danson et al., 1992; Roberto et al., 2012). Still, due to its simplicity, the combination of reflectance into vegetation indices is the major method for up-scaling using EO data. By far, the most commonly applied vegetation indices are the ratio type of indices those based on band ratios, e.g. the normalised difference vegetation index (NDVI), which is calculated by dividing the difference in the reflectance in the near infrared (ρ_{NIR}) and red (ρ_{red})-wavelength bands by the sum of ρ_{NIR} and ρ_{red} bands (Tucker, 1979; Rouse et al., 1974). The near infrared (NIR) radiance is strongly scattered by the air-water interfaces between the cells whereas red radiance is absorbed by chlorophyll and its accessory pigments (Gates et al., 1965).

The normalization with the sum in the denominator is a mean to reduce the effects of solar zenith

1 Different reflectance terminologies have been used to inform on spectral measurements in the field by the remote sensing community leading to suggestions to the proper use of the terminology (Martonchik et al., 2000). All field spectro-radiometers measure HCRF (hemispherical conical reflectance) if the field of view (FOV) of the sensor is larger than 3° (Milton et al., 2009) and is therefore used throughout this paper to support the correct inference and usage of reflectance products (Schaepman-Strub et al., 2006; Milton et al., 2009).
angle, sensor viewing geometry, and atmospheric errors as well as enhancing the signal of the observed target (e.g. Qi et al., 1994; Inoue et al., 2008).

Wavelength specific spectral reflectance is known to be related to leaf characteristics such as chlorophyll concentration, dry matter content, internal structure parameters and equivalent water thickness (Ceccato et al., 2002). Hyperspectral reflectance data can be combined into a matrix of normalised difference spectral indices (NDSI), following the NDVI rationing approach. Correlating the NDSI with ecosystem properties provides a way for an improved empirically based understanding of the relationship between information in the reflectance spectrum with ground surface properties (e.g. Inoue et al., 2008). Several studies have analysed relationships between hyperspectral reflectance, NDSI, and ecosystem properties (e.g. Thenkabail et al., 2000; Cho et al., 2007; Psomas et al., 2011; Inoue et al., 2008; Gamon et al., 1992; Feret et al., 2008; Thenkabail et al., 2012).

Still, it is extremely important to examine these relationships for different ecosystems across the earth and investigate their applicability for different environmental conditions and under different effects of biotic and abiotic stresses.

A strong correlation between an NDSI and an ecosystem property does not necessarily indicate that the NDSI is a good indicator of vegetation conditions to be applied to EO systems. Visible, NIR and shortwave infrared (SWIR) have different sensitivity to variations in solar zenith angles, stand structure, environmental conditions, health status of the vegetation, vegetation and soil water content, direct/diffuse radiation ratio, and sensor viewing geometry. The influence from of sun-sensor variations geometry on the reflected signal has been studied using radiative transfer models and airborne (e.g. AirMISR-) as well as satellite-based data from instruments, such as CHRIS-PROBA, MISR or and POLDER (Huber et al., 2010; Maignan et al., 2004; Javier García-Haro et al., 2006; Jacquemoud et al., 2009; Verhoef and Bach, 2007; Laurent et al., 2011). However, effects of variable sun angles and
sensor viewing geometries are not well documented \textit{in situ} for different plant functional types of natural ecosystems except for individual controlled experiments based on the use of field goniometers (Sandmeier et al., 1998; Schopfer et al., 2008). Improved knowledge regarding the influence from sun-sensor variability on different NDSI combinations is thereby essential for validating the applicability of an NDSI for EO up-scaling purposes.

The Dahra field site in Senegal, West Africa, was established in 2002 as an in situ research site to improve our knowledge regarding properties of semi-arid savanna ecosystems and their responses to climatic and environmental changes (Tagesson et al., 2015b). A strong focus of this instrumental setup is to gain insight into the relationships between ground surface reflectance and savanna ecosystem properties for EO up-scaling purposes. This paper presents a unique in situ dataset of seasonal dynamics in hyperspectral reflectance R_{HCRF} and demonstrates how seasonal dynamics in hyperspectral reflectance can be used to describe the seasonal dynamics in ecosystem properties of semi-arid savanna ecosystems. The objectives are threefold: (i) to quantify the relationship between seasonal dynamics of in situ hyperspectral reflectance R_{HCRF} between 350 and 1800 nm and ecosystem properties (biomass, gross primary productivity (GPP), LUE, and FAPAR); (ii) to quantify the relationship between NDSI with different wavelength combinations (350 to 1800 nm) and the measured ecosystem properties; (iii) to analyse and quantify effects of variable sun angles and sensor viewing geometries on different NDSI combinations.

2. Materials and Method

2.1 Site description

All measurements used for the present study were conducted at the Dahra field site in the Sahelian ecoclimatic zone north-east of the town Dahra in the semi-arid central part of Senegal ($15^\circ 24'10''$N, $55\ldots$).
15°25’56”W) during 2011 and 2012 (Fig. 1). Rainfall is sparse in the region with a mean annual sum of 416 mm (1951-2003). More than 95% of the rain falls between July and October, with August being the wettest month. The mean annual air temperature is 29 °C (1951-2003), May is the warmest and January is the coldest month with mean monthly temperature of 32°C and 25°C, respectively. The Dahra site has a short growing season (~3 months), following the rainy season with leaf area index generally ranging between 0 and 2 (Fensholt et al., 2004). South-western winds dominate during the rainy season and north-eastern winds dominate during the dry season. The area is dominated by annual grasses (e.g. Schoenefeldia gracilis, Digitaria gayana, Dactyloctenium aegypticum, Aristida mutabilis and Cenchrus biflorues) (Mbow et al., 2013) and trees and shrubs (e.g. Acacia senegalensis and Balanites aegyptiaca) are relatively sparse (~3% of the land cover) (Rasmussen et al., 2011). The average tree height was 5.2 m and the peak height of the herbaceous layer was 0.7 m (Tagesson et al., 2015b). A thorough description of the Dahra field site is given in Tagesson et al. (2015b).

2.2 Meteorological and vegetation variables

At the Dahra field site, a range of meteorological variables have been measured from a tower at the Dahra field site for more than ten years: air temperature (°C) and relative humidity (%) were measured at 2 m height; soil temperature (°C) and soil moisture (volumetric water content (m³ m⁻³×100) (%)) were collected at 0.05m depths; rainfall (mm) was measured at 2 m height; incoming (inc) and reflected (ref) PAR (µmol m⁻² s⁻¹) was measured at 10.5 m height, and PAR transmitted through the vegetation (PAR_transmit) was measured at 6 plots at ~0.01 m height (Table 1) (Tagesson et al., 2015b). The PAR_transmit was measured within 7 meters distance from the tower. PAR absorbed by the vegetation (APAR) was estimated by:
where α_{soil} is the PAR albedo of the soil, which was measured as 0.20 (Tagesson et al., 2015b), and FAPAR was estimated by dividing APAR with PAR_{inc} (Tagesson et al., 2015b). All sensors were connected to a CR-1000 logger in combination with a multiplexer (Campbell Scientific Inc., North Logan, USA) and data were sampled every 30 s, and stored as 15 minute averages (sum for rainfall).

The total above ground green biomass (g m$^{-2}$) of the grass and herbaceous vegetation was sampled approximately every 10 days during the growing seasons 2011 and 2012 at 28 one m2 plots located along two ~1060 m long diagonal transects (Fig. 1f) (Mbow et al., 2013). The method applied was destructive, so even though the same transects were used for each sampling date, the plots were never located at exactly the same location. The study area is flat and characterised by homogenous grassland savanna and the conditions in these sample plots are generally found to be representative for the conditions in the entire measurement area (Fensholt et al., 2006). All above ground green grass and herbaceous vegetation matter was collected and weighed in the field to get the fresh weight. The dry matter (DW) was estimated by oven-drying the green biomass. For a thorough description regarding the biomass sampling we refer to Mbow et al. (2013).

2.3 Estimates of gross primary productivity and light use efficiency

Net ecosystem exchange of CO$_2$ (NEE) (μmol CO$_2$ m$^{-2}$ s$^{-1}$) was measured with an eddy covariance system, consisting of an open path infrared gas analyser (LI-7500, LI-COR Inc., Lincoln, USA) and a 3-axis sonic anemometer (GILL Instruments, Hampshire, UK) from 18 July 2011 until 31 December 2012 (Table 1). The sensors were mounted 9 m above the ground on a tower (located placed
South of the tower containing the meteorological and spectroradiometric sensors (Fig. 1f). Data were sampled at 20 Hz rate. The post-processing was done with the EddyPro 4.2.1 software (LI-COR Biosciences, 2012), and the statistics were calculated for 30 minute periods. The post-processing includes 2-D coordinate rotation (Wilczak et al., 2001), time lag removal between anemometer and gas analyser by covariance maximization (Fan et al., 1990), despiking (Vickers and Mahrt, 1997) (plausibility range: window average ±3.5 standard deviations), linear detrending (Moncrieff et al., 2004), and compensation for density fluctuations (Webb et al., 1980). The fluxes were also corrected for high pass (Moncrieff et al., 1997) and low pass filtering effects (Moncrieff et al., 2004). The data were filtered for steady state and fully developed turbulent conditions, following Foken et al. (2004), and according to statistical tests as recommended by Vickers and Mahrt (1997). Flux measurements from periods of heavy rainfall were also removed. For a thorough description of the post-processing of the raw eddy covariance data, see Tagesson et al. (2015a).

A possible source of error in a comparison between EC-based variables and spectral reflectance HCRF is the difference in fetch/footprint/ instantaneous field of view (IFOV) differences between the sensors. The fetchIFOV of the spectroradiometer set-up contains only the including soil and herbaceous vegetation. The footprint of the EC tower was estimated using a model based on measurement height, surface roughness and atmospheric stability (Hsieh et al., 2000). The median point of maximum contribution is at 69 m, and the median for 70% cumulative flux distance is at 388 m from the tower. The footprint of the EC tower contains semi-arid savanna grassland with ~3% tree coverage and the EC data is thereby affected by both woody and herbaceous vegetation (Fig. 1a and 1f). But given the low tree coverage, and the dominant influence of herbaceous vegetation on the seasonal dynamics in CO₂ fluxes, we still consider it reasonable to compare EC fluxes with seasonal dynamics in spectral HCRF of the herbaceous vegetation.
The daytime NEE was partitioned to GPP and ecosystem respiration using the Mitscherlich light response function against PAR_{inc} (Falge et al., 2001). A 7-day moving window with one day time steps was used when fitting the functions. By subtracting dark respiration (R_d) from the light response function, it was forced through 0, and GPP was estimated:

\[
GPP = -(F_{\text{csat}} + R_d) \times (1 - e^{-\alpha \frac{\text{PAR}_{inc}}{F_{\text{csat}} + R_d}})
\]

(32)

where \(F_{\text{csat}} \) is the CO₂ uptake at light saturation (µmol CO₂ m⁻² s⁻¹), and \(\alpha \) is the quantum efficiency or the initial slope of the light response curve (µmol CO₂ (µmol photons)⁻¹) (Falge et al., 2001). Vapor pressure deficit (VPD) limits GPP and to account for this effect, the \(F_{\text{csat}} \) parameter was set as an exponentially decreasing function:

\[
F_{\text{csat}} = \begin{cases}
F_{\text{csat}} \times e^{-k(VPD-VPD_0)} & \text{VPD > VPD}_0 \\
F_{\text{csat}} & \text{VPD < VPD}_0
\end{cases}
\]

(43)

where VPD₀ is 10 hPa following the method by Lasslop et al. (2010).

Gaps in GPP less or equal to three days were filled with three different methods: (i) gaps shorter than two hours were filled using linear interpolation; (ii) daytime gaps were filled by using the light-response function for the 7-day moving windows; (iii) remaining gaps were filled by using mean diurnal variation 7-days moving windows (Falge et al., 2001). A linear regression model was fitted between daytime GPP and APAR for each 7-day moving window to estimate LUE, where LUE is the slope of the line.

2.4 Hyperspectral reflectanceHCRF measurements and NDSI estimates

Ground surface reflectanceHCRF spectra were measured every 15 minutes between sunrise and sunset from 15 July 2011 until 31 December 2012 using two FieldSpec3 spectrometers with fiber optic cables (Table 1) (ASD Inc., Colorado, USA). The spectroradiometers cover the spectral range from 350 nm to
1800 nm and have an instantaneous field of view (FOV) of 25°. The spectral resolution is 3 nm at 350-1000 nm and 10 nm at 1000-1800 nm and the sampling interval is 1.4 nm at 350-1000 nm and 2 nm at 1000-1800 nm. From these data, 1 nm spectra were calculated by using cubic spline interpolation functions. One sensor head was mounted on a rotating head 10.5 m above the surface (at the same tower containing instruments to measure the measurements of meteorological variables) providing measurements from the land surface a sunlit grass patch the herbaceous vegetation from in seven different viewing angles in a transect underneath the tower (nadir, 15°, 30°, 45° off-nadir angles towards east and west). There are no trees or effects of shading of trees are present in the IFOV of the data used in this study (Fig. 1). A reflective cosine receptor is used to measure full-sky-irradiance; it constitutes of by having the second sensor head was mounted on a 2 m high stand pointing to a Spectralon panel (Labsphere Inc., New Hampshire, USA) under a glass dome used for full-sky-irradiance measurements.

Each sensor measurement starts with an optimization to adjust the sensitivity of the detectors according to the specific illumination conditions at the time of measurement. The optimisation is followed by a dark current measurement to account for the noise generated by the thermal electrons within the ASDs that flows even when no photons are entering the device. The measurement sequence starts with a full-sky-irradiance measurement, secondly followed by measurements from the 7 angles of the land surface is conducted, and finally by a second full-sky-irradiance measurement. Thirty scans are averaged to one measurement to improve the signal-to-noise ratio for each measurement (optimisation, dark current, full-sky irradiance and each of the seven target measurements). The full measurement sequence takes less than one minute. The two ASD instruments are calibrated against each other before and after each rainy season. Poor quality measurements caused
by unfavorable weather conditions, changing illumination conditions, irregular technical issues were filtered by comparing full-sky solar irradiance before and after the target measurements (Huber et al., 2014). The spectral reflectanceHCRF was derived by estimating the ratio between the ground surface radiance and full sky irradiance. For a complete description/illustration of the spectroradiometer set up, the measurement sequence and the quality control, see Huber et al. (2014).

NDSI using all possible combinations of two separate wavelengths were calculated as:

\[
\text{NDSI} = \frac{(\rho_i - \rho_j)}{(\rho_i + \rho_j)}
\]

where \(\rho_i\) and \(\rho_j\) are the daily median reflectanceHCRF in two separate single wavelengths (i and j) between 350 and 1800 nm. In order to minimise the influence of errors we used daily median hyperspectral HCRF in the analysis (since median provides the most common model output and is thereby more robust against outliers than average values). Additionally, NDSI including the water absorption band (1300-1500 nm) was filtered as it is strongly sensitive to atmospheric water content, and is less suitable for spatial extrapolation of ecosystem properties using air/space borne sensors (Asner, 1998). Finally, NDSI combinations including wavelengths between 350 and 390 nm were filtered owing to low signal to noise ratio in the ASD sensors (Thenkabail et al., 2004).

2.5 Effects of varying sun and sensor viewing geometry on NDSI

The effects of variable solar zenith angles on different NDSI combinations were studied with nadir measurements taken over 15 days during the peak of the growing season in 2011 (day of year 237-251).

Only days with full data coverage were used (12 of the 15 days) in order not to include bias in the results from days with incomplete datasets. The median reflectanceHCRF of the 15 days was calculated for each wavelength for every 15 minutes between 8:00 and 18:00. These reflectanceHCRF values
were combined into NDSI with different wavelength combinations. Finally, daily mean and standard
deviation for all wavelength combinations were calculated. Diurnal variability in the NDSI was
assessed with the coefficient of variation (COV), which is the ratio between the standard deviation and
the mean. The COV gives an indication of effects related to variable solar zenith angles.

To capture directional effects in the NDSI related to the variable view zenith angles (15°, 30°, 45°
off-nadir angles towards east and west) the NDSI was calculated using median HCRF values from the
peak of the growing season 2011 (day of year 237-251) for the different viewing angles. Only data
measured between 12:00 and 14:00 was used to avoid effects of variable solar zenith angles. The
anisotropy factor (ANIF) was used to capture directional effects in the
NDSI related to the variable view zenith angles (15°, 30°, 45° off-nadir angles towards east and west).
The ANIF is defined as the fraction of a reflected property at a specific view direction relative to the
nadir, and it was calculated by:

$$\text{ANIF}(\lambda, \theta) = \frac{\text{NDSI}(\lambda, \theta)}{\text{NDSI}_0(\lambda)}$$

where NDSI(λ, θ) is NDSI for the different wavelengths (λ) and the different viewing angles (θ), and
NDSI$_0(\lambda)$ is the nadir measured NDSI (Sandmeier et al., 1998). The NDSI was calculated from median
reflectanceHCRF values from the peak of the growing season 2011 (day of year 237-251) and only data
measured between 12:00 and 14:00 were used to avoid effects of variable solar zenith angles.

2.6 Relationship between hyperspectral reflectanceHCRF, NDSI and ecosystem properties

We examined the relationship between predictor variables (daily median hyperspectral
reflectanceHCRF, and NDSI from nadir observations) and response variables (biomass, GPP, LUE, and
FAPAR) using linear regression analysis. Possible errors (random sampling errors, weather
conditions, aerosols, dust or water on the sensor heads, electrical sensor noise, filtering and gap-filling errors, errors in correction factors, sensor drift, and instrumentation errors) can be present in both predictor and response variables. We thereby used a reduced major axis linear regression to account for errors in both the predictor and response variables when fitting the regression lines. In order to estimate the robustness of the empirical relationships, we used a bootstrap simulation methodology, where the datasets were copied 200 times (Richter et al., 2012). The runs generated 200 sets of slopes, intercepts, coefficients of determination (R^2), and root-mean-square errors (RMSE), from which median and standard deviation was estimated. The generated statistical models were validated against the left-out subsamples within the bootstrap simulation method by calculating the root-mean square error (RMSE) and the relative RMSE ($RRMSE=100*RMSE*\text{mean(observed)}^{-1}$); median and standard deviation were estimated. Median was used instead of average since it gives the most common model output and hereby more robust against outliers. Within the regression analysis all variables used were repeated observations of the same measurement plot. The dependent and independent variables are thereby temporally auto-correlated and cannot be regarded as statistically independent. We thereby choose not to present any statistical significance. The analyses, however, still indicate how closely coupled the explanatory variables are with the ecosystem properties.

A filter was created for the analysis between NDSI and ecosystem properties; all NDSI combinations with a COV higher than 0.066 and all NDSI combinations with ANIF values higher than 1.2 and lower than 0.8 were filtered. The ANIF threshold of 1.2 and 0.8, and the COV threshold of 0.066 was used since 99.9% of the values then vary less than 20% due to effects of variable sun-sensor geometry, solar zenith angles. Additionally, the water absorption band (1300-1500 nm) was filtered as it is strongly sensitive to atmospheric water content, and is less suitable for spatial extrapolation of ecosystem properties using air/space borne sensors (Asner, 1998). Finally, NDSI combinations including
wavelengths between 350 and 300 nm were filtered owing to low signal to noise ratio in the ASD sensors (Thenkabail et al., 2004).

3. Results

3.1 Seasonal dynamics in meteorological variables, ecosystem properties and hyperspectral reflectance

Daily average air temperature at 2 m height ranged between 18.4°C and 37.8°C, with low values during winter and peak values in the end of the dry season (Fig. 2a). Yearly rainfall was 486 mm and 606 mm for 2011 and 2012, respectively. Soil moisture ranged between 1.9% and 14.1%, and it clearly followed the rainfall patterns (Fig. 2b and 2c). The CO$_2$ fluxes were low during the dry period and high during the rainy season (July-October) (Fig. 2e). The LUE followed GPP closely (Fig. 2f). FAPAR was low at the start of the rainy season, followed by a maximum towards the end of the rainy season, and then slowly decreased over the dry season (Fig. 2g).

The range in reflectance is large across the spectral space, and would hide the seasonal dynamics in hyperspectral reflectance if directly shown. Therefore, to clearly illustrate the seasonal dynamics in hyperspectral reflectance, the ratio between daily median nadir reflectance and the average reflectance for the entire measurement period was calculated for each wavelength (350-1800 nm). This gives a fraction of how the reflectance for each wavelength varies over the measurement period in relation to the average of the entire period (Fig. 2d).

In the visible (VIS) part of the reflectance spectrum (350-700 nm) there was a stronger absorption during the second half of the rainy season and at the beginning of the dry season than during the main part of the dry season and the start of the rainy season. There was stronger NIR absorption (700-1300 nm) in the end of the rainy season and the beginning of the dry season, whereas the absorption decreased along with the dry season. Strong seasonal variation was observed in the water absorption
region around 1400 nm following the succession of rainy and dry seasons. ReflectanceHCRF in the short-wave infrared (SWIR; 1400-1800 nm) generally followed the seasonal dynamics of the visible part of the spectrum.

<Figure 2>

3.2 Effects of sensor viewing geometry and variable sun angles on NDSI

The most pronounced effects of solar zenith angles at the peak of the growing season 2011 were observed for NDSI combining SWIR and NIR wavelengths, and with VIS wavelengths between 550 nm and 700 nm (n=576) (Fig. 3). Remaining VIS wavelengths were mostly affected by solar zenith angles when combined with the water absorption wavelengths around 1400 nm. The same effects were seen for the view zenith angles; the strongest effects were seen for NDSI with SWIR and NIR combinations, and VIS wavelengths between 550 and 700 nm (Fig. 4). Remaining VIS wavelengths were less affected. It was also clear that ground surface anisotropy increased strongly as a function of increasing viewing angle (Fig. 4). Moreover, some band combinations showed already angular sensitivity at view zenith angles of 15 °, while other band combinations only manifest anisotropic behaviour with higher view angles. Some band combinations, however, do not show any increased anisotropy at all (areas coloured in green in all three plots).

<Figure 3>

<Figure 4>
3.3 Relationship between hyperspectral reflectanceHCRF, NDSI and ecosystem properties

3.3.1 Biomass

ReflectanceHCRF values for all wavelengths except the water absorption band at 1100 nm were strongly correlated to biomass (Fig. 5a). The strongest correlation was found at ρ_{1675} (median ± 1 standard deviation; $r = -0.88 \pm 0.09$), but biomass was almost equally well correlated to blue, red and NIR wavelengths. All presented correlations and relationships throughout the text are based on filtered data. Negative correlations indicate that the more biomass the higher the absorption and hence the lower the reflectanceHCRF. A small peak of positive correlation is seen at 1120-1150 nm caused by a water absorption peak around this wavelength (Thenkabail et al., 2012).

NDSI combinations with reflectanceHCRF in the red edge ($\rho_{680} - \rho_{750}$) and reflectanceHCRF in the VIS region explained seasonal dynamics in biomass well (Fig. 6a). The strongest relationship ($R^2 = 0.88 \pm 0.07$; $\text{RMSE}= 28.4\text{18.6} \pm 85.7\text{2}\text{g-DW-m}^{-2}$) between NDSI and biomass was found for NDSI combining 705 and 587 nm (NDSI[705, 587]) (Table 42, Fig. 7a).

3.3.2 Gross primary productivity

The relationship between GPP and nadir measured hyperspectral reflectanceHCRF is inverted as compared to other correlation coefficient lines (Fig. 5b), since GPP is defined as a withdrawal of CO$_2$ from the atmosphere with higher negative values for a larger CO$_2$ uptake. The seasonal dynamics in GPP was strongly positively correlated to reflectanceHCRF in the blue, red, SWIR wavelengths, and the water absorption band at 1100 nm whereas it was strongly negatively correlated to the NIR reflectanceHCRF. The study revealed the strongest positive and negative correlations for reflectanceHCRF at 682 nm ($r = -0.70 \pm 0.02$) and 761 nm ($r = -0.74 \pm 0.02$), respectively. NDSI combinations that explained most of the GPP variability were different combinations of the VIS and
NIR or red and SWIR wavelengths (Fig. 6b). However, the strongest relationship was seen at NDSI[518, 556] \((R^2 = 0.86 \pm 0.02; \text{RMSE} = 1.53 \pm 0.12 \text{ kg C m}^{-2} \text{ d}^{-1}) \) (Table 12; Fig. 7b).

3.3.3 Light use efficiency

LUE was negatively correlated with reflectance\(_{\text{HCRF}}\) in the blue, and red spectral ranges and in the water absorption band at 1100 nm and it was positively correlated in the NIR wavelengths (Fig. 5c). Reflectance\(_{\text{HCRF}}\) at 761 nm yielded the strongest positive correlation \((r = 0.87 \pm 0.01) \). When combining the different wavelengths to NDSI, the VIS wavelengths explained variation in LUE well, with the strongest relationships in the red and blue parts of the spectrum (Fig. 6c). LUE correlated most strongly with NDSI[436, 688] \((R^2 = 0.81 \pm 0.02; \text{RMSE} = 0.26 \pm 0.02 \text{ g C MJ}^{-1}) \) (Table 12; Fig. 7c).

3.3.4 Fraction of photosynthetically active radiation absorbed by the vegetation

FAPAR was negatively correlated to nadir measured reflectance\(_{\text{HCRF}}\) for most wavelengths (Fig. 5d); the higher FAPAR the higher the absorption, and thereby the lower the reflectance\(_{\text{HCRF}}\). The strongest correlation was found at a blue wavelength \(\rho_{412} \) \((r = -0.92 \pm 0.01) \). When wavelengths were combined to NDSI, combining violet/blue with NIR and SWIR wavelengths generated the NDSI with the strongest relationships (Fig. 6d) with a maximum \(R^2 \) of 0.81\(\pm \)0.02 \((\text{RMSE} = 0.06 \pm 0.00 \text{ kg C MJ}^{-1}) \) for NDSI[399, 1295] (Table 12; Fig. 7d).
4. Discussion

4.1 Effects of sensor viewing geometry and variable sun angles on the NDSI

Effects of solar zenith angles and sensor viewing geometry were similar (Fig. 3 and 4), since they affect \(\text{reflectance}_{HCRF} \) measurements in a similar way (Kimes, 1983). In dense and erectophile canopies, \(\text{reflectance}_{HCRF} \) increases with sensor viewing and solar zenith angles, because a larger fraction of the upper vegetation canopy is viewed/illuminated, whereas the shadowed lower part of the canopy contributes less to the measured signal as shown previously by several studies (Huete et al., 1992; Jin et al., 2002; Huber et al., 2014; Kimes, 1983). However, the radiative transfer within a green canopy is complex, and differs across the spectral region (Huber et al., 2014). Less radiation is available for scattering of high absorbing spectral ranges (such as the VIS wavelengths), and this tends to increase the contrast between shadowed and illuminated areas for these wavelengths, whereas in the NIR and SWIR ranges, more radiation is scattered and transmitted, which thereby decreases the difference between shadowed and illuminated areas within the canopy (Kimes, 1983; Hapke et al., 1996). A recognised advantage of NDSI calculations is that errors/biases being similar in both wavelengths included in the index are suppressed by the normalisation. However, for a given situation where errors/biases are different for the wavelengths used, such as effects generated by sun-sensor geometry, it will affect the value of the index. This was also the case at the Dahra field site: NDSI values were strongly affected at wavelength combinations with large differences in effects of variable solar zenith angles (Fig. 6 in Huber et al. (2014)) and at wavelength combinations with large differences in effects related to the variable view zenith angles (Fig. 4 in Tagesson et al. (2015b)). This effect is especially pronounced in the case for low index values (closer to 0) whereas larger index values (closer to 1 and -1) become less sensitive. The relative \(\text{reflectance}_{HCRF} \) difference between NIR and SWIR is lower as compared to indices including the VIS domain; NIR/SWIR based indices...
thereby generate lower NDSI values with higher sensitivity to sun-sensor geometry generated differences between included wavelengths (Fig. 3 and 4).

The importance of directional effects for the applicability of normalized difference spectral indices has been pointed out as an issue in numerous papers (e.g. Holben and Fraser, 1984; van Leeuwen et al., 1999; Cihlar et al., 1994; Fensholt et al., 2010; Gao et al., 2002). This study confirms these challenges for NIR/SWIR based indices, but the results also indicate several wavelength combinations from which these effects are less severe and potentially applicable to EO data without disturbance from viewing/illumination geometry for this type of vegetation. Additionally, multi-angular reflectance data provide accurate and additional information of e.g. canopy structure, photosynthetic efficiency and capacity (Bicheron and Leroy, 2000; Asner, 1998; Pisek et al., 2013), and this unique in situ based multi-angular high temporal resolution dataset may thus be used for future research of canopy radiative transfer and creation, parameterisation and evaluation of BRDF (bidirectional reflectance distribution functions) modelling (Jacquemoud et al., 2009; Bicheron and Leroy, 2000). The multi-angular dataset is also highly valuable for evaluation and validation of satellite based products, where the separation of view angle and atmospheric effects can only be done using radiative transfer models (Holben and Fraser, 1984).

4.2 Seasonal dynamics in hyperspectral reflectance, NDSI and ecosystem properties

4.2.1 Biomass

The strong correlation between biomass and the majority of the reflectance spectrum indicates the strong effects of phenology on the seasonal dynamics in the reflectance spectra (Fig. 5a). Variability in VIS (350-700 nm) reflectance for vegetated areas is strongly related to changes in leaf pigments (Asner, 1998), and this can also be seen in Fig. 2d since absorption was much stronger
during the rainy (growing) season, than during the dry season. Previous studies have generally shown positive relationships between NIR reflectance $H_{	ext{CRF}}$ and biomass since To avoid overheating, a large fraction of NIR radiation is reflected in green healthy vegetation to avoid overheating and NIR reflectance is mostly affected by changes in LAI, canopy architecture, and by the spongy mesophyll layer in green leaves (e.g. Hansen and Schjoerring, 2003; Asner, 1998). (e.g. Hansen and Schjoerring, 2003) Here we generally showed strong negative relationships between NIR $H_{	ext{CRF}}$ and dry weight biomass is generally observed (Fig. 5a), whereas a being very different from a strong positive NIR $H_{	ext{CRF}}$ correlation with vegetation water content was seen (figure not shown), an increased from within $H_{	ext{CRF}}$. General conditions: The strong negative NIR $H_{	ext{CRF}}$ correlation with dry weight biomass found here This is interesting and should be studied further to better understand the respective importance of canopy water and leaf internal cellular structure for the NIR $H_{	ext{CRF}}$ of herbaceous vegetation characterised by erectophile leaf angle distribution (LAD). Several studies have shown that biomass accumulation increases ecosystem water content, which thereby increases SWIR absorption (e.g. Psomas et al., 2011; Asner, 1998). We found the strongest correlation for biomass with a SWIR wavelength thereby confirming the studies by Lee (2004) and Psomas et al. (2011) in that SWIR wavelengths are good predictors of LAI or biomass.

The NDVI is known to saturate at high biomass because the absorption of red light at $\sim 670-680$ nm reaches a peak saturates at higher biomass loads whereas the NIR reflectance $H_{	ext{CRF}}$ continues to increase due to multiple scattering effects (Mutanga and Skidmore, 2004; Jin and Eklundh, 2014). Several studies have shown that NDSI computed with narrowband reflectance $H_{	ext{CRF}}$ improve this relationship by choosing a wavelength region not as close to the maximum red absorption at ~ 680 nm, for example using shorter and longer wavelengths of the red edge (700 - 780nm) (Cho et al., 2007; Mutanga and Skidmore, 2004; Lee, 2004), and NIR and SWIR wavelengths (Psomas et al., 2011; Lee,
The NDSI with the strongest correlation to biomass was computed using red edge reflectanceHCRF (ρ_{705}) and green reflectanceHCRF (ρ_{587}). Vegetation stress and information about chlorophyll and nitrogen status of plants can be extracted from the red-edge region (Gitelson et al., 1996). Wavelengths around ρ_{550} are located right at the peak of green reflection and closely related to the total chlorophyll content, leaf nitrogen content, and chlorophyll/carotenoid ratio and have previously been shown to be closely related to biomass (Inoue et al., 2008; Thenkabail et al., 2012).

4.2.2 Gross primary productivity

The maximum absorption in the red wavelengths generally occurs at 682 nm as this is the peak absorption for chlorophyll a and b (Thenkabail et al., 2000), and this was also the wavelength being most strongly correlated with GPP. ReflectanceHCRF at 682 nm was previously shown to be strongly related to LAI, biomass, plant height, NPP, and crop type discrimination (Thenkabail et al., 2004; Thenkabail et al., 2012). The NDSI with the strongest relationship to GPP was based on reflectanceHCRF in the vicinity of the green peak. The photochemical reflectance index (PRI) normalizes reflectanceHCRF at 531 nm and 570 nm and it was suggested for detection of diurnal variation in the xanthophyll cycle activity (Gamon et al., 1992), and it is commonly used for estimating productivity efficiency of the vegetation (e.g. Soudani et al., 2014). The present study thereby confirms the strong applicability of the wavelengths in the vicinity of the green peak for vegetation productivity studies. Again, wavelengths around the green peak are related to the total chlorophyll content, leaf nitrogen content, chlorophyll/carotenoid ratio, and biomass (Inoue et al., 2008; Thenkabail et al., 2012).

4.2.3 Light use efficiency

Both LUE and GPP were most strongly correlated with reflectanceHCRF at 761 nm, which is the oxygen A-band within the NIR wavelengths. ReflectanceHCRF at 761 nm is commonly used for
estimating solar-induced chlorophyll fluorescence due to radiation emitted by the chlorophyll, and it has been suggested as a direct measure of health status of the vegetation (Meroni et al., 2009). As fluorescence is competing with photochemical conversion, it may allow a more correct estimate of the carbon assimilation (Entcheva Campbell et al., 2008). Earth observation data for estimating fluorescence should have very high spectral resolution (<10 nm) (0.05-0.1 nm) due to its narrow features, but considering the rapid technical development within sensors for hyperspectral measurements, fluorescence possibly has strong practical potential for monitoring vegetation status (Meroni et al., 2009; Entcheva Campbell et al., 2008). Globally mapped terrestrial chlorophyll fluorescence retrievals are already produced from the GOME-2 instrument at a spatial resolution of 0.5°×0.5°, but hopefully this will be available also with EO sensors of higher spatial and temporal resolution in the future (Joiner et al., 2013).

The strongest wavelength combinations for estimating LUE for this semi-arid ecosystem was NDSI[688, 435]. The 688 nm wavelength is just at the base of the red edge region, again indicating the importance of this spectral region for estimating photosynthetic activity. The wavelength at 435 nm is at the center of the blue range characterized by chlorophyll utilization, and strongly related to chlorophyll a and b, senescing, carotenoid, loss of chlorophyll, and vegetation browning (Thenkabail et al., 2004; Thenkabail et al., 2012). The NDSI[688, 435] thereby explores the difference between information about chlorophyll content and information about senescence of the vegetation canopy, which should be a good predictor of ecosystem level photosynthetic efficiency.

4.2.4 Fraction of photosynthetically active radiation absorbed by the vegetation (FAPAR)

FAPAR is an estimate of radiation absorption in the photosynthetically active spectrum and thereby strongly negatively correlated to most parts of the reflectance spectrum (Fig. 5d). FAPAR remained
high during the dry season because of standing dry biomass that was slowly degrading over the dry season (Fig. 2g). The seasonal dynamics in FAPAR is thereby strongly related to senescence of the vegetation, which explains why FAPAR was most strongly correlated to blue wavelengths (ρ_{412}). Several studies reported a strong relationship between NDVI and FAPAR (e.g. Tagesson et al., 2012; Myneni and Williams, 1994; Fensholt et al., 2004), but this relationship has been shown to vary for the vegetative phase and the periods of senescence (Inoue et al., 1998; Tagesson et al., 2015b). As showed by Inoue et al. (2008), and confirmed by this study, new indices combining blue with NIR wavelengths could be used for estimating FAPAR for the entire phenological cycle. This result has implications for studies using the LUE approach for estimating C assimilations (Hilker et al., 2008).

4.3 Outlook and perspectives

Very limited multi-angular hyperspectral in situ data exists, even though it has been, and will continue to be extremely valuable for an improved understanding of the interaction between ground surface properties and radiative transfer. In this study, we have presented a unique in situ dataset of multi-angular, high temporal resolution hyperspectral reflectance (HCRF (350-1800 nm)) and demonstrated the applicability of hyperspectral data for estimating ground surface properties of semi-arid savanna ecosystems using NDSI. The study was conducted in spatially homogeneous savanna grassland, suggesting that the results should be commonly applicable for this biome type. However, attention should be paid to site-specific details that could affect the indices, such as species composition, soil type, biotic and abiotic stresses, and stand structure. Additionally, the biophysical mechanisms behind the NDSIs are not well understood at the moment, and further studies are needed to examine the applicability of these indices to larger regions and other ecosystems. Being a 2-band ratio approach, NDSI does not take full advantage of exploring the rich information given by the hyperspectral
reflectance measurements. In the future, this hyperspectral data-set could be fully explored using e.g. derivative techniques, multivariate methods, and creation, parameterisation and evaluation of bidirectional reflectance distribution functions (BRDF) and radiative transfer models.

Even though several other methods exist which fully exploit the information in the hyperspectral reflectance spectrum, results of the present study still indicates the strength of normalised difference indices for extrapolating seasonal dynamics in properties of savanna ecosystems. A number of wavelengths in the reflectance spectra that are highly correlated to seasonal dynamics in properties of semiarid savanna ecosystems have been identified. The relationships between NDSI and ecosystem properties were better determined, or at the same level, as results of previous studies exploring relationships between hyperspectral reflectance and ecosystem properties (Kumar, 2007; Cho et al., 2007; Mutanga and Skidmore, 2004; Psomas et al., 2011; Ide et al., 2010). By studying also the impact from varying viewing and illumination geometry the feasibility and applicability of using indices for up-scaling to EO data was evaluated. As such, the results presented here offer insights for assessment of ecosystem properties using EO data and this information could be used for designing future sensors for observation of ecosystem properties of the Earth.
Acknowledgements

This paper was written within the frame of the project entitled Earth Observation based Vegetation productivity and Land Degradation Trends in Global Drylands. The project was funded by the Danish Council for Independent Research (DFF) Sapere Aude programme. The site is maintained by the Centre de Recherches Zootechniques de Dahra, Institut Sénégalais de Recherches Agricoles (ISRA).
References

Table 1. Information regarding the sensor set-up for the measured environmental variables. HCRF is hemispherical conical reflectance factor; GPP is gross primary productivity; LUE is light use efficiency; and FAPAR is fraction of photosynthetically active radiation absorbed by the vegetation. Min and Max are minimum and maximum values measured, respectively; DW is dry weight; C is carbon; and MJ is megajoule.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unit</th>
<th>Sensors</th>
<th>Sensor company</th>
<th>Data size</th>
<th>Aggregation method</th>
<th>Data gaps</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperspectral reflectanceHCRF</td>
<td>-</td>
<td>Fieldspec 3</td>
<td>ASD Inc., Colorado, USA</td>
<td>371</td>
<td>Daily median</td>
<td>31%</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Herbaceous biomass</td>
<td>g DW m⁻²</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>Daily mean</td>
<td>-</td>
<td>0</td>
<td>223</td>
</tr>
<tr>
<td>GPP</td>
<td>g C d⁻¹</td>
<td>LI-7500, GILL R3</td>
<td>LI-COR Inc., Lincoln, USA; Gill instruments, Hampshire, UK</td>
<td>285</td>
<td>Daily sums</td>
<td>56%</td>
<td>-14.22</td>
<td>-0.22</td>
</tr>
<tr>
<td>LUE</td>
<td>g C MJ⁻¹</td>
<td>LI-7500, GILL R3</td>
<td>LI-COR Inc., Lincoln, USA; Gill instruments, Hampshire, UK</td>
<td>272</td>
<td>Daily estimates</td>
<td>28%</td>
<td>0.02</td>
<td>1.89</td>
</tr>
<tr>
<td>FAPAR</td>
<td>-</td>
<td>Quantum SKP</td>
<td>Skye instruments Ltd., Llandridod wells, UK</td>
<td>369</td>
<td>Daily averages</td>
<td>1%</td>
<td>0.07</td>
<td>0.77</td>
</tr>
</tbody>
</table>
Table 42. Wavelengths of the **hemispherical conical reflectance factors** (reflectances $\rho_{i,j}$) used in the normalized difference spectral indices (NDSI) that generated the strongest correlations with ecosystem properties. DW is dry weight; FAPAR is the fraction of photosynthetically active radiation absorbed by the vegetation; AVG is average; SD is standard deviation; RMSE is root-mean-square-error.

<table>
<thead>
<tr>
<th>Ecosystem property</th>
<th>Sample size</th>
<th>ρ_i</th>
<th>ρ_j</th>
<th>R^2</th>
<th>Observation (AVG±SD)</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass $(g \text{ DW m}^{-2})$</td>
<td>12</td>
<td>587</td>
<td>705</td>
<td>0.88±0.07</td>
<td>153±59</td>
<td>28.4±8.7</td>
</tr>
<tr>
<td>Gross primary productivity $(g \text{ C m}^{-2} \text{ d}^{-1})$</td>
<td>285</td>
<td>518</td>
<td>556</td>
<td>0.86±0.02</td>
<td>-4.3±4.0</td>
<td>1.5±0.1</td>
</tr>
<tr>
<td>Light use efficiency $(g \text{ C MJ}^{-1})$</td>
<td>272</td>
<td>688</td>
<td>436</td>
<td>0.81±0.02</td>
<td>0.53±0.65</td>
<td>0.26±0.02</td>
</tr>
<tr>
<td>FAPAR</td>
<td>369</td>
<td>399</td>
<td>1295</td>
<td>0.81±0.02</td>
<td>0.41±0.16</td>
<td>0.06±0.003</td>
</tr>
</tbody>
</table>
Figure 1. Map and Overview Photographs of the Dahra field site of and the measured areas, and maps over the Dahra field site and tower set-up for the eddy covariance tower (left), and the meteorological
tower with the spectroradiometers (right). The map shows the location of Dahra within the Sahel
orange area. a) Picture of the footprint of the eddy covariance (EC) tower; b) picture of the
EC tower; c) picture of the meteorological tower with the spectroradiometers; d) picture of
the instantaneous field of view (fetch FOV) of the spectroradiometers during the rainy season; e)
picture of the fetch FOV of the spectroradiometer during the beginning of the dry season; and f)
Quickbird image from the Dahra field site from 11 September 2011 showing the location of the
meteorological tower, the EC tower, the biomass sampling plots and the footprint of the EC
measurements. The EC footprint area is the median 70% cumulative flux distance from the eddy
covariance tower. The overview picture of the EC tower and its footprint and the picture of the
eddy covariance tower show are taken during the rainy season whereas the picture of the
meteorological tower shows the late dry season. The map shows the location of Dahra within the Sahel
orange area.
Figure 2. Time series of the measured variables: a) daily averaged air temperature (black line), and soil temperature at 0.05 m depth (grey line), b) daily sums of rainfall, c) daily average of soil moisture at 0.05 m depth, d) hyperspectral hemispherical conical reflectance factor (reflectanceHCRF) normalized
by calculating the ratio between daily median \text{reflectance}_{HCRF} for each wavelength (350-1800 nm) and the average \text{reflectance}_{HCRF} for the entire measurement period, e) gross primary productivity (GPP) (black dots) and ecosystem respiration (grey dots), f) the light use efficiency (LUE), and g) the fraction of photosynthetically active radiation absorbed by the vegetation (FAPAR). The black vertical lines are the start and end of the rainy seasons (first and final day of rainfall). The gaps are caused by technical issues due to loss of power supply, broken sensors or filtering of data due to bad weather conditions.
Figure 3. The coefficient of variation (COV), i.e. the ratio between daily standard deviation and the daily mean (measurements taken between 8:00 and 18:00), for different normalised difference spectral index (NDSI) wavelength \((i, j)\) combinations for 12 days at the peak of the growing season 2011 (day of year 237-251; \(n=576\)). The COV indicates how strongly the NDSI are affected by variable sun angles.
Figure 4. The anisotropy factor (ANIF) for different normalised difference spectral index (NDSI) wavelength (i, j) combinations for 15 days at the peak of the growing season 2011 (day of year 237-251) for the different sensor viewing angles: a) 15°, b) 30°, and c) 45°. The sensor is pointing east and west in the lower left and upper right corners of each plot, respectively. In order not to include effects of solar zenith angles in the analysis, only data measured between 12:00 and 14:00 were used in the ANIF calculations ($n=48$).
Figure 5. Median correlation coefficient (±1 standard deviation) between seasonal dynamics in hyperspectral hemispherical conical reflectance factors (reflectanceHCRF) 2011-2012 and a) dry weight biomass (n=12; g m$^{-2}$), b) gross primary productivity (GPP) (n=285; g C day$^{-1}$), c) light use efficiency (LUE) (n=272; g C MJ$^{-1}$), and d) fraction of photosynthetically active radiation absorbed by the vegetation (FAPAR) (n=369).
Figure 6. Coefficient of determination (R^2) between normalised difference spectral index (-NDSI) and a) dry weight biomass (n=12; g m$^{-2}$), b) gross primary productivity (GPP) (n=285; g C day$^{-1}$), c) light use efficiency (LUE) (n=272; g C MJ$^{-1}$), and d) fraction of photosynthetically active radiation absorbed by the vegetation (FAPAR) (n=369). The upper right half of each image shows the unfiltered R^2 values, whereas the lower left half shows filtered R^2, based on the filtering criteria described under Subsect. 2.6.
Figure 7. The least square linear regressions with the strongest relationships between the normalised difference spectral index (NDSI) and a) dry weight biomass, b) gross primary productivity (GPP), c) light use efficiency (LUE), and d) fraction of photosynthetically active radiation absorbed by the vegetation (FAPAR). In the equations, the slope and intercepts (±1 standard deviation) is given.