Coupling δ^2H and δ^{18}O biomarker results yields information on relative humidity and isotopic composition of precipitation – a climate transect validation study

M. Tuthorn1, R. Zech2, M. Ruppenthal3, Y. Oelmann3, A. Kahmen4, H. F. del Valle5, T. Eglinton2, K. Rozanski6, M. Zech1,7,*

1) Department of Soil Physics and Chair of Geomorphology, University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany
2) Geological Institute, ETH Zurich, Sonneggstrasse 5, CH-8092 Zurich, Switzerland
3) Geoecology, University of Tübingen, Rümelinstr. 19-23, D-72070 Tübingen, Germany
4) Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH-4056 Basel, Switzerland
5) Ecología Terrestre, Centro Nacional Patagónico (CENPAT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Boulevard Brown 2825, U9120ACF Puerto Madryn, Argentina
6) Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Al. Mickiewicza 30, 30-059 Kraków, Poland
7) Institute of Agronomy and Nutritional Sciences, Soil Biogeochemistry, Martin-Luther University Halle-Wittenberg, von-Secendorff-Platz 3, D-06120 Halle, Germany

*) corresponding author (michael_zech@gmx.de)
Abstract

The hydrogen isotopic composition (δ²H) of leaf waxes, especially of n-alkanes (δ²Hₙ-alkanes), is used increasingly for paleohydrological and climate reconstructions. However, it is challenging to disentangle past changes in the isotopic composition of precipitation and changes in evapotranspirative enrichment of leaf water, that are both recorded in leaf wax δ²H values. In order to overcome this limitation, Zech M. et al. (2013, Chemical Geology 360-361, pp. 220-230) proposed a coupled δ²Hₙ-alkane-δ¹⁸O sugar biomarker approach. This coupled approach allows calculating (i) biomarker-based ‘reconstructed’ δ²H/δ¹⁸O values of leaf water (δ²H/δ¹⁸O_leaf water), (ii) biomarker-based ‘reconstructed’ deuterium excess (d-excess) of leaf water, which mainly reflects evapotranspirative enrichment and which can be used to reconstruct relative air humidity (RH) and (iii) biomarker-based ‘reconstructed’ δ²H/δ¹⁸O_precipitation values.

Here we present a climate transect validation study by coupling new results from δ²H analyses on n-alkanes and fatty acids in topsoils along a climate transect in Argentina with previously measured δ¹⁸O results obtained for plant-derived sugars. Accordingly, both the reconstructed RH and δ²H/δ¹⁸O_precipitation values correlate significantly and highly significantly, respectively, with actual RH and δ²H/δ¹⁸O_precipitation values. We conclude that compared to single δ²Hₙ-alkane or δ¹⁸O_sugar records, the proposed coupled δ²Hₙ-alkane-δ¹⁸O_sugar biomarker approach will allow more robust δ²H/δ¹⁸O_precipitation reconstructions and additionally the reconstruction of mean summer daytime RH changes/history in future paleoclimate research.

Keywords: paleoclimate proxies, hemicellulose sugars, n-alkanes, leaf water enrichment, deuterium-excess, relative air humidity
1. Introduction

Long chain n-alkanes and fatty acids are important components of the epicuticular leaf waxes of terrestrial plants (Eglinton, 1967; Samuels et al., 2008). As leaf waxes can be preserved in sedimentary archives over a long time they serve as valuable biomarkers for paleoenvironmental and -climate reconstructions (Eglinton and Eglinton, 2008; Zech M. et al., 2011b). The δ²H isotopic composition of leaf waxes is of particular interest in this regard, because, at least to a first order, it reflects the isotopic composition of precipitation δ²H_{prec} (Sauer et al., 2001; Huang et al., 2004; Sachse et al., 2004; Schefuss et al., 2005; Pagani et al., 2006; Tierney et al., 2008; Rao et al., 2009), which in turn depends on temperature, amount of precipitation, atmospheric circulation, etc. (Dansgaard, 1964; Rozanski et al., 1993; Gat, 1996; Araguas-Araguas et al., 2000). While there is probably no fractionation of hydrogen isotopes during water uptake by the roots (Ehleringer and Dawson, 1992), several studies have shown that leaf water is enriched in ²H compared to the source water or precipitation (Flanagan et al., 1991; Yakir, 1992; Sachse et al., 2006; Smith & Freeman, 2006; Farquhar et al., 2007; Feakins & Sessions, 2010). This ²H enrichment, which is also recorded in the leaf waxes (Kahmen et al., 2013a,b), can be explained by evapotranspiration and is mainly controlled by relative air humidity (RH), temperature and the isotopic composition of atmospheric water vapor. Indeed, a robust reconstruction of δ²H_{prec} from soils and sedimentary records turns increasingly out to be quite challenging, because it is hitherto difficult to disentangle past changes in δ²H_{prec} and changes in evapotranspirative enrichment of leaf water (Zech, R. et al., 2013; Zech, M. et al., 2015).

 Compared to compound-specific δ²H analyses, compound-specific δ¹⁸O analyses are by far less adopted by the scientific community, so far (Hener et al., 1998; Juchelka et al., 1998; Jung et al., 2005; Jung et al., 2007; Greule et al., 2008). However, particularly compound-specific δ¹⁸O analyses of hemicellulose-derived sugar biomarkers (δ¹⁸O_sugars) extracted from
plants, soils and sediments are proposed to have large potential especially in paleoclimate/hydrologic research (Zech M. & Glaser, 2009; Zech M. et al., 2012). Similar to leaf waxes, hemicellulose-derived sugars record the isotopic composition of water used for metabolism, i.e. the isotopic composition of precipitation altered by evapotranspirative 18O enrichment of soil and leaf water (Tuthorn et al., 2014; Zech M. et al., 2014a). Recently, Zech M. et al. (2013) proposed a conceptual coupled δ^2H$_{n}$-alkane-δ^{18}O$_{sugar}$ model for paleoclimate research and suggested that this coupling allows overcoming the above defined limitation of single δ^2H$_{n}$-alkane approaches. Accordingly, the coupled δ^2H$_{n}$-alkane-δ^{18}O$_{sugar}$ approach allows reconstructing (i) δ^2H/δ^{18}O$_{leaf}$ values, (ii) deuterium excess (d-excess) of leaf water, which mainly reflects evapotranspirative enrichment and can be used to reconstruct relative air humidity (RH) and (iii) δ^2H/δ^{18}O$_{prec}$ values.

The study presented here aimed at evaluating the coupled δ^2H$_{n}$-alkane-δ^{18}O$_{sugar}$ biomarker approach by applying it to a modern topsoil climate transect from Argentina. More specifically, we aimed at (i) analysing and comparing the δ^2H values of n-alkanes and fatty acids, (ii) modelling 2H leaf water enrichment along the transect and comparison of δ^2H$_{leaf}$ values with δ^2H$_{n}$-alkane and δ^2H$_{fatty}$ acid values, (iii) reconstructing d-excess of leaf water using the coupled δ^2H$_{n}$-alkane-δ^{18}O$_{sugar}$ approach and evaluating the potential for reconstructing RH, and (iv) reconstructing ‘biomarker-based’ δ^2H/δ^{18}O$_{prec}$ values and comparison with actual δ^2H/δ^{18}O$_{prec}$ values.

2. Material and methods

2.1. Transect description and samples

The investigated transect in Argentina spans from ~32°S to 47°S, and encompasses 20 sampling locations spanning a large climate and altitudinal (22 – 964 m) gradient (Fig. 1). Mean annual temperature ranges from 11.4 °C to 18.0 °C and mean annual precipitation from
185 mm to 1100 mm (GeoINTA, 2012). Precipitation shows a systematic southward trend towards more negative δ^{18}O and δ^2H values (δ^{18}O$_{prec}$ and δ^2H$_{prec}$, respectively) (Bowen, 2012).

The transect is described in detail by Tuthorn et al. (2014) and Ruppenthal et al. (2015). Briefly, it is characterized by warm humid subtropical conditions in the north (Zárate, Buenos Aires Province), pronounced arid conditions in the middle part of the transect and cool temperate conditions in the south (Las Heras, Santa Cruz Province). These markedly contrasting climate conditions are reflected in the vegetation zones of the study area, changing from Humid/Dry Pampa (with dominance of *Triticum, Setaria, Eragrostis, Andopogon*, *Panicum* and *Festuca* species) in the north to the Espinal vegetation zone (with dominance of *Festuga and Larrea* species) that prevails under semi-arid climate (Burgos and Vidal, 1951), Low Monte semidesert/desert (with dominance of *Larrea* species) in the most arid region of Argentina (Fernández and Busso, 1997), and Patagonian Steppe (with dominance of *Stipa* species) in the southernmost part of the transect (Le Houérou, 1996; Paruelo et al., 1998).

During a field campaign in March and April 2010, mixed topsoil samples (A$_h$-horizons) from maximum 51 cm depth were collected in triplicate replication from the 20 sample sites along the transect (for soil type and total organic carbon contents please see Table 1 of Tuthorn et al., 2014). The soil samples were air-dried in the field and later in an oven at 50°C for several days. The sampling site heterogeneity was checked for the δ^{18}O$_{sugar}$ analyses and in most cases did not exceed the analytical uncertainty (Table 2 in Tuthorn et al., 2014). Therefore, the field replications were merged to one composite sample per study site for δ^2H$_{lipid}$ analyses.

2.2. Compound-specific δ^2H analyses of *n*-alkanes and fatty acids

For δ^2H analyses of *n*-alkane and fatty acid biomarkers, an Accelerated Solvent Extractor (Dionex ASE 200) was used to extract free lipids from the dried soil samples with dichloromethane (DCM) and methanol (MeOH; 9:1) according to Zech R. et al. (2013). The
total lipid extracts were separated over pipette columns filled with ~2 g aminopropyl. *n*-Alkanes were eluted with hexane, more polar lipids with DCM:MeOH (1:1), and free fatty acids with diethyl ether:acetic acid (19:1). The *n*-alkanes were further purified using zeolite (Geokleen) pipette columns. The zeolite was dried and dissolved in HF after eluting branched- and cyclo-alkyl compounds with hexane, and the straight-chain (*n*-alkyl) compounds were then recovered by liquid-liquid extraction with hexane. For samples 1 – 12, an additional purification step with silver nitrate columns was carried out in order to eliminate unsaturated compounds. The chromatograms of the other samples displayed no requirement for this purification step.

Fatty acids were methylated using 5% HCl in methanol at 80°C for 12 hours. Subsequently, liquid-liquid extraction with 5% NaCl and hexane was used to retrieve fatty acid methyl esters (FAMEs). FAMEs were purified by elution with dichloromethane over SiO₂ columns (~2 g). 5α androstane and hexamethylbenzene was used for quantification of the compounds on an Agilent Technologies 7890A gas chromatograph (GC) equipped with a VF1 column (30 m, 0.25 mm i.d., 0.25 µm film thickness) and a flame ionization detector (FID). Compound-specific δ²H values of the long-chain *n*-alkanes and FAMEs were determined based on at least triplicate analyses on a gas chromatograph-pyrolysis-isotope ratio mass spectrometer (GC-pyrolysis-IRMS, Delta V, ThermoFisher Scientific, Bremen, Germany). The A4 standard mixture (provided by Arndt Schimmelmann, Indiana University, USA) was run three times per sequence at three different concentrations. All results are reported after normalization using multi-linear regression (Paul et al., 2007) and simple mass-balance correction of the FAMEs for the isotopic composition of the methanol used for derivatisation. Long-term precision of the analyses was monitored using a laboratory standard (oak, *n*-C₂₉). The standard was analyzed in every sequence and yielded a mean value of -147.2‰ with a standard deviation of ± 1.7 ‰ across all sequences run for this study.
2.3. Modeling of leaf water 2H enrichment

The empirical data analyses were combined with mechanistic model simulations of $\delta^{2}H_{\text{leaf water}}$ in order to better detect and evaluate how the dominant climate variables (air temperature and relative air humidity) influence 2H enrichment in lipids. The 2H enrichment of leaf water due to evapotranspiration can be predicted by using mechanistic models originally developed for isotope fractionation processes associated with evaporation from water surfaces by Craig and Gordon (1965). These models were adapted for plants by Dongmann et al. (1974) and subsequently by Flanagan et al. (1991) and Farquhar and Lloyd (1993). Evaporative 2H enrichment of the leaf water ($\Delta^{2}H_e$) at the evaporative surface in the mesophyll is given by the equation:

$$\Delta^{2}H_e = \varepsilon^+ + \varepsilon_k + \left(\Delta^{2}H_{wv} - \varepsilon_k\right) \frac{\varepsilon_a}{\varepsilon_i},$$

(Eqn. 1)

where ε^+ is the equilibrium fractionation between liquid water and vapor at the air-water interfaces, ε_k is the kinetic fractionation during water vapor diffusion from leaf intercellular air space to the atmosphere, $\Delta^{2}H_{wv}$ is the isotopic difference of the water vapor and the source water, and $\varepsilon_a/\varepsilon_i$ is the ratio of ambient to intercellular vapor pressure (Farquhar and Lloyd, 1993). This basic calculation was modified by including a Péclet effect that accounts for opposing fluxes of source water entering the leaf through the transpiration flow and the back-diffusion of isotopically enriched water from the sites of evaporation (Farquhar and Lloyd, 1993):

$$\Delta^{2}H_{\text{leafwater}} = \frac{\Delta^{2}H_e \left(1 - e^{-\nu}\right)}{EL/CD}.$$

(Eqn. 2)

The quotient of EL/CD represents the Péclet number (ϕ) where E is the transpiration rate, L is the effective path length, C is the molar concentration of water and D is the diffusivity of 1H$_2$HO. The model approach we used followed that of Kahmen et al. (2011b), where the Péclet-modified Craig Gordon model is reduced to three input variables: air temperature,
atmospheric vapour pressure and source water δ²H. This simplified model is based on the assumption that throughout the season leaf temperature equals air temperature and that atmospheric vapor δ²H is generally in equilibrium with source water δ²H (Kahmen et al. 2011b). Transpiration rates are estimated using relative humidity and air temperature (retrieved from GeoINTA, 2012) and assuming a mean stomatal conductance of 0.15 mol/m²/s. Based on reports for a large number of species in the literature (Kahmen et al., 2008; Kahmen et al., 2009; Song et al., 2013), we used an average value of 20 mm for L and kept it constant across the transect. For our simulation of leaf water δ²H values we obtained the model input variables air temperature, atmospheric vapor pressure and source water δ²H from GeoINTA (2012) and Bowen (2012), respectively.

The isotopic composition of the leaf water can be estimated according to Eqn. 3:

$$\delta^2H_{\text{leaf water}} = \Delta^2H_{\text{leaf water}} + \delta^2H_{\text{SW}}$$
(Eqn.3),

where $\Delta^2H_{\text{leaf water}}$ is the bulk leaf water evaporative enrichment and δ^2H_{SW} is the hydrogen isotope ratio of source/xylem water.

2.4. Conceptual model for a coupled δ¹⁸O-δ²H biomarker approach

The conceptual coupled δ²Hₙ-alkane-δ¹⁸O_sugar model was introduced previously by Zech M. et al. (2013). In brief, it is based on the following fundamentals. Precipitation word-wide typically plots along/close to the so-called global meteoric water line (GMWL, $\delta^2H = 8 \times \delta^{18}O + 10$) in a $\delta^{18}O$-δ^2H diagram (Dansgaard, 1964) (Fig. 5). Due to fractionation processes, evaporation/transpiration causes water vapour to be isotopically depleted in ^{18}O and 2H, whereas residual (leaf) water ($\delta^2H/\delta^{18}O_{\text{leaf water}}$) is isotopically enriched. In a $\delta^{18}O$-δ^2H diagram, leaf water therefore does not plot on the GMWL but on an evaporation line (EL). The distance of leaf water to the Global Meteoric Water Line (GMWL) can be described as
deuterium excess \((d = \delta^2H - 8 \cdot \delta^{18}O) \). Using a Craig-Gordon model adapted by Gat and Bowser (1991), the d-excess of leaf water can be used to calculate RH values normalized to the temperature of leaf-water (Zech et al., 2013):

\[
\text{RH} = 1 - \frac{\Delta d}{(\varepsilon_{2}^{*} - 8 \cdot \varepsilon_{18}^{*} + C_k^2 - 8 \cdot C_k^{18})}
\]
(Eqn. 4)

where \(\Delta d \) represents the difference in d-excess between leaf-water and source water. According to Merlivat (1978), experimentally determined kinetic isotope fractionation equals 25.1 ‰ and 28.5 ‰ for \(C_k^2 \) and \(C_k^{18} \), respectively, considering that these are the maximum values of kinetic fractionation during molecular diffusion of water through stagnant air.

Equilibrium isotope enrichments \(\varepsilon_{2}^{*} \) and \(\varepsilon_{18}^{*} \) as functions of temperature can be calculated using empirical equations of Horita and Wesolowski (1994). Hence, provided that \(n \)-alkanes and sugars in plants and soils reflect (albeit with a constant offset caused by biosynthetic fractionation) the isotopic composition of leaf water, a coupled \(\delta^2H_{n\text{-alkane}}-\delta^{18}O_{\text{sugar}} \) approach allows reconstructing RH values. The biomarker-based reconstructed \(\delta^2H/\delta^{18}O_{\text{leaf water}} \) values allow furthermore reconstructing the isotopic composition of plant source water, which can be considered in an approximation to reflect \(\delta^2H/\delta^{18}O_{\text{prec}} \) (illustrated as intercepts of the individual ELs with the GMWL in Fig. 5). Assuming a slope of \(\sim 2.82 \) seems reasonable both based on model considerations and based on field observations and laboratory experiments (Allison et al., 1985; Walker and Brunel, 1990; Bariac et al., 1994). For further details on modelling coupled \(\delta^{18}O-\delta^2H \) biomarker results the reader is referred to Zech M. et al. (2013).

3. Results and Discussion

3.1. Comparison of \(\delta^2H_{n\text{-alkanes}} \) and \(\delta^2H_{\text{fatty acids}} \)

The \(C_{29} \) and \(C_{31} \) \(n \)-alkane homologues were sufficiently abundant in all samples to be measured for their hydrogen isotopic composition. The \(\delta^2H \) values range from -155 to -222 ‰.
and reveal a similar trend between n-C$_{29}$ and n-C$_{31}$ along the investigated transect (Table 1 and Fig. 2). While the northern and middle part of the transect is characterized by relatively high δ^{2}H values (~ -160 ‰), the southern part of the transect is characterized by considerably more negative δ^{2}H values (~ -210 ‰).

The δ^{2}H values of the fatty acids n-C$_{22}$, n-C$_{24}$, n-C$_{26}$, n-C$_{28}$ and n-C$_{30}$ range from -128 to -225 ‰ (Table 1 and Fig. 2). In general, there is a good overall agreement between the n-alkanes and the fatty acids ($R=0.96$, $p<0.001$, $n=20$; for the weighted means), both showing more negative δ^{2}H values in the south than in the northern and middle portions of the transect (Table 1, Fig. 2). Interestingly, the longer homologues n-C$_{28}$ and n-C$_{30}$ are systematically enriched by 3 ‰ to 43 ‰ compared to the n-alkanes. The same was observed by Chikaraishi and Naraoka (2007), reporting on n-alkanes being depleted in 2H relative to the corresponding n-alkanoic acid. Reasons for this trend remain vague at this point, but may be relate to metabolic pathways, seasonal differences in homologue production, or differences in homologue sources. Roots, for example, have also been suggested as a source of long-chain n-fatty acids (Bull et al., 2000). Shorter homologues, have been suggested to be not only plant-derived, but also of bacterial origin (Matsumoto et al., 2007; Bianchi and Canuel, 2011). Similarly, soil microbial overprinting of long chain n-alkanes and fatty acids cannot be excluded (Nguyen Tu et al., 2011; Zech M. et al., 2011a). By contrast, there is strong evidence suggesting that n-alkanes are not produced by plants in significant amounts (Gamarra and Kahmen, 2015) and not significantly introduced into soils/subsoils by roots (Häggi et al., 2014).

The consistent δ^{2}H pattern revealed by the n-alkanes and fatty acids along the north-south climate transect does not solely reflect the δ^{2}H isotopic composition of precipitation. Especially in the middle part of the transect, δ^{2}H of the lipid biomarkers shows a pronounced offset (Fig. 3). Given that n-alkanes are considered to primarily reflect leaf signals and are
most widely applied in paleoclimate and paleohydrological studies, we will principally refer to δ^2H of long chain n-alkanes in further discussion and calculations.

3.2. Evapotranspirative 2H enrichment of leaf water

Assuming a constant biosynthetic fractionation of -160 ‰ for the n-alkane and fatty acids biosynthesis in plants (Sessions et al., 1999; Sachse et al., 2006), we estimated the isotopic composition of leaf water using our n-alkane and fatty acids δ^2H values along the transect/gradient (Fig. 3). Note that an average biosynthetic fractionation factor of ~200 ‰ was reported by Sessions et al. (1999) for short- and mid-chained fatty acids synthesized mostly by unicellular/multicellular marine algae. By contrast, there are hardly any biosynthetic fractionation factors reported for long-chained fatty acids of higher plants. Given that our δ^2H n-alkanes and fatty acids values are very similar, using a biosynthetic fractionation factor of -160 ‰ for both lipids seems appropriate.

Estimated leaf water δ^2H values suggest a pronounced 2H enrichment of leaf water compared to precipitation (up to +62 ‰). This finding highlights the role of aridity for evapotranspiration and isotopic enrichment of leaf waxes, in good agreement with prior studies (Sachse et al., 2006; Feakins and Sessions, 2010; Douglas et al., 2012; Kahmen et al., 2013a).

Figure 4 illustrates the overall good agreement between δ^2H$_{\text{leaf water}}$ values inferred from the measured n-alkanes and fatty acids, and δ^2H$_{\text{leaf water}}$ values calculated using the Peclet-modified Graig-Gordon model. The correlations are highly significant ($r=0.88$, $p<0.001$, $n=20$, for n-alkanes and $r=0.93$, $p<0.001$, $n=20$ for fatty acids), suggesting that the model correctly implements the most relevant processes related to evapotranspirative enrichment of leaf water. While predicting the overall trend in leaf water δ^2H along the transect with reasonable accuracy, the model does not capture site-to-site excursions in the n-alkane-derived leaf water δ^2H values from this overall trend. As such, additional influences that are
not captured by the model, such as possible evaporative 2H enrichment of soil water (see e.g. Dubbert et al., 2013), could explain the underestimation of the modeled δ^2H$_{\text{leaf water}}$ values in the middle part of the transect (Fig. 4). In contrast, the model might overestimate δ^2H$_{\text{leaf water}}$ in the southern part of the transect. The corresponding ecosystem, the Patagonian Steppe, is a grassland, whereas the middle part of the transect is dominated by shrubland. Grass-derived lipids have been shown to be less strongly affected by evaporative leaf water 2H enrichment than those of trees or shrubs (McInerney et al., 2011; Yang et al., 2011; Sachse et al., 2012; Kahmen et al., 2013b), and hence the overestimation of the model may be due to plant species effects (Pedentchouk et al., 2008; Douglas et al., 2012). The more pronounced offsets in Patagonia could additionally be attributed to a seasonality effect. The growing season in Patagonia is not year-round but mainly in spring.

In order to assess the sensitivity of the model to the input parameters, we varied vapor pressure of air by +/- 5 hPa and mean annual temperature by +/- 5°C. Changing e_a in eq. (1) by \pm 5 hPa corresponds to changes of RH from ca. 94% to 46% at the beginning of the transect and 89% to 15% at the end of the transect While changes in temperature have only negligible effects on the modeled δ^2H isotopic composition of leaf water, changes in RH yield difference in δ^2H$_{\text{leaf water}}$ of up to ~30 ‰ (Fig. 4). Different climatic conditions during the spring growing season in Patagonia could thus explain the overestimation of the evapotranspirative enrichment in the model.

Evapotranspirative enrichment of leaf water has also been observed in δ^{18}O values of hemicellulose-derived arabinose, fucose and xylose analysed in topsoils along the investigated transect (Tuthorn et al., 2014). Model sensitivity tests of 18O enrichment of leaf water using PMCG model corroborate the observations presented here that air humidity is the key factor defining the 18O/2H enrichment of leaf water.

3.3. Coupling of the δ^2H$_{n\text{-alkane}}$ and δ^{18}O$_{\text{sugar}}$ biomarker results
The conceptual model for the coupled $\delta^2H_{n\text{-alkane}} - \delta^{18}O_{\text{sugar}}$ biomarker approach is illustrated in Fig. 5. The model is based on the assumption that the investigated n-alkane and hemicellulose biomarkers are primarily leaf-derived and reflect the isotopic composition of leaf water. With regard to the topsoil transect investigated here, this assumption is reasonable and supported by leaf water modeling (for δ^2H in Section 3.2, and for $\delta^{18}O$ see Tuthorn et al., 2014). Accordingly, biomarker-based ‘reconstructed’ $\delta^2H/\delta^{18}O_{\text{leaf water}}$ values can be calculated from the biomarkers by applying biosynthetic fractionation factors ε_{bio}. For our reconstructions we applied ε_{bio} factors of -160 ‰ (Sessions et al., 1999; Sachse et al., 2006) and +27 ‰ (Sternberg et al., 1986; Yakir and DeNiro, 1990; Schmidt et al., 2001; Cernusak et al., 2003; Gessler et al., 2009) for δ^2H and $\delta^{18}O$, respectively (Fig. 5).

3.3.1. Reconstructed RH values along the climate transect and comparison with actual RH values

The reconstructed d-excess values of leaf water along the investigated transect range from -67 to -178 ‰ and reveal a systematic trend towards more negative values in the south (Fig. 6). The reconstructed RH values calculated using the leaf water d-excess values according to the above-described coupled $\delta^2H_{n\text{-alkane}} - \delta^{18}O_{\text{sugar}}$ approach range from 16 to 65 %, with one extremely low value of 5 % (Fig. 6). Reconstructed RH values follow the systematic d-excess trend and correlate significantly ($r=0.79$, $p<0.001$, $n=20$) with the actual mean annual RH values retrieved from GeoINTA (2012) for all investigated sites. However, as depicted by Fig. 6, the reconstructed RH values systematically underestimate the actual mean annual RH values. This is especially pronounced for the three southernmost locations (18-20) and may be attributed to several causes. First, the applied model calculations do not account for evaporative enrichment of soil water. In the $\delta^{18}O$-δ^2H diagram, the soil water enrichment shifts the source water (simplified to ‘reconstructed precipitation’ in Fig. 5 and our model) along the evaporation line and thus leads to too negative d-excess values and...
an underestimation of RH. Second, given that leaf waxes are considered to be formed mostly
during early stages of leaf ontogeny (Kolattukudy, 1970; Riederer & Markstaedter, 1996;
Kahmen et al., 2011a; Tipple et al., 2013) they may not necessarily reflect the mean annual
isotopic composition of precipitation in regions with pronounced seasonality, but rather the
isotopic composition of precipitation during the growing season. Furthermore, mean annual
RH values likely overestimate the RH values actually seen by leaves being photosynthetically
active. Indeed when comparing the biomarker-based ‘reconstructed’ RH values with mean
summer daytime RH values (available for 6 stations along the investigated transect from
www.ncdc.noaa.gov), satisfactory agreement between ‘reconstructed’ and actual RH values is
obtained, with the exception of the southern portion of the transect (Fig. 6). Third, the $\delta^{18}O$
biosynthetic fractionation factor of $\sim+27 \%$, which has been reported for newly assimilated
sugars and cellulose, underestimates in our opinion the actual fractionation factor of
hemicelluloses (Tuthorn et al., 2014; Zech M. et al., 2014a). This results in reconstructed leaf
water values plotting too far to the right in the $\delta^{18}O$-δ^2H diagram (Fig. 5) and in turn to the
observed underestimated RH values (Fig. 6). We argue with the loss of a relatively ^{18}O-
depleted oxygen atom attached to C-6 during pentose biosynthesis (C-6 decarboxylation;
Altermatt and Neish, 1956; Harper and Bar-Peled, 2002; Burget et al., 2003) and point to a
recent study of Waterhouse et al. (2013) who have determined the position specific $\delta^{18}O$
values in cellulose. Further experimental studies as suggested and encouraged by Sternberg
(2014) and Zech M. et al. (2014b) are urgently needed to ascertain an improved biosynthetic
fractionation factor for hemicellulose-derived sugars.

3.3.2. Comparison of reconstructed and actual δ^2H_{prec} and $\delta^{18}O_{prec}$ values

Values of $\delta^{18}O_{prec}$ and δ^2H_{prec} reconstructed as the intercepts of the individual evaporation
lines (EL) with the GMWL in the $\delta^{18}O$-δ^2H diagram (Fig. 5) range from -7 to -22 \% and from
-47 to -166 \%, respectively. They correlate highly significantly (Fig. 7; $r=0.90$, $p<0.001$,}
n=20, and r=0.88, p<0.001, n=20 for δ\(^{18}\)O\(_{\text{prec}}\) and δ\(^2\)H\(_{\text{prec}}\), respectively) with the ‘actual’\(^1\)

δ\(^2\)H\(_{\text{prec}}\) and δ\(^{18}\)O\(_{\text{prec}}\) values as derived from Bowen (2012). While the reconstructed δ\(^{18}\)O\(_{\text{prec}}\)

and δ\(^2\)H\(_{\text{prec}}\) values, like the reconstructed RH values, generally validate our conceptual model, they appear to systematically underestimate the actual δ\(^{18}\)O and δ\(^2\)H values of the precipitation water (Fig. 7).

The uncertainties discussed above for the observed offset of ‘reconstructed’ versus actual RH values can also affect the accuracy of reconstructed δ\(^{18}\)O\(_{\text{prec}}\) and δ\(^2\)H\(_{\text{prec}}\) values. Hence, the ‘actual’ δ\(^2\)H/δ\(^{18}\)O\(_{\text{prec}}\) values used for our comparison with the biomarker-based ‘reconstructed’

values can be assumed to be one of the possible sources of uncertainty. While Bowen (2012) reported a confidence interval (95%) ranging from 0.2‰ to 1.2‰, and from 2‰ to 11‰ for δ\(^2\)H\(_{\text{prec}}\) and δ\(^{18}\)O\(_{\text{prec}}\), respectively, future climate transect studies will be ideally carried out with actual precipitation being sampled for δ\(^2\)H/δ\(^{18}\)O analyses. Moreover, we would like to emphasize also here the very likely influence of seasonality. As reported for sugar biomarkers (Tuthorn et al., 2014), we suggest that also leaf waxes mainly reflect the humidity and the isotopic composition of spring and summer precipitation rather than mean annual values.

5. Conclusions

The hydrogen isotopic composition of leaf wax \(n\)-alkanes and \(n\)-alkanoic (fatty) acids extracted from topsoils along a transect in Argentina varies significantly, with δ\(^2\)H values ranging from -155 to -222 ‰ and -128 to -225 ‰, respectively. These δ\(^2\)H values broadly parallel variations in the hydrogen isotopic composition of precipitation, but are modulated by evaporative \(^2\)H enrichment of leaf water. A mechanistic leaf water model correctly simulates

\(^1\) Please note that we chose here the term ‘actual’ for reasons of simplification in order to make the difference to the biomarker-based ‘reconstructed’ δ\(^{18}\)O\(_{\text{prec}}\) and δ\(^2\)H\(_{\text{prec}}\) values. Indeed, both the ‘reconstructed’ and the ‘actual’ values are derived from modelling, namely from our conceptual δ\(^2\)H\(_{\text{alkane}}\)-δ\(^{18}\)O\(_{\text{sugar}}\) model and from Bowen’s (2012) online isotopes in precipitation calculator.
the overall trends. Sensitivity tests show that relative humidity exerts a much stronger
influence on evaporative enrichment than temperature.

Based on the premise that \(n \)-alkanes and hemicellulose biomarkers are primarily leaf-derived, we reconstruct \(\delta^2H_{\text{leaf water}} \) and \(\delta^{18}O_{\text{leaf water}} \), respectively, which in turn allows assessment of the \(d \)-excess of leaf water. The large calculated range in \(d \)-excess along the transect (-67 to -178 \(^{\circ}\)) can be used to calculate biomarker-based ‘reconstructed’ RH values. ‘Reconstructed’ RH values correlate significantly with actual mean annual RH values along the transect. Despite this overall correlation, ‘reconstructed’ RH values systematically underestimate actual mean annual RH values. However, this discrepancy is largely reduced when ‘reconstructed’ RH values are compared with actual mean summer daytime RH values. Similarly, biomarker-based ‘reconstructed’ \(\delta^{18}O_{\text{prec}} \) and \(\delta^2H_{\text{prec}} \) values correlate highly significantly with ‘actual’ \(\delta^{18}O_{\text{prec}} \) and \(\delta^2H_{\text{prec}} \) values, but reveal systematic offsets, too.

We conclude that compared to single \(\delta^2H_{n\text{-alkane}} \) or \(\delta^{18}O_{\text{sugar}} \) records, the proposed coupled \(\delta^2H_{n\text{-alkane}}-\delta^{18}O_{\text{sugar}} \) approach will allow more robust \(\delta^2H/\delta^{18}O_{\text{prec}} \) reconstructions and additionally the reconstruction of mean summer daytime RH changes/history using \(d \)-excess of leaf water as proxy in future paleoclimate studies. However, further studies are needed to ascertain an improved biosynthetic fractionation factor for hemicellulose-derived sugars. Also, in the light of strong diurnal variations of \(\delta^2H \) and \(\delta^{18}O \) of leaf water, it would be important to determine which portion of this diurnal signal is actually incorporated in the \(n \)-alkanes and sugars being synthesized in the leaves.

Acknowledgements

We kindly thank Prof. B. Huwe (University Bayreuth) and Prof. L. Zöller (University Bayreuth) for logistic support. This study was partly financed by the SIBAE COST Action ES0806, the German Research Foundation (DFG Oe516/2-1 and ZE 844/1-2), the Swiss National Science Foundation (SNF Ambizione PZ00P2_131670) and the statutory funds of
the AGH University of Science and Technology. This publication was funded by the German 402 Research Foundation (DFG) and the University of Bayreuth in the funding programme Open 403 Access Publishing. We kindly thank Prof. Y Kuzyakov for the editorial handling of our MS, 404 as well as an anonymous referee and Marie Galeron for constructive comments on our MS.

References

Sachse, D., Radke, J., Gleixner, G., 2006. δD values of individual n-alkanes from terrestrial plants along a climatic gradient - Implications for the sedimentary biomarker record. Organic Geochemistry 37, 469-483.

List of Tables and Figures

Table 1: δ²H values of individual leaf wax n-alkanes and fatty acids. Measurements were carried out in at least triplicate (sd = standard deviation).

Fig. 1: Sampling locations along the investigated transect in Argentina. The colors illustrate the gradient in δ²H_prec, and mean annual temperature and precipitation are shown below.

Fig. 2: Comparison of δ²H results of individual leaf wax n-alkanes and n-alkanoic (fatty) acids along the investigated transect.

Fig. 3: Comparison of measured δ²H_n-alkanes (weighted mean of n-C29 and n-C31) and δ²H_fatty acids (weighted mean of n-C22, n-C24, n-C26, n-C28 and n-C30) pattern with δ²H_prec (Bowen, 2012) along the north-south climate transect (°min and °max representing annual minimum and maximum value at the sampling site). Additionally, assuming a biosynthetic fractionation of -160 ‰ for the n-alkane and fatty acid biosynthesis in plants the biomarker-based ‘reconstructed’ isotopic composition of leaf water is shown.

Fig. 4: Results of δ²H_leaf water model simulations and comparison with biomarker-based ‘reconstructed’ (assuming a biosynthetic fractionation factor of -160 ‰) isotopic composition of leaf water based on n-alkanes and fatty acids, respectively. Sensitivity tests for δ²H_leaf water are shown for changes in RH and air temperature for all 20 sites along the transect.

Fig. 5: δ¹⁸O-δ²H diagram illustrating the conceptual model of the coupled δ²H_n-alkane-δ¹⁸O_sugar approach (modified after Zech M. et al., 2013a). δ²H_n-alkane (mean of n-C29 and n-C31) and δ¹⁸O_sugar (mean of arabinose, fucose and xylose) results are used to reconstruct δ²H/δ¹⁸O_leaf water by subtracting the biosynthetic fractionation factors. The deuterium excess (d = δ²H - 8·δ¹⁸O) of leaf water serves as proxy for RH and δ²H/δ¹⁸O_prec is
calculated as intersection of the individual evaporation lines (ELs, slope 2.82) with the global meteoric water line (GMWL).

Fig. 6: Comparison of biomarker-based ‘reconstructed’ relative humidity (RH) values with actual RH values (mean annual RH retrieved for all investigated sites from GeoINTA, 2012; summer daytime RH for six stations retrieved from www.ncds.noaa.gov). Deuterium excess values were calculated using $\delta^{18}O_{\text{leaf water}}$ reconstructed from terrestrial sugars (Tuthorn et al., 2014) and $\delta^{2}H_{\text{leaf water}}$ reconstructed from n-alkanes.

Fig. 7: Correlation of biomarker-based ‘reconstructed’ $\delta^{18}O_{\text{prec}}$ and $\delta^{2}H_{\text{prec}}$ values with modern ‘actual’ $\delta^{18}O_{\text{prec}}$ and $\delta^{2}H_{\text{prec}}$ values (from Bowen, 2012).
<table>
<thead>
<tr>
<th>sampling locality</th>
<th>δ^2H$_{\text{n-alkanes}}$ mean (‰)</th>
<th>sd</th>
<th>δ^2H$_{\text{n-alkanes}}$ mean (‰)</th>
<th>sd</th>
<th>δ^2H$_{\text{fatty acids}}$ mean (‰)</th>
<th>sd</th>
<th>δ^2H$_{\text{fatty acids}}$ mean (‰)</th>
<th>sd</th>
<th>δ^2H$_{\text{fatty acids}}$ mean (‰)</th>
<th>sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-166 0 -166 1</td>
<td></td>
<td>-150 0 -155 1</td>
<td></td>
<td>-165 1 -163 1</td>
<td></td>
<td>-163 1 -161 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-175 1 -178 1</td>
<td></td>
<td>-162 0 -161 1</td>
<td></td>
<td>-161 1 -159 1</td>
<td></td>
<td>-159 1 -155 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-176 1 -178 1</td>
<td></td>
<td>-162 2 -163 1</td>
<td></td>
<td>-166 1 -165 1</td>
<td></td>
<td>-159 1 -158 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-178 1 -180 2</td>
<td></td>
<td>-164 0 -165 1</td>
<td></td>
<td>-168 2 -162 1</td>
<td></td>
<td>-159 1 -159 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-171 2 -172 0</td>
<td></td>
<td>-166 0 -165 2</td>
<td></td>
<td>-169 1 -161 1</td>
<td></td>
<td>-158 1 -158 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-179 0 -182 0</td>
<td></td>
<td>-170 0 -172 1</td>
<td></td>
<td>-177 0 -169 1</td>
<td></td>
<td>-157 0 -157 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-162 1 -167 1</td>
<td></td>
<td>-161 1 -161 1</td>
<td></td>
<td>-166 1 -161 1</td>
<td></td>
<td>-158 1 -158 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-173 1 -186 1</td>
<td></td>
<td>-163 1 -164 0</td>
<td></td>
<td>-168 1 -169 0</td>
<td></td>
<td>-158 1 -158 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-173 2 -170 2</td>
<td></td>
<td>-159 1 -167 1</td>
<td></td>
<td>-168 0 -159 1</td>
<td></td>
<td>-137 1 -137 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-170 2 -156 2</td>
<td></td>
<td>-158 0 -159 0</td>
<td></td>
<td>-167 2 -153 4</td>
<td></td>
<td>-147 4 -147 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-155 1 -176 0</td>
<td></td>
<td>-158 1 -168 1</td>
<td></td>
<td>-172 1 -148 1</td>
<td></td>
<td>-133 1 -133 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>-157 2 -161 1</td>
<td></td>
<td>-158 1 -153 0</td>
<td></td>
<td>-140 1 -135 1</td>
<td></td>
<td>-128 1 -128 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>-158 1 -186 0</td>
<td></td>
<td>-168 1 -183 0</td>
<td></td>
<td>-181 2 -160 2</td>
<td></td>
<td>-147 1 -147 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-194 2 -193 1</td>
<td></td>
<td>-184 0 -197 0</td>
<td></td>
<td>-191 1 -176 2</td>
<td></td>
<td>-188 2 -188 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-203 1 -211 1</td>
<td></td>
<td>-204 1 -198 0</td>
<td></td>
<td>-201 0 -193 0</td>
<td></td>
<td>-189 1 -189 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>-218 1 -217 1</td>
<td></td>
<td>-219 1 -220 0</td>
<td></td>
<td>-217 0 -205 1</td>
<td></td>
<td>-204 1 -204 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>-213 1 -202 4</td>
<td></td>
<td>-211 0 -203 1</td>
<td></td>
<td>-204 0 -196 0</td>
<td></td>
<td>-194 0 -194 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>-222 1 -222 1</td>
<td></td>
<td>-220 0 -210 0</td>
<td></td>
<td>-225 1 -212 1</td>
<td></td>
<td>-204 1 -204 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-220 1 -212 1</td>
<td></td>
<td>-225 0 -221 1</td>
<td></td>
<td>-211 1 -193 3</td>
<td></td>
<td>-198 2 -198 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1: Sampling locations along the investigated transect in Argentina. The colors illustrate the gradient in δ^2H$_\text{prec}$, and mean annual temperature and precipitation are shown below.
Fig. 2: Comparison of δ^2H results of individual leaf wax n-alkanes and n-alkanoic (fatty) acids along the investigated transect.
Fig. 3: Comparison of measured $\delta^{2}H_{n}$-alkanes (weighted mean of n-C$_{29}$ and n-C$_{31}$) and $\delta^{2}H_{\text{fatty acids}}$ (weighted mean of n-C$_{22}$, n-C$_{24}$, n-C$_{26}$, n-C$_{28}$ and n-C$_{30}$) pattern with $\delta^{2}H_{\text{prec}}$ (Bowen, 2012) along the north-south climate transect ($^\text{\text{\text{-min}}}\text{min}$ and $^\text{\text{\text{+max}}}\text{max}$ representing annual minimum and maximum value at the sampling site). Additionally, assuming a biosynthetic fractionation of -160 ‰ for the n-alkane and fatty acid biosynthesis in plants the biomarker-based ‘reconstructed’ isotopic composition of leaf water is shown.
Fig. 4: Results of $\delta^{2}H_{\text{leaf water}}$ model simulations and comparison with biomarker-based ‘reconstructed’ (assuming a biosynthetic fractionation factor of -160 ‰) isotopic composition of leaf water based on n-alkanes and fatty acids, respectively. Sensitivity tests for $\delta^{2}H_{\text{leaf water}}$ are shown for changes in RH and air temperature for all 20 sites along the transect.
Fig. 5: δ^{18}O-δ^2H diagram illustrating the conceptual model of the coupled δ^2H$_{n$-alkane-δ^{18}O$_{sugar}$ approach (modified after Zech M. et al., 2013a). δ^2H$_{n$-alkane} (mean of n-C$_{29}$ and n-C$_{31}$) and δ^{18}O$_{sugar}$ (mean of arabinose, fucose and xylose) results are used to reconstruct δ^2H/δ^{18}O$_{leaf$ water by subtracting the biosynthetic fractionation factors. The deuterium excess ($d = \delta^2$H - 8$\cdot$$\delta^{18}$O) of leaf water serves as proxy for RH and δ^2H/δ^{18}O$_{prec}$ is calculated as intersection of the individual evaporation lines (ELs, slope 2.82) with the global meteoric water line (GMWL).
Fig. 6: Comparison of biomarker-based ‘reconstructed’ relative humidity (RH) values with actual RH values (mean annual RH retrieved for all investigated sites from GeoINTA, 2012; summer daytime RH for six stations retrieved from www.ncds.noaa.gov). Deuterium excess values were calculated using $\delta^{18}O_{\text{leaf water}}$ reconstructed from terrestrial sugars (Tuthorn et al., 2014) and $\delta^2H_{\text{leaf water}}$ reconstructed from n-alkanes.
Fig. 7: Correlation of biomarker-based ‘reconstructed’ $\delta^{18}O_{\text{prec}}$ and δ^2H_{prec} values with modern ‘actual’ $\delta^{18}O_{\text{prec}}$ and δ^2H_{prec} values (from Bowen, 2012).