Simulating oxygen isotope ratios in tree ring cellulose using a dynamic global vegetation model

S. G. Keel1, F. Joos1, R. Spahni2, R. B. Weigt2, S. Klesse3,4

[1]{University of Bern, Physics Institute, Climate and Environmental Physics & Oeschger Centre for Climate Change Research, Bern, Switzerland}
[2]{Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, Villigen, Switzerland}
[3]{Swiss Federal Research Institute WSL, Birmensdorf, Switzerland}
[4]{Oeschger Centre for Climate Change Research, Bern, Switzerland}
[*]{now at: Agroscope, Institute for Sustainability Sciences, Climate and Air Pollution, Zurich, Switzerland}

Correspondence to: S. G. Keel (sonja.keel@agroscope.admin.com)

Abstract

Records of stable oxygen isotope ratios in tree rings are valuable tools to reconstruct past climatic conditions and the response of trees to those conditions. So far the use of stable oxygen isotope signatures of tree rings has not been systematically evaluated in dynamic global vegetation models (DGVMs). DGVMs integrate many hydrological and physiological processes and their application could improve proxy-model comparisons and the interpretation of oxygen isotope records. Here we present an approach to simulate leaf water and stem cellulose δ18O of trees using the LPX-Bern DGVM (LPX-Bern). Our results lie within a few per mil of measured tree ring δ18O of thirty-one different forest stands mainly located in Europe. Temporal means over the last five decades as well as inter-annual variations for a subset of sites in Switzerland are captured. A sensitivity analysis reveals that relative humidity, temperature, and the water isotope boundary conditions have the largest influence on simulated stem cellulose δ18O, followed by all climatic factors combined, whereas increasing atmospheric CO₂ and nitrogen deposition exert no
We conclude that simulations with LPX-Bern are useful to investigate large-scale oxygen isotope patterns of tree-ring cellulose, to elucidate the importance of different environmental factors on isotope variations and therefore help to reduce uncertainties in the interpretation of $\delta^{18}O$ of tree-rings.

1 Introduction

Stable oxygen isotope ratios ($^{18}O/^{16}O$) are widely used to reconstruct past climatic conditions and to characterize the modern hydrological cycle. $\delta^{18}O$ ($\delta^{18}O = [(^{18}O/^{16}O)_{\text{sample}}/(^{18}O/^{16}O)_{\text{standard}}] - 1] \times 1000$ [‰]) is routinely measured in various climate archives such as ice cores (Dansgaard, 1964; Johnsen et al., 2001; Jouzel et al., 2003; Severinghaus et al., 2009), speleothems (Fleitmann et al., 2004; McDermott, 2004), corals (Dunbar et al., 1994), ocean sediments (Shackleton and Oddyke, 1973; Elderfield and Ganssen, 2000), and tree rings (Libby et al., 1976; Treydte et al., 2006) as well as in modern precipitation samples (Rozanski et al., 1992; Kern et al., 2014). Regarding the tree ring archive, recent efforts were directed to document $\delta^{18}O$ variability in stem cellulose from tree ring samples over the last millennium (e.g. Masson-Delmotte et al., 2005; Treydte et al., 2006; Edwards et al., 2008) and the industrial period (Anderson et al., 1998; Miller et al., 2006). The spatial distribution of tree ring $\delta^{18}O$ has been characterized across large areas (e.g. Saurer et al., 2002; Herweijer et al., 2007; Treydte et al., 2007). In addition, attempts have been made to unravel the processes that determine stem cellulose $\delta^{18}O$ (e.g. Gessler et al., 2009; Offermann et al., 2011).

The cycling of water isotopes through the climate system including the transfer of water associated with gross primary productivity on land was successfully implemented in atmospheric general circulation and in Earth System Models (Joussaume et al., 1984; Jouzel et al., 1987; Hoffmann et al., 1998; Noone and Simmonds, 2002; Sturm et al., 2005; Werner et al., 2011) to characterize the hydrological cycle. Model results are used to demonstrate that the El Niño Southern Oscillation imprints a pronounced signal on water isotopes (Hoffmann et al. 1998), to reconstruct past precipitation patterns (Risi et al., 2010; Sjolte et al., 2011; Masson-Delmotte et al., 2015), and to explain $\delta^{18}O$ paleo data (Hoffmann et al., 2003). Model results are evaluated against stable isotope ratios in precipitation (Joussaume et al., 1984), snow (Jouzel et al., 1987),
ground water (Hoffmann et al., 1998), water vapor (Werner et al., 2011), and ice core $\delta^{18}O$ data (e.g. Risi et al., 2010). Because none of these models describes $\delta^{18}O$ in stem cellulose, a direct model-data comparison is not yet possible for tree rings and global scale models. So far process models describing the transfer of isotopic signals from soil water and water vapor to leaf water, and finally stem cellulose, were applied for single sites only (Roden et al., 2000; Ogée et al. 2009; Kahmen et al., 2011; Treydte et al., 2014). Yet, the implementation of such an approach in large-scale global land biosphere models is missing. A large-scale approach would have the advantage that many hydrological and physiological processes could be integrated and large spatial and temporal patterns could be explored. Furthermore the importance of individual factors such as rising atmospheric CO$_2$ could easily be examined.

The goals of this study are (i) to describe the implementation of the stable water isotope fluxes and pools in the LPX-Bern DGVM, including $\delta^{18}O$ in stem cellulose for direct model-proxy comparison, (ii) to estimate the large-scale spatial distribution of $\delta^{18}O$ in leaf water and stem cellulose, (iii) to quantify the drivers of spatio-temporal trends and variability of stem cellulose $\delta^{18}O$ in the model context and to assist in the interpretation of tree ring $\delta^{18}O$ data, and (iv) to assess the model performance for large-scale spatial gradients, multi-decadal trends, and inter-annual variability with a focus on extra-tropical forests. We compiled time-averaged tree ring $\delta^{18}O$ data from thirty-one boreal and temperate forest sites to capture spatial variability and use five tree-ring-$\delta^{18}O$ records from Switzerland to detail local temporal variability. Soil water and water vapor $\delta^{18}O$ results from transient simulations with the model ECHAM5-JSBC (Haese et al., 2013) over the past 50 years are used as oxygen isotope input data (i.e. isotope forcing). Factorial experiments at the site scale are performed to identify drivers of decadal trends and inter-annual variability.

1.1 Isotope background

Evaporation and condensation are the two processes that predominantly influence water oxygen isotope ratios in the climate system. Water molecules containing the lighter ^{16}O isotopes evaporate more readily compared to molecules containing the heavier ^{18}O. Therefore moisture evaporated from the ocean is depleted in ^{18}O compared to ocean water, which has a $\delta^{18}O$ of near zero per mil. As air cools by rising into the atmosphere or moving toward the poles, moisture
begins to condense and falls as precipitation. Water vapor molecules containing \(^{18}\)O condense more readily and rain is enriched in \(^{18}\)O compared to its vapor source. As the air continues to move pole-ward into colder regions (temperature effect) or further inland (continental effect) the remaining moisture in the air as well as the water that condenses and precipitates become increasingly more \(^{18}\)O depleted. This is reflected in the spatial distribution of oxygen isotope ratios in soil water and water vapor. The \(\delta^{18}\)O of surface soil water reflects the \(\delta^{18}\)O signal of precipitation averaged over a certain amount of time and is further modified by evaporation of soil water leading to evaporative enrichment and potentially by mixing with ground water. Plants take up water which carries this precipitation or soil water \(\delta^{18}\)O signature. During transport from roots to leaves isotope ratios are not modified (Wershaw et al., 1966). In the leaves, water becomes enriched in \(^{18}\)O relative to source water as a result of transpiration (Dongmann et al., 1974). The enrichment at the site of evaporation (the stomata) is primarily driven by the ratio of the vapor pressure outside versus inside the leaf. Source water (i.e. soil water) that enters the leaf via the transpirational stream, mixes with the \(^{18}\)O-enriched water and dilutes the leaf water \(\delta^{18}\)O signal (a Péclet effect, Barbour et al., 2004). This Péclet effect tends to reduce the signal of evaporative enrichment in bulk leaf water (i.e. whole leaf water) and the effect is large when transpiration rates are high. Sucrose formed in the leaves is thought to be \(27\%\) enriched in \(^{18}\)O compared to leaf water due to fractionation during the exchange of oxygen between carbonyl groups in organic molecule and water (Sternberg et al., 1986). Sugars are then transported down the trunk where partial exchange with xylem water occurs before tree-ring cellulose is formed (Roden et al., 2000; Gessler et al., 2014). Based on isotope theory, oxygen isotope ratios in tree rings serve as proxy data for relative humidity and reflect the signature of soil water (McCarroll and Loader, 2004). The relative strength of the humidity and soil water signal, however, is expected to vary due to the Péclet effect and oxygen isotope exchange during stem cellulose formation (see below) and is often difficult to quantify, which somewhat hampers current interpretation of tree-ring results.

Tree ring chronologies have been found to correlate with relative humidity (Burk and Stuiver, 1981; An et al., 2014; Xu et al., 2014) and \(\delta^{18}\)O of precipitation (Waterhouse et al., 2002). In addition, tree ring \(\delta^{18}\)O archives are proxies for e.g. precipitation amounts (Treydte et al., 2006).
the occurrence of droughts (Masson-Delmotte et al., 2005; Herweijer et al., 2007) and tropical
cyclones (Miller et al., 2006), or leaf-to-air vapor pressure differences (Kahmen et al., 2011).

Regarding tree rings, δ^{18}O in stem cellulose has been described with mechanistic models to
clarify the transfer of δ^{18}O signals from soil water to stem cellulose (Roden et al., 2000;
Cernusak et al., 2005; Barbour, 2007; Gessler et al., 2009, Ogée et al. 2009). A formulation of
leaf water enrichment at the site of evaporation (i.e. the stomata) based on the model by Craig and
Gordon (1965) is common to all models, but additional processes related to δ^{18}O signals in leaf
water and stem cellulose are resolved at varying degrees of complexity. Some models include
boundary layer considerations (Flanagan et al., 1991) or the Péclet effects that reduce leaf water
enrichment (Barbour et al., 2004; Farquhar and Gan, 2003). Others account for variations in
isotopic exchange of oxygen with xylem water (Barbour and Farquhar, 2000), or weight diurnal
variations in leaf water enrichment by photosynthetic rates (Cernusak et al., 2005). Here, we use a
rather general approach with a single Péclet effect and constant isotopic exchange with xylem
water, as we aim to simulate stem cellulose across a large range of different species and as we
lack detailed species-specific information, e.g. on water flow and the Péclet effect. On the other
hand, we move a step forward in that we integrate a mechanistic model for stem cellulose δ^{18}O
into a DGVM that allows us to cover large spatial and temporal scales and that explicitly
considers numerous hydrological and physiological processes.

2 Material and methods

2.1 Model description

Stable oxygen isotopes were implemented in the LPX-Bern DGVM (Land surface Processes and
eXchanges, Bern version 1.0) (Spahni et al., 2013; Stocker et al., 2013). LPX-Bern describes the
evolution of vegetation cover, carbon (C) and nitrogen (N) dynamics in soil and vegetation, and
the exchange of water, CO$_2$, C isotopes, methane, and nitrous oxide between the atmosphere and
the land biosphere.

The model version applied here features a horizontal resolution of 3.75 x 2.5 degree, a vertically
resolved soil hydrology with heat diffusion and an interactive thawing-freezing scheme (Gerten et
...and features a daily time step for photosynthesis and evapotranspiration. The soil hydrology scheme is similar to a concurrent LPX version (Murray et al., 2011; Prentice et al., 2011). There are ten plant functional types (PFTs) that have distinct bioclimatic limits and differ in their physiological traits such as minimum canopy conductance (Sitch et al., 2003) (Table S2 in Ruosch et al., 2016). The distribution of fine roots in the soil profile is also PFT-specific and leads to competition for water. Light competition is modeled indirectly by assigning a higher mortality to PFTs with a small increment in fractional plant cover and biomass compared to PFTs with a large increment (Sitch et al., 2003). Daily evapotranspiration is calculated for each PFT as the minimum of a plant- and soil-limited supply function \(E_{\text{supply}} \) and the demand for transpiration \(E_{\text{demand}} \). \(E_{\text{supply}} \) is the product of root-weighted soil moisture availability and a maximum water supply rate that is equal for all PFTs (Sitch et al., 2003). \(E_{\text{demand}} \) is calculated following Monteith's (Monteith, 1995) empirical relation between evaporation efficiency and surface conductance,

\[
E_{\text{demand}} = E_{eq} \alpha_m \left[1 - \exp \left(\frac{-g_c \Phi}{g_m} \right) \right],
\]

where \(E_{eq} \) is the equilibrium evaporation rate, \(g_m \) and \(\alpha_m \) are empirical parameters that are equal for all plant functional types, \(g_c \) the canopy conductance, and \(\Phi \) the fraction of present foliage area to ground area (i.e. projected leaf area). Equation (1) is solved for \(E_{\text{demand}} \) using the non-water-stressed potential canopy conductance as calculated by the photosynthesis routine for a fixed ratio \(\Delta \) between the CO2 mole fraction in the stomatal cavity and the ambient air. \(\Delta \) is set equal to 0.8 following Sitch et al. (2003) to approximate non-water-stressed conditions and as a starting value for the iterative computation of carbon assimilation and transpiration. In case of water-stressed conditions when \(E_{\text{demand}} \) exceeds \(E_{\text{supply}} \), canopy conductance and photosynthesis are jointly and consistently down-regulated; \(E_{\text{demand}} \) is set to \(E_{\text{supply}} \) and Equation 1 is solved for \(g_c \).

Photosynthesis is modeled following Collatz et al. (1991; 1992), which is based on the formulations by Farquhar et al. (1980) and Farquhar and von Caemmerer (1982) generalized for global modeling purposes. The N content and Rubisco activity of leaves are assumed to vary seasonally and with canopy position in a way to maximize net assimilation at the leaf level. For \(C_3 \) plants assimilation is a function of the daily integral of absorbed photosynthetically active...
radiation. For a detailed description see Haxeltine and Prentice (1996b, a).

Canopy conductance, g_c, is linked to daytime assimilation, A_{dt}, through

$$g_c = g_{\text{min}} + \frac{1.6A_{dt}}{\left[\epsilon_a(1 - \lambda)\right]^3},$$ \hspace{1cm} (2)

where g_{min} is a PFT specific minimum canopy conductance and ϵ_a is the ambient mole fraction of CO$_2$ and λ the ratio between the CO$_2$ mole fraction in the stomatal cavity and the ambient air. The equations for water supply and demand, assimilation, and canopy conductance are solved simultaneously by varying λ to yield self-consistent values for λ, g_c, assimilation and transpiration.

2.2 Leaf water and stem cellulose δ^{18}O model

To calculate δ^{18}O in leaf water we use the Péclet modified Craig-Gordon (PMCG) model as described e.g. in Farquhar & Lloyd (1993).

The evaporative enrichment of leaf water above the plant’s source water at the site of evaporation (Δ^{18}O$_e$), is based on the Craig-Gordon formulation (Craig and Gordon, 1965; Dongmann et al., 1974)

$$\Delta^{18}O_e = \epsilon^* + \epsilon_k + (\Delta^{18}O_c - \epsilon_k) \frac{\epsilon_a}{\epsilon_i},$$ \hspace{1cm} (3)

where ϵ^* is the temperature-dependent equilibrium fractionation factor between liquid and vapor water and is calculated as

$$\epsilon^* = 2.644 - 3.206 \left(\frac{10^3}{T_i}\right) + 1.534 \left(\frac{10^6}{T_i^2}\right) \text{ (‰)},$$ \hspace{1cm} (4)

with T_i the leaf temperature in K (Bottinga and Craig, 1969 in Barbour, 2007). ϵ^* increases with decreasing temperature and is around 8.8‰ at 30°C and around 11.5‰ at 0°C. ϵ_k is the kinetic fractionation factor for water vapor diffusion from the leaf to the atmosphere (32‰; Cappa et al., 2003), Δ^{18}O$_V$ describes the oxygen isotope enrichment of water vapor in the atmosphere above source water, and ϵ_a/ϵ_i is the ratio of ambient to intercellular vapor pressures. This ratio is equal to relative humidity when leaf and air temperatures are similar and ϵ_i is at saturation pressure. We
assume that leaf temperature is approximated by air temperature (see also Discussion). We use this formulation in LPX-Bern for the comparison against published leaf water δ18O (West et al., 2008).

All other results were derived with the expanded model that includes a Péclet effect. The Péclet number is defined as

\[\varphi = \frac{LE}{cD} \tag{5} \]

and accounts for the dilution of 18O-enriched leaf water by unenriched source water that enters the leaf via the transpirational stream \((E, \text{ mol m}^{-2} \text{ s}^{-1}) \) and is effective over a path length \(L \) (Farquhar and Lloyd, 1993). To keep the model as simple as possible we set \(L \) to 0.03 m for all PFTs following Kahmen et al. (2011), although \(L \) can vary largely between species (Kahmen et al., 2009). \(c \) is the molar density of water \((55.5 \times 10^3 \text{ mol m}^{-3}) \) and \(D \) the temperature dependent diffusivity of H218O in water (Cuntz et al., 2007, Equation A22, Typo corrected: \(10^{-5} \) instead of \(10^{-9} \)):

\[D = 10^{-4} \exp(-0.4 + \frac{1528}{T_i} + \frac{-554368}{T_i^2}) \text{ (m}^2 \text{ s}^{-1}) \tag{6} \]

Bulk leaf water 18O enrichment can then be calculated as

\[\Delta^{18}O_{\text{lw}} = \frac{\Delta^{18}O_c}{\varphi} (1 - e^{-\varphi}) \tag{7} \]

\(\Delta^{18}O_{\text{lw}} \) is smaller than \(\Delta^{18}O_c \) and approaches \(\Delta^{18}O_c \) for small transpiration rates \(E \). In regions with high leaf transpiration rates such as high latitudes the reduction of \(\Delta^{18}O_c \) due to the Péclet effect is most strongly expressed (Fig. S1 in the Supplement). Leaf water \(\delta^{18}O \) is

\[\delta^{18}O_{\text{lw}} = \Delta^{18}O_{\text{lw}} + \delta^{18}O_{\text{sw}} \tag{8} \]

where \(\delta^{18}O_{\text{sw}} \) refers to soil water \(\delta^{18}O \). Stem cellulose isotopic composition is calculated as

\[\delta^{18}O_{\text{sc}} = p_{w}p_{c}(\delta^{18}O_{\text{sw}} + \varepsilon_{w}) + (1 - p_{w}p_{c})(\delta^{18}O_{\text{lw}} + \varepsilon_{w}) \]
\[= \delta^{18}O_{\text{sw}} + (1 - p_{w}p_{c})\Delta^{18}O_{\text{lw}} + \varepsilon_{w} \tag{9} \]

where \(\varepsilon_{w} \) is the fractionation between \(\delta^{18}O \) of water and the \(\delta^{18}O \) of the primary products of
photosynthesis of 27‰ (Epstein et al., 1977), p_{ex} is the proportion of exchangeable oxygen in

cellulose formed from sucrose, and p_x is the proportion of $\delta^{18}O_{SW}$ at the site of cellulose

formation (Roden et al., 2000). For our simulations we used values of 0.4 for p_{ex} (Cernusak et al.,

2005; Sternberg, 2009) and 1.0 for p_x (Kahmen et al., 2011).

Photosynthesis and plant water fluxes and thus changes in leaf water and stem cellulose $\delta^{18}O$ are

computed with a daily time step. Because stem cellulose formation is restricted to the vegetation

period in temperate and boreal regions, we apply positive net primary production (NPP) as weight
to compute time-averaged stem cellulose and leaf water $\delta^{18}O$ and apply a cutoff of 1.0 g C m$^{-2}$

month$^{-1}$. This means that annual $\delta^{18}O$ of stem cellulose is calculated only based on months with a

NPP higher than 1.0 g C m$^{-2}$ month$^{-1}$ and months with high NPP have a stronger weight. Effects

of C storage related to the incorporation of phoatoassimilates from previous years into current

year’s cellulose is not accounted for (Gessler et al., 2007).

2.3 Input data

Monthly gridded meteorological data (temperature, precipitation, cloud cover, and number of wet
days (CRU TS v. 3.21; Harris et al., 2014), annual atmospheric N-deposition fields (Lamarque et
al., 2011), and atmospheric CO$_2$ (Etheridge et al., 1998; MacFarling Meure et al., 2006) are
prescribed to LPX-Bern. The meteorological data are linearly interpolated to daily values, except
for precipitation where a stochastic weather generator is applied to compute daily precipitation
following Gerten et al. (2004). Monthly soil water $\delta^{18}O$, water vapor $\delta^{18}O$ and relative humidity
data are from a simulation with the coupled atmosphere-land surface model ECHAM5-JSBACH

for the period 1960 to 2012 (Haese et al., 2013).

Next, the CRU climate input data are briefly evaluated. For five tree-ring sites in Switzerland (see

section 2.5), we compared the CRU climate input data against relative humidity from
meteorological stations (Source MeteoSwiss) and homogenized air temperature and precipitation

data for Switzerland (Begert et al., 2005). For the high-elevation site at Davos (DAV) summertime (June-August, JJA) precipitation and relative humidity input data are slightly higher

than data from meteorological stations in the 1960s and 70s and similar thereafter. Air

temperatures for the corresponding pixel from the gridded CRU data set are around 4°C higher

than in the MeteoSwiss data at DAV, as the CRU data represent averages for a large area. The
CRU data for the sites LOV and LOT compare relatively well with the meteorological station data, except for higher precipitation (both sites) and higher air temperature (site LOT).

A first-order correction is applied to the relative humidity data from ECHAM5-JSBC to account for the daily cycle. Leaf water 18O enrichment is driven by daytime relative humidity (when stomata are open), whereas the available ECHAM5-JSBC data represent 24-hour averages. Relative humidity is reduced uniformly by an absolute value of 10% based on a comparison of 24-hour against 8:00-18:00 summertime average relative humidity values in temperate and boreal regions (Kearney et al., 2014). This correction was evaluated for a few summer days at the site DAV and found to be sufficient.

ECHAM5-JSBC includes the atmosphere model ECHAM5 (Roeckner et al., 2003), and the land surface scheme JSBC (Jena Scheme for Biosphere-Atmosphere Interaction in Hamburg; Raddatz et al., 2007). The model comprises three surface water reservoirs: a snow layer, water at the skin layer of the canopy or bare soil, and a soil water layer. These three pools are each represented by a single layer bucket model, and each of them has a prescribed maximum field capacity. In ECHAM5-JSBC, there are no soil layers and the isotopic composition has no vertical gradient. Any water taken up by plants has the 18O of soil water. The soil layers in LPX-Bern do not affect the isotopic composition, but are exclusively used for quantitative assessment of water pools and fluxes. The drainage to groundwater in ECHAM5-JSBC has the isotopic composition of the soil water. No fractionation during snowmelt is assumed. Liquid precipitation and melt water are added to the skin layer reservoir and the soil reservoir, respectively. After these reservoirs are filled, the residual water yields the runoff.

In order to calculate evapotranspiration in ECHAM5-JSBC, each grid cell is divided into four cover fractions: one covered by snow, one covered with water in the skin layer reservoir, one covered by vegetation, and one covered by bare soil. The complete evapotranspiration flux is calculated by the weighted sum of these four fractions. The skin layer is modeled as a thin layer of water, which in general evaporates completely within a few model time steps.
2.4 Simulations

A spinup of 1500 years is performed with LPX-Bern, where an analytical solution for the C inventory in slow soil pools is applied after 1000 years to ensure that all C pools have established equilibrium conditions by the end of the spinup. Atmospheric CO₂ concentrations of the year 1900, atmospheric N deposition rates of 1901, climate data from 1901-1931, and δ¹⁸O input data for 1960 are used during the spinup. Transient simulations are started in 1901 forced by atmospheric CO₂, annual N deposition (Lamarque et al., 2011), and monthly climate (see section 2.3). For the years 1901-1960 we use monthly relative humidity, soil water δ¹⁸O and vapor δ¹⁸O of 1960 and 1960-2012 data thereafter. All runs are for potential vegetation (no land use) and feedbacks between C and N cycles are enabled (i.e. potential limitation of growth by low N availability).

In factorial simulations, model parameters or input data are increased individually by 10% and the impact is evaluated for stem cellulose δ¹⁸O for the June, July, and August 1960 average for the grid cell that includes the site DAV. In another suite of sensitivity experiments the influence of 20th century trends and variability on simulated δ¹⁸O is explored (see section 3.3). Individual input data are kept at initial conditions, while all others are prescribed as in the standard simulation. For these sensitivity experiments monthly means of 1901-1931 are applied for air temperature, precipitation, cloud cover, and number of wet days), and monthly means of 1960-1969 for relative humidity, soil water δ¹⁸O and water vapor δ¹⁸O, and 1901 values for atmospheric CO₂ and N deposition. In a similar factorial experiment, the Péclet effect is excluded. The time series are smoothed using Stineman functions. For the site DAV we carry out an additional series of experiments to evaluate the influence of a 3.5°C lower leaf than air temperature (because the 1960-2012 mean measured temperature is 3.5°C lower than the CRU temperature used in LPX-Bern), a temperature dependent biochemical fractionation as described in Sternberg and Ellsworth (2011),

\[\varepsilon_{\text{wax}} = 0.00847^2 - 0.517 + 33.172 , \]

(10)

and this temperature dependent biochemical fractionation with measured air temperature prescribed instead of the default CRU data, while all other terms remain unchanged.
2.5 Tree-ring δ18O data

To validate our model with regard to spatial variations, we compare mean δ18O of stem cellulose for the years 1960-1996 (or until 2012 depending on availability of data) against observations from 31 sites in temperate and boreal forests (Treydte et al., 2006, 2007, 2009; Kress et al., 2010; Holzkämper et al., 2011). The sites span an area from Spain to Pakistan in the east-west and in the North-South from Morocco to Finland, but the majority is located in Europe. Measurements were performed on different tree species. In most cases, the corresponding plant functional type (temperate broad-leaved summergreen, temperate or boreal needle-leaved evergreen, or boreal needle-leaved summergreen) is simulated by LPX-Bern at the location of interest and used for model-data comparison. Otherwise, we use simulated δ18O values of the dominant tree plant functional type simulated by the model. This is permissible as the differences in δ18O between functional types are rather minor (see below).

Five sites in Switzerland were chosen for a comparison of time series (Table S1). DAV is a West-facing site at 1660 m above sea level (asl) dominated by the evergreen Picea abies (L.) H. Karst near the village of Davos. The sites on the mountain Lägern (LAEA and LAEB), situated on similar altitudes of about 720 m asl, have a South aspect, but are on different soil types. Site LAEA is on sandstone and is dominated by the deciduous broad-leaved Fagus sylvatica L. and the evergreen needle-leaved Abies alba Mill., the site LAEB is on limestone and is dominated by the two deciduous broad-leaved species F. sylvatica and Fraxinus excelsior L. However, only F. sylvatica is analysed here. The North-facing site in the Lötschen Valley (N19) is at 2000 m asl and is dominated by the evergreen P. abies. Close by is an additional site LOE in the Lötschen Valley at 2100 m asl that has a South-North exposure and is dominated by Larix decidua (Kress et al., 2010).

For two additional sites in the Lötschen Valley at 1350 m asl and 2100 m asl (LOV, LOT), a complete set of input data at about bi-weekly resolution for the year 2008 including soil and needle water δ18O for Larix decidua L., was available (Treydte et al., 2014). The site LOT is in immediate neighborhood to the site LOE but different trees were sampled at the two sites. In contrast to all other sites, whole wood δ18O was analyzed instead of cellulose. We therefore
increased the whole wood values by 4.0 ‰ to convert them to cellulose, according to the constant
difference documented in larch for the last decades (Sidorova et al., 2008).

While most of these measured tree-ring δ¹⁸O chronologies were derived from pooled samplings
of 4-5 dominant trees (Treydte et al. 2007, Kress et al. 2010), the dataset of the sites DAV,
LAEA, LAEB and N19 was based on measurements of individual trees, sampled within the
framework of the present study. Here, the sampling design covered not only dominant but also
smaller trees within a circular plot of about 30 m in diameter, in order to account for the full
range of tree ring isotopic signature within a stand (Babst et al., 2014). From about 10 trees per
site stable oxygen isotope ratios were measured separately for each selected tree and each year
over the full length of the sampled cores. Tree ring cellulose was extracted prior to measurement
of δ¹⁸O via pyrolysis (PYRO-cube, Elementar, Hanau, Germany) and analysed for δ¹⁸O by
isotope ratio mass spectrometry (Delta Plus XP IRMS, ThermoFinnigan MAT, Bremen,
Germany), as described in Weigt et al. (2015). Mean values of the individual trees per year were
used for site-specific δ¹⁸O chronologies.

3 Results

3.1 Large scale, global patterns of δ¹⁸O in soil water, leaf water, and stem
cellulose

We first analyze the large scale, global patterns of δ¹⁸O in soil and leaf water and in stem
cellulose to identify characteristic features and to evaluate the plausibility of simulated results.
Annual mean soil water δ¹⁸O values simulated by ECHAM5-JSBCAH range between -1 and -21
‰ (1960-1990; Fig. 1) and are in the same range as reconstructions of δ¹⁸O in precipitation from
the Global Network for Isotopes in Precipitation (GNIP) database (Bowen and Revenaugh, 2003).

For precipitation, Haease et al. (2013) estimates that the root mean square error between
precipitation δ¹⁸O simulated by ECHAM5-JSBCAH and the GNIP data is 1.78 ‰. The simulated
soil water δ¹⁸O pattern represents major features as identified for δ¹⁸O in precipitation (e.g.,
Bowen and Revenaugh, 2003). Namely, a decrease in δ¹⁸O from mid-latitudes to high latitudes,
lower signatures at high elevation, and a decrease from coastal regions towards the continental
interior. The simulated soil water δ^{18}O pattern generally agrees with the pattern interpolated for precipitation from the GNIP data (Bowen and Revenaugh, 2003).

Simulated leaf water δ^{18}O averaged across all plant functional types range from about -14‰ at high latitudes to about 28‰ in the Middle East (Fig. 2, upper panel). Thus, the simulated δ^{18}O values in leaf water at the grid-cell and climatological scale span a range of ~40‰. δ^{18}O values in leaf water result from the combination of soil water δ^{18}O and evaporative enrichment. There are also substantial regional differences in the evaporative enrichment of δ^{18}O in leaf water mainly due to large differences in air humidity, i.e. higher enrichment in arid regions than high latitude regions (Fig. 3a). These differences are much larger than the differences between annual mean δ^{18}O in soil water from ECHAM5-JSBACH and reconstructed δ^{18}O in precipitation discussed in the previous paragraph. This suggests that soil water δ^{18}O fields from ECHAM5 provide a reasonable input to force LPX-Bern simulations and that evaporative enrichment is a major process shaping the spatial pattern in leaf water δ^{18}O.

West et al. (2008) combined annual average δ^{18}O data in precipitation (Bowen and Revenaugh, 2003), monthly climatology for air temperature and relative humidity, and elevation data with the Craig-Gordon formulation for evaporative enrichment to estimate leaf water δ^{18}O. Our values roughly agree with the Geographic Information System (GIS) model by West et al. (2008)(Fig. 2, lower panel), but differences exist in many regions. Our estimates tend to be substantially higher in e.g. Western Amazonia, Central Siberia and the Middle East, while they are significantly lower for small regions in Central Africa and China. Leaf water δ^{18}O in Australia and Eastern Russia agree comparatively well.

Differences in simulated leaf water δ^{18}O between the two approaches are much larger than differences between annual mean δ^{18}O in precipitation, used by West et al. (2008) as input to their GIS approach, and annual mean δ^{18}O in soil water from ECHAM5-JSBACH. Thus, uncertainties in the source water input data do not explain the differences between the two approaches. The mechanistic approach implemented in LPX-Bern to model leaf water isotopic signatures considers seasonally varying δ^{18}O of both, source water and atmospheric water vapor, and models explicitly daily stomatal conductance, transpiration, and associated δ^{18}O transport.
Tree ring cellulose $\delta^{18}O$ is in the expected range for most regions (Fig. 3b). Generally values are higher in arid regions and lower at high latitudes and range between 15 and 35‰ (Saurer et al., 2002; Ferrio and Voltas, 2005). When comparing leaf water and stem cellulose $\delta^{18}O$ with the $\delta^{18}O$ forcing used (Figs. 1, 2, 3b), it is obvious that soil water, leaf water, and cellulose $\delta^{18}O$ share a common pattern as described above. However, the simulated range of $\delta^{18}O$ in cellulose is comparable to the $\delta^{18}O$ range in soil water (or precipitation), but only half as large as the $\delta^{18}O$ range in leaf water. Due to biochemical fractionation during cellulose synthesis (ε_{wc}), cellulose $\delta^{18}O$ is up to 27‰ higher compared to leaf water $\delta^{18}O$ and cellulose depends linearly on leaf water $\delta^{18}O$. The difference between stem cellulose and leaf water $\delta^{18}O$ can be calculated by combining equations 8 and 9 and this yields a simple linear relationship with leaf water enrichment ($\delta^{18}O_{SC} - \delta^{18}O_{L,W} = \varepsilon_{wc} - p_{cw}x \Delta^{18}O_{L,W}$, where $p_{cw}x$ is 0.4 and ε_{wc}=27‰). The difference between cellulose and leaf water $\delta^{18}O$ is thus highest in regions with very low leaf water enrichment such as at high latitudes. The simulated enrichment of stem cellulose with respect to soil water is also proportional to leaf water enrichment ($\delta^{18}O_{SC} - \delta^{18}O_{L,W} = \Delta^{18}O_{L,W} (1 - p_{cw}x) + \varepsilon_{wc}$). The slope of this relationship is with 0.6 (1 - $p_{cw}x$) = 0.4) smaller than unity, which explains the smaller spatial gradients in stem cellulose $\delta^{18}O$ compared to leaf water $\delta^{18}O$.

3.2 Comparison of simulated stem cellulose $\delta^{18}O$ with tree ring data

Next, we quantitatively evaluate simulated $\delta^{18}O$ in stem cellulose by comparing modeled long-term (~50-yr) averages at individual grid cells with measured $\delta^{18}O$ from local, site-specific tree ring data (Table S1 in the Supplement). We recall that LPX-Bern is run with a resolution of 3.75° x 2.5° which implies mismatches between local site conditions (altitude, climate, etc.) and grid-cell averages as used to force the model. Nevertheless, simulated stem cellulose $\delta^{18}O$ agrees well with measured tree ring data from 31 sites mainly located in European temperate and boreal forests (circles in Fig. 3b, Fig. 4). The model captures the observation-based range in $\delta^{18}O$ for these sites from about 26 to 32‰ and the correlation between model and tree ring data is $r = 0.71$ across all data points. In general the model tends to underestimate $\delta^{18}O$ values of stem cellulose. Modeled grid cell values at five Swiss sites, that will be used to explore temporal dynamics, also show somewhat lower $\delta^{18}O$ in stem cellulose (0-2‰) than the tree ring $\delta^{18}O$ data suggest (Fig. 5).
This holds for the alpine, high altitude sites at DAV (Fig. 5a), and in the Lötschen Valley (N19, LOE, Fig. 5ik) as well as for the low-lying sites in the Swiss Central Plateau (LAEA, LAAEB, Fig. 5h,i). The low bias is most strongly expressed at sites where the model is forced by very high relative humidity (annual mean 1960-2012 weighted by NPP is >80%, Fig. 4 green symbols (sites FON, GUT, INA, LIL, MOT)). This bias at high humidity sites could potentially arise from a bias in δ¹⁸O of soil water, in δ¹⁸O of water vapor, or in relative humidity, and thus vapor pressure deficit, and could be related to differences in the spatial scale, i.e. local measurements at individual trees versus averages over all trees of a plant functional type and over a grid cell. We note that daily-average relative humidity is reduced by 10% for the simulation of leaf water δ¹⁸O to account for the lower daytime vs. 24-hour humidity; uncertainties in this correction have a larger influence on the water vapor pressure deficit, the driving force for transpiration, at humid sites. At a single site (CAZ) where LPX-Bern simulates extremely low biomass of less than 30 g C m⁻² because herbaceous plants dominate in this grid cell, stem cellulose δ¹⁸O is also underestimated (open symbol in Fig. 4). Excluding this site and the very humid sites yields a correlation coefficient of \(r = 0.65 \), which is not higher than for all sites. We conclude that LPX-Bern is able to represent the magnitude and the spatial climatological pattern of δ¹⁸O in stem cellulose in Europe, generally within a few per mil of available observations.

This conclusion is further corroborated by comparing LPX-Bern results with δ¹⁸O data from two Swiss sites (LOV, LOT) for which detailed δ¹⁸O data are available for soil water, needle water, and stem wood (Table 1), but for a single year only. Simulated enrichment of needle water above soil water as well as simulated enrichment of stem cellulose above needle water is within the observed range at the two sites (Table 1). We note that this comparison is somewhat hampered by the large variability in the weekly samples (e.g., for leaf water δ¹⁸O at LOV: 3.9-16.4‰ and at LOT: 4.6-11.4‰) that LPX-Bern cannot reproduce because the model is driven by monthly data. The inter-annual variability and decadal-scale trends of stem cellulose δ¹⁸O are analyzed for five tree ring sites in Switzerland and for the period 1960 to 2012 for which temporally resolved input data from ECHAM5-JSBCAH are available (Fig. 5). Due to the coarse spatial resolution of the gridded LPX-Bern version applied here, all sites except DAV lie within the same grid cell and model results are almost identical. Slight differences in the model time series shown in Figure 5...
are due to differences in tree functional types (LAEA/LAEB: deciduous broad-leaved, N19: evergreen needle-leaved, LOE: deciduous needle-leaved; thin lines in Fig. 5h-k) selected for the comparison with the tree ring δ¹⁸O data.

The simulated stem cellulose δ¹⁸O time series capture the measured evolution and inter-annual variability (Fig. 5a,h-k). Based on visual comparison, the correlation between simulated and measured stem cellulose δ¹⁸O is best in the 60s and early 70s and is weaker thereafter. Model values increase after 1990 probably due to higher temperature and soil water δ¹⁸O, which is not recognized in the tree ring data. For the entire time series the correlations range between 0.48 and 0.73, with the highest value at LAEA in the Swiss central plateau (Fig. 5h) and the lowest value at the alpine site DAV (Fig. 5a). The correlation coefficients are comparable to the correlations between the four tree ring series in the Swiss Central Plateau (LAEA, LAEB) and the Lötschen Valley (N19, LOE) which range between 0.55 and 0.82. In other words, the correlation between measured and modeled grid cell values reflects site-to-site variability within the grid-cell. In conclusion, not only the reconstructed climatological mean pattern across Europe, but also the reconstructed temporal variability in stem cellulose δ¹⁸O at individual Swiss sites is generally well represented by LPX-Bern.

An extreme heat wave hit Europe in 2003 (Figs. 5, 7, S2, and S3) with summer temperatures of 3°C above the 1961 to 1990 mean (Schär et al., 2004) and one expects to find extreme values in δ¹⁸O. Indeed, simulated stem cellulose δ¹⁸O peaks in this year with record or near-record high values for the analysis period (Fig. 5). Very low humidity and high air temperatures most likely lead to strong leaf water δ¹⁸O enrichment. Surprisingly, the response in δ¹⁸O in the tree ring data is different for different sites. Measurements at LAEA, N19, and LOE show a strong peak in δ¹⁸O (Fig. 5h,j,k), DAV a small peak (Fig. 5a), and site LAEB even lower values than during the previous and following year (Fig. 5i). Apparently, local differences in conditions or different reactions of different tree species may mask the expected drought signal in stem cellulose δ¹⁸O. A well-known phenomenon is that extreme conditions may not be captured because growth is stopped and the signal therefore not recorded (Sarris et al. 2013).
3.3 Sensitivity analysis to explore the influence of individual drivers

Simulated variability in stem cellulose $\delta^{18}O$ arises from various drivers and their influence is quantified within LPX-Bern. In the standard simulation with the combination of all drivers, air temperature, soil water $\delta^{18}O$ and water vapor $\delta^{18}O$ are positively correlated with cellulose $\delta^{18}O$ as demonstrated for site DAV (Fig. 5b,d,e). In contrast, relative humidity and precipitation are negatively correlated with cellulose $\delta^{18}O$ (Fig. 5c,f). The correlation is strongest with soil water $\delta^{18}O$ suggesting a high dependence of our results on the isotope input data.

The influence of various drivers on cellulose $\delta^{18}O$ is further investigated in transient factorial simulations where individual drivers were kept at their climatological mean values representative for the early 20th century for the meteorological variables temperature, precipitation, cloud cover, and number of wet days, and 1960 values for relative humidity, $\delta^{18}O$ soil water and water vapor input data. The results (Fig. 6) show that, in order of importance, variations in relative humidity, temperature, $\delta^{18}O$ in soil water, and water vapor $\delta^{18}O$ force decadal-scale and inter-annual variability in cellulose $\delta^{18}O$. The simple sensitivity analysis for the site DAV, where input data or parameters were increased by 10%, also reveals that stem cellulose $\delta^{18}O$ is sensitive to changes in relative humidity, soil water and water vapor $\delta^{18}O$ (Table 2). Precipitation had no influence on stem cellulose $\delta^{18}O$ in the transient simulation (Fig. 6a). In contrast, accounting for the Péclet effect, resulted in consistently lower values with nearly no influence on inter-annual variation (Fig. 6b). Atmospheric CO$_2$ had a very minor effect on cellulose $\delta^{18}O$ (<0.04‰ except for a single year with an effect of 0.18‰), while N deposition had no influence (Fig. 6b). In years when relative humidity and temperature had a positive effect, the combined effect of temperature, precipitation, number of wet days and cloud cover (termed “clim effect” in Fig. 6a) was often large and also positive. In years when the influence of relative humidity and temperature had opposing signs, the clim effect was around zero. The 20th century trends in air temperature mostly led to higher stem cellulose $\delta^{18}O$ during the last five decades compared to the early 20th century. The clim effect leads to slightly higher decadal-averaged values in stem cellulose $\delta^{18}O$ (+0.2‰) towards the end of the simulation. However, these values are not unusual in the context of the decadal variability simulated for the past five decades.
Sensitivities of cellulose δ¹⁸O to the input data are similar at all sites (Fig. 6c-e). Compared to DAV, the magnitude of the decadal scale trends induced by “climate” and soil water δ¹⁸O changes are somewhat smaller at other sites though. Conversely, changes in relative humidity have a stronger influence at LAEB and N19. At all sites, the prescribed changes in relative humidity (i.e. keeping values at mean representative for the early 20th century) cause on average lower cellulose δ¹⁸O during the 1980s than compared to the end of the simulation. Decadal-scale variability is also related to changes in soil water δ¹⁸O. In particular, soil water δ¹⁸O variations caused an increase in stem cellulose δ¹⁸O of about 0.3 to 0.5 ‰ in the 1980s that persisted thereafter (Fig. 6e). A similar trend was simulated for “climate”, but with more variability between sites. At N19 the “climate” effect was always lowest and there was no clear trend. In brief, LPX-Bern simulates substantial inter-annual and decadal scale variability in stem cellulose δ¹⁸O which is attributable to variability in relative humidity, temperature, and δ¹⁸O in soil water and vapor.

West et al. (2008) assumed that leaf temperature exceeds air temperature by 5°C in their implementation of the Craig-Gordon model. Since CRU air temperatures are on average 3.5°C higher than measured temperatures for the Swiss site DAV (Fig. 7), we did not want to further increase them. Instead we tested the effect of reducing leaf temperature by 3.5°C compared to air temperature, which improved the correlation of simulated and measured stem cellulose δ¹⁸O at DAV and increased the simulated stem cellulose δ¹⁸O compared to the original simulation (Fig. 8). 'Tleaf' vs. 'LPX-Bern standard simulation': 27.05‰ vs. 26.47‰ (average for 1960-2012).

Similarly, accounting for a temperature dependent biochemical fractionation ('ewcT') led to consistently higher cellulose δ¹⁸O (27.21‰) compared to the standard simulation, with a nearly identical correlation coefficient compared to the 'Tleaf' simulation. When the temperature-dependent formulation for εwc was combined with temperature forcing from a nearby meteorological station ('ewcTmeteo'), stem cellulose δ¹⁸O increased further and was even slightly higher than the measured data (28.47‰ vs. 28.02‰, average for 1960-2012). The correlation remained equally good though compared to the simulation with a temperature dependent εwc and CRU climate. We also evaluated temporal mean stem cellulose across all (European) sites. Compared to the original simulations (Fig. 4) the correlation between modeled and measured data...
was slightly lower if ε_{wc} was allowed to depend on temperature ($r = 0.68$ vs. $r = 0.71$, data not shown). Since we know that the CRU temperatures are too low for some sites (e.g. Fig. 7), we performed an additional test where we set ε_{wc} to 31‰ to mimic the effect of low growth temperatures on biochemical fractionation. This test should improve results for cool sites (INA, GUT, ILO, CAV), which was indeed what we observed. For these sites the model-observation differences decreased (results not shown), while for sites with high mean annual temperatures (e.g. REN, LIL) LPX-Bern overestimated stem cellulose $\delta^{18}O$ or left them unchanged.

4 Discussion and Conclusion

Formulations to describe $\delta^{18}O$ in leaf water and stem cellulose are implemented in the LPX-Bern DGVM and a compilation of tree ring data of $\delta^{18}O$ in stem cellulose, mainly for Europe, is established. This allows us to model the large scale distribution of leaf water and stem cellulose $\delta^{18}O$ on the global scale, to study spatio-temporal variability in $\delta^{18}O$, to evaluate model formulations describing the transfer of $\delta^{18}O$ signals within plants, and, last but not least, to investigate underlying drivers and processes. Further, the model permits us to address how inter-annual, decadal and 20th century changes in climate and environmental variables may have affected $\delta^{18}O$ in stem cellulose, thereby contributing to the interpretation of tree ring $\delta^{18}O$ data.

The comparison of 50-yr-averaged model results with tree ring data, mainly across Europe, shows that the large scale climatological-mean pattern in stem cellulose $\delta^{18}O$ is well captured by the model (Fig. 4). The high correlation between modeled time series and $\delta^{18}O$ tree ring data from five sites in Switzerland suggests that the inter-annual variability in stem cellulose $\delta^{18}O$ is also well represented by LPX-Bern (Fig. 5). Thus, the formulations describing water uptake by plants and transpiration, regulated by stomatal conductance and influenced by ambient CO$_2$ concentrations, and corresponding isotope fractionations appear consistent with tree ring $\delta^{18}O$ data. In an earlier study (Saurer et al., 2014), it is shown that LPX-Bern is also able to represent the spatial gradients in $\delta^{13}C$ and the temporal change in $\delta^{13}C$ and intrinsic water use efficiency over the 20th century as reconstructed from a European-wide tree ring network. The good agreement with tree ring data suggests that LPX-Bern is suited to explore the $\delta^{18}O$ signal transfer
within forest ecosystems and to study the relationship between δ¹⁸O in stem cellulose and meteorological drivers in a mechanistic way, at least within European boreal and temperate forests. This aspect may become particularly relevant in the context of global warming, with more extreme conditions including heat waves and droughts expected. The model could be used in future work in connection with tree ring data of growth, δ¹³C, and δ¹⁸O to study the nexus between flows of water (governing evaporative cooling and runoff), and CO₂ as well as C sequestration. In general, we expect any changes in seasonality that could potentially affect soil water δ¹⁸O such as e.g. earlier snow melt to be translated to stem cellulose δ¹⁸O in LPX-Bern.

Inter-annual variability and decadal scale trends of modeled tree-ring δ¹⁸O in Switzerland are predominantly driven by the meteorological variables relative humidity and temperature and the variability in soil water and water vapor δ¹⁸O (Fig. 5, Table 2). In contrast, N deposition or increasing CO₂ leading to CO₂ fertilization within LPX-Bern do not influence trends and variability in stem cellulose δ¹⁸O at the investigated sites. This is a novel finding that is important for tree-ring δ¹⁸O interpretation, and contrasts with respective findings for δ¹³C, where CO₂ is an important factor (Saurer et al, 2014). A strong influence of relative humidity and soil water on stem cellulose δ¹⁸O is consistent with expectations from isotope theory (McCarroll and Loader, 2004). This is also in agreement with many tree-ring studies that found a significant effect of relative humidity (Burk and Stuiver, 1981), vapor pressure differences (Kahmen et al., 2011) and δ¹⁸O of precipitation (Waterhouse et al., 2002) based on statistical analyses. Precipitation variations in our study did not influence inter-annual variability nor long-term trends in stem cellulose δ¹⁸O in factorial simulations where precipitation is kept constant at climatological mean values. Hence, it seems unlikely that δ¹⁸O as simulated by LPX-Bern will capture changes in precipitation patterns that are not associated with changes in isotope signals. Nevertheless, time series of precipitation at DAV are correlated with modeled time series of δ¹⁸O in stem cellulose (Fig. 5e) in agreement with observations (e.g. Reynolds-Henne et al, 2007; Rinne et al., 2013; Hartl-Meier et al., 2015), albeit less than correlations for soil and water vapor δ¹⁸O (Fig. 5b,d), air temperature and humidity (Fig. 5e,d). This correlation likely arises from the impact of precipitation on other variables, e.g. relative humidity, and from the correlation of precipitation with other driving variables. There is clearly decadal variability in simulated stem cellulose δ¹⁸O.
linked to variability in $\delta^{18}O$ and climate input data, e.g. the effect of soil water $\delta^{18}O$ varied around zero in the 1960s and is consistently positive in the 1990s (Fig. 6c). The identification of potential century-scale trends is hampered by the lack of suitable input data for relative humidity and $\delta^{18}O$ of soil water and water vapor in this study.

There are several sources of uncertainty that may explain the remaining deviations between simulated and measured stem cellulose $\delta^{18}O$ for the Swiss and European sites. First, we run the model at a coarse spatial resolution (about 220 km x 320 km in Southern Europe) and local site conditions are expected to be different from grid cell average conditions. Climate input data and prescribed $\delta^{18}O$ in soil water and water vapor therefore only approximate local values at the site.

Sensitivity simulations (Table 2) and a comparison of soil water $\delta^{18}O$ with the $\delta^{18}O$ from the GNIP precipitation network reveal that uncertainties in the input data can indeed well explain deviations between modeled and measured $\delta^{18}O$ in stem cellulose. Uncertainties in relative humidity appear particularly relevant and are likely at the origin of relatively large data-model discrepancies at humid sites. Only modest changes in humidity, and thus water pressure deficit, do result in significant changes in stem cellulose $\delta^{18}O$. Daily variations and within canopy variations in humidity (and other variables) are not taken into account in our approach. Second, we assume that parameters such as the fractionation between water and cellulose, ϵ_{wc}, the path length, L, for the Péclet effect or the proportion of carbonyl oxygen exchange with source water, p_{exc}, are constant, although they may vary (e.g. Wang et al., 1998; Ripullone et al., 2008; Sternberg and Ellsworth, 2011; Song et al., 2014). The biochemical fractionation factor ϵ_{wc} is commonly assumed to be 27‰. Only recently Sternberg & Ellsworth (2011) suggested that ϵ_{wc} increases up to about 31‰ at low growth temperatures of 5°C. However, their experiments were performed in a rather artificial system as they studied wheat seedlings cultivated in the dark and their findings are controversially discussed (Sternberg, 2014; Zech et al., 2014). Application of a temperature dependent ϵ_{wc} in LPX-Bern in combination with meteorological data from a nearby weather station removed the model-measurement offset for the alpine site DAV and improved the model-measurement correlation compared to the standard setup. So far our results seem the first to indicate that a temperature dependent ϵ_{wc} might perhaps also be relevant under field conditions. Yet, uncertainties in other input data and model structure are too large to draw any firm conclusions. The path length (L) of 0.03 m for the Péclet number agrees with previous studies.
(Wang et al., 1998; Gessler et al., 2013), although large variability has been reported (Kahmen et al., 2009). Also the proportion of carbonyl oxygen exchange with source water (p_{ex}) of 0.4 seems reasonable compared with published values (Cernusak et al., 2005; Gessler et al., 2009; Gessler et al., 2013; Song et al., 2014). However, relatively small changes in p_{ex} have a significant impact on δ18O in stem cellulose (Table 2) and recent studies suggest this value could range between 0.2 and 0.42 (Gessler et al., 2009; Song et al., 2014). Third, in LPX-Bern, photoassimilates are allocated to growing tissues instantaneously and are not stored e.g. as starch. The simulated tree ring δ18O is therefore exclusively affected by the current year's meteorology, and not by that of previous years.

The fact that soil water δ18O has a strong effect on stem cellulose δ18O calls for a very careful evaluation of the source water input data. Unfortunately oxygen isotope ratios of soil water are not systematically measured as is the case for precipitation (Global Network for Isotopes in Precipitation, The GNIP Database, http://www.iaea.org/water). However, the comparison of the soil water δ18O data from the ECHAM5-JSBACH model as used as input to LPX-Bern with the GNIP data reveal a good agreement and deviations in δ18O between ECHAM5-JSBACH soil and GNIP precipitation δ18O data are generally less than two per mil (Haese et al., 2013).

Our leaf water δ18O results provide another global scale estimate of leaf water δ18O in addition to the GIS-based approach by West et al. (2008). There are several possible reasons that could explain why leaf water δ18O simulated by LPX-Bern was mostly higher compared to simulations by West et al. (2008) (Fig. 2). First, the δ18O input data and relative humidity forcings were not the same. West and colleagues used annually-averaged δ18O from the GNIP precipitation network, which obviously provides lower values than when summer δ18O would have been used. The mechanistic approach implemented in LPX-Bern considers seasonally varying δ18O of both, source water and atmospheric water vapor, and models explicitly daily stomatal conductance, transpiration, and associated δ18O transport. Second, West et al. (2008) assumed that leaf temperature is 5°C higher than air temperature. Observations support this for broad-leaved, but less so for needle leaved species (Leuzinger and Körner, 2007). Because sites with conifers dominate our observational data set, it is reasonable to assume that leaf temperature equals air temperature in our study. We only have few measurements to support this and more field data would be needed for a meaningful evaluation of simulated leaf water δ18O. Nevertheless, the

23
LPX-Bern simulated mean value of leaf water $\delta^{18}O$ for one grid cell is within the range of the mean values measured at two sites in this grid cell (Table 1). Additionally, the good agreement between measured and modeled stem cellulose $\delta^{18}O$ in Europe appears to implicitly support the LPX-Bern estimates in leaf water $\delta^{18}O$ for this region.

We implemented routines to simulate leaf water and stem cellulose $\delta^{18}O$ in the LPX-Bern DGVM and successfully modeled the spatio-temporal variability in $\delta^{18}O$ as revealed by European tree ring data. As tree-ring isotope networks are becoming more wide-spread, the ^{18}O-enabled LPX-Bern model provides an ideal tool to explore large-scale spatial and temporal patterns in cellulose $\delta^{18}O$ and to help unravel underlying processes and drivers.

Acknowledgements

We thank Martin Werner for providing the soil water and humidity $\delta^{18}O$ data from the ECHAM5-JSBACH model, and Kerstin Treydte for sharing data from two of the Lötschen Valley sites. Jason West is acknowledged for providing the leaf water $\delta^{18}O$ data and Ansgar Kahmen for sharing his offline model. We thank Rolf Siegwolf for his valuable input and Raphael Roth for support during model development. Measurements from weather stations are from MeteoSwiss, the Swiss Federal Office of Meteorology and Climatology. This study is supported by the Swiss National Science Foundation (SNF) through the Sinergia Project iTREE (CRSII3_136295) and the grant to the Division of Climate and Environmental Physics (200020-14174).
References

Table 1. Comparison of input data and simulations by LPX-Bern (Model) against measurements (Observed) performed at two sites (LOV, LOT) in the Lötschen Valley (Switzerland) for averages across June, July, and August 2008. Because the two sites lie within the same grid cell of LPX-Bern, the simulated data are identical.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Observed LOV</th>
<th>Observed LOT</th>
<th>Model LPX-Bern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air temperature [°C]</td>
<td>15.4</td>
<td>11.1</td>
<td>16.5</td>
</tr>
<tr>
<td>Relative humidity [%]</td>
<td>75.6</td>
<td>72.6</td>
<td>78.5</td>
</tr>
<tr>
<td>Precipitation [mm]</td>
<td>251.5</td>
<td>294.8</td>
<td>387.0</td>
</tr>
<tr>
<td>Soil water δ^{18}O [%]</td>
<td>-6.1</td>
<td>-8.6</td>
<td>-7.8</td>
</tr>
<tr>
<td>Needle water δ^{18}O [%]</td>
<td>10.6</td>
<td>3.0</td>
<td>6.5</td>
</tr>
<tr>
<td>Stem cellulose δ^{18}O [%]</td>
<td>29.2</td>
<td>29.0</td>
<td>27.3</td>
</tr>
<tr>
<td>Enrichment of needle water above source [%]</td>
<td>16.7</td>
<td>11.6</td>
<td>14.3</td>
</tr>
<tr>
<td>Enrichment of stem cellulose above needle water [%]</td>
<td>18.6</td>
<td>26.0</td>
<td>20.8</td>
</tr>
<tr>
<td>Enrichment of stem cellulose above source [%]</td>
<td>35.3</td>
<td>37.6</td>
<td>35.1</td>
</tr>
</tbody>
</table>
Table 2. Effect of a 10% increase in parameter values/input data on simulated stem cellulose δ¹⁸O at site DAV for the June, July, and August 1960 average.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Change in stem cellulose δ¹⁸O [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air temperature [°C]</td>
<td>-0.2</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>-6.7</td>
</tr>
<tr>
<td>ε_k</td>
<td>1.7</td>
</tr>
<tr>
<td>ε^+</td>
<td>2.3</td>
</tr>
<tr>
<td>Transpiration (E)</td>
<td>-0.3</td>
</tr>
<tr>
<td>Path length (L)</td>
<td>-0.3</td>
</tr>
<tr>
<td>Péclet number (G)</td>
<td>-0.3</td>
</tr>
<tr>
<td>p_{ex}</td>
<td>-1.9</td>
</tr>
<tr>
<td>$\delta^{18}O_{sw}$</td>
<td>2.4</td>
</tr>
<tr>
<td>$\delta^{18}O_{wv}$</td>
<td>2.9</td>
</tr>
</tbody>
</table>
Figure 1. Simulated monthly soil water $\delta^{18}O$ (upper panel) and water vapor $\delta^{18}O$ (lower panel) was used as input data for the calculation of leaf water and cellulose $\delta^{18}O$ by LPX-Bern. The presented data were simulated by the coupled atmosphere-land surface model ECHAM5-JSBACH (Haese et al. 2013). Average values for 1961-1990 are shown.
Figure 2. Leaf water $\delta^{18}O$ (‰) as simulated by LPX-Bern (upper panel) compared to results by West et al. (2008) using a GIS approach (lower panel). LPX-Bern results are shown for the years 1961-1990 using the Craig-Gordon formulation (i.e. no Péclet effect) for comparability and for all plant functional types including grasses and herbs.
Figure 3. Leaf water 18O enrichment above soil water 18O (a) and stem cellulose 18O (b) averaged over all tree plant functional types and over 1961-2012 as simulated by LPX-Bern. Colored circles in panel b show temporally-averaged results from local tree ring data (Table S1 in the Supplement) on the same color scale as model results.
Figure 4. Comparison of simulated and measured stem cellulose $\delta^{18}O$ for 31 sites in temperate and boreal forests (mainly in Europe). Each symbol represents the mean over the years 1960-2003 (or up to 2012 if available) for a specific species (e.g. Quercus petraea (Matt.) Liebl., Table S1) and the corresponding plant functional type in LPX-Bern. Sites where the relative humidity forcing has very high values (>80%) are highlighted in light green. The open symbol reflects a single site (CAZ) where simulated above ground biomass is very low. See supplementary online material for location and description of sites (Table S1). Pearson's correlation coefficient (r) and the significance level (***, $P < 0.001$) were calculated including all sites.
Figure 5 Comparison of measured (data) and simulated (model) stem cellulose $\delta^{18}O$ (panels a-h) for the alpine sites Davos (DAV), and Lötschen Valley (N19, LOE), and sites Lägern (LAEA, LAB) in the Swiss Central Plateau. Standard errors (dashed lines) are based on measurements of ten trees. Panels b-f show input data as used for the simulation of stem cellulose $\delta^{18}O$ in LPX Bern for site DAV (average of June, July, and August is presented). The vertical dashed line highlights the extremely hot summer 2003. Pearson’s correlation coefficients, r, with simulated stem cellulose $\delta^{18}O$ are shown. Significance levels for the correlations are (*, P < 0.05; **, P < 0.01; ***, P < 0.001). Panels g and h show the ^{18}O-enrichment in stem cellulose above soil-water $\delta^{18}O$. Note that in LPX Bern sites LAEA, LAB, N19, and LOE lie within the same grid cell but are represented by different tree functional types (broad-leaved deciduous (LAEA, LAB), needle-leaved evergreen (N19), and needle-leaved deciduous (LOE)).
Figure 6. Influence of forcing factors and the Péclet parameterization on simulated δ^{18}O of stem cellulose. Panels a and b show results for the alpine site in Davos (DAV) and for all factors investigated. Panels c, d, and e each show the influence of one individual, major driver for five sites, located within the Swiss Central Plateau (Lägeren (LAEA and LAEB, black, dashed line)), and the high-elevation sites in the Lötschen Valley (N19, blue, solid; LOE; blue, dashed) and in Davos (DAV, black solid). Each curve shows the differences in δ^{18}O of stem cellulose between the reference simulation (all forcings vary) and one sensitivity simulation (one forcing factor is kept constant). Constant forcing factors include relative humidity (relhum effect), air temperature (temp effect), precipitation (prec effect), soil water δ^{18}O (sw18 effect), water vapor δ^{18}O (vap18 effect), atmospheric nitrogen deposition (ndep effect), atmospheric CO$_2$ (co2 effect) or a combination of constant forcings (climate (clim effect), i.e., temperature, precipitation, cloud cover, and number of wet days). An additional simulation is run without the Péclet effect (Peclet effect). The curves are smoothed with Stineman functions in panels c, d, and, e.
Weigt Rosemarie B, 3/29/2016 3:09 PM

Leaf temperature was increased by five degrees over air temperature (‘Tleaf’) or was equal to air temperature (‘LPX-Bern standard simulation’). The temperature dependent biochemical fraction was tested with the air temperature from CRU TS v.3.21 (‘ewcT’) and with measured air temperature from a nearby meteorological station (‘ewcTmeteo’).
Figure 7. Comparison of climate input data for the alpine site Davos (DAV). Solid lines show grid cell average data from the CRU climatology (CRU TS v3.21) as used in our standard model setup. Dashed lines show data from a nearby meteorological station as used in a sensitivity simulation (run ‘eweTmeteo’ in Fig. 8). Temperature is warmer and precipitation higher in the grid cell average data compared to the local data.
Figure 8. Effect of reduced leaf temperature and a temperature dependent biochemical fraction (ϵ_{wc}) on simulated stem cellulose δ^{18}O for site DAV (Davos). Leaf temperature was decreased by 3.5°C relative to air temperature (‘Tleaf’) because at site DAV, measured air temperature was on average 3.5°C lower than temperature from CRU TS v.3.21 used in the model (‘LPX-Bern standard simulation’). The temperature dependent biochemical fraction was tested with the air temperature from CRU (‘ewcT’) and with measured air temperature from a nearby meteorological station (‘ewcTmeteo’). Pearson’s correlation coefficients, r, with measured stem cellulose δ^{18}O are shown. Significance levels for the correlations are (*, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$).
Response to reviews

Anonymous Referee #1

Received and published: 20 December 2015

Motivated by paleo-climate/hydrological applications Keel et al. have implemented oxygen isotope diagnostics for tree ring cellulose in a dynamic vegetation model. They show that the model is able to reproduce measured modern-era oxygen isotope ratios of tree ring cellulose with a significant skill, and conclude that the model is a useful tool for paleo-interpretations of tree ring cellulose.

In my view the manuscript would be suitable for publication with moderate revisions taking into account the following questions and comments.

General comments. The paper is well written and the methodology is predominately well described with well-motivated choices for how the isotope diagnostics are implemented.

Overall I think that structure and order of the figures related to the text could be improved, which would make manuscript easier to follow (see also detailed comments below).

We changed the order of figures and merged some as suggested below.

- Fig. 1: Soil water and vapor d18O
- Fig. 2: Leaf water d18O
- Fig. 3a: Leaf water 18O enrichment (previously Fig. 5)
- Fig. 3b: Stem cellulose d18O map (previously Fig. 6)
- Fig. 4: Scatter plot of simulated cellulose d18O vs. measurements (previously Fig. 7)
- Fig. 5a-g: Simulations/input data for site DVN (previously Fig. 8)
- Fig. 5h-k: Simulations for site LAB, LAA... (previously Fig. 4)
- Fig. 6: Sensitivity analysis (previously Fig. 9)
- Fig. 7: CRU vs. measured climate (previously Fig. 3)
- Fig. 8: Test with Tleaf and ewcT (previously Fig. 10)

Although I think that the comparison to data and validation of the model is generally well thought out, I miss a more thorough discussion/test of how chances in seasonality could affect the interpretation. E.g. how would the timing of spring melt affect results in high-latitude regions? How would changes in precipitation seasonality affect humidity limited regions? What are the implications of southern versus northern slope proximity of trees? These questions are particularly important for palaeoclimatic interpretation. I am aware that a full study would be...
beyond the scope of the study, but the authors could provide some more insights regarding these questions from the work with the modern data.

We added:

“In general, we expect any changes in seasonality that could potentially affect soil water d18O such as e.g. earlier snow melt to be translated to stem cellulose d18O in LPX.”

In our sensitivity analysis precipitation (amounts) had no influence on stem cellulose d18O. Hence, it seems unlikely that LPX will capture changes in precipitation patterns that are not associated with changes in isotope signals.

We added:

"Hence, it seems unlikely that δ18O as simulated by LPX-Bern will capture changes in precipitation patterns that are not associated with changes in isotope signals."

Sites LOE and N19 are in close proximity, but on a south- and north-facing slope respectively. The data presented in Fig. 4 show that LPX simulates nearly identical stem cellulose d18O that only differs because the PFTs are not the same.

Detailed comments.

Other references to millennial-scale tree ring isotope records include Edwards et al. 2008.

Reference added

For comparisons between variability of modelled and ice core d18O see Sjolte et al. 2011 and Masson-Delmotte et al. 2015.

Reference added

Replace “… carbon (C) and N dynamics...” with “… carbon (C) and nitrogen (N) dynamics...”

Changed

Please clarify the choice of 0.8 for the ratio between the CO2 mole fraction in the
stomatal cavity and the ambient air.

Text modified to read: “for a fixed ratio, \(\lambda \), between the CO2 mole fraction in the stomatal cavity and the ambient air, \(\lambda \) is set equal to 0.8 following Sitch et al. (2003) to approximate non-water-stressed conditions and as a starting value for the iterative computation of carbon assimilation and transpiration.”

P18472, L24 Please clarify that this paragraph is an evaluation of the input data.

The following was added to begin the paragraph: “Next, the CRU climate input data are briefly evaluated.”

P18473, L7-12 Optimally model output for daytime Rh should be applied. Variations in cloudiness etc. has large impacts on daytime Rh how valid is the 10% correction on longer time scales? E.g. decadal vs. intra-seasonal variations?

For a few summer days we compared average relative humidity for 24h vs. 08:00-18:00 and found that the reduction by 10% was sufficient. We added: ‘This correction was evaluated for a few summer days at the site DVN and found to be sufficient’

P18477, L9 I think that especially the results section, and the paper in general, could benefit from grouping figures differently. I suggest grouping maps that are similar together as figures with several sub-panels with 2-4 panels per figure. At least figure 5 and 6 could easily be merged. Additionally, all sub-panels and sub-plots should be clearly marked with figure indices.

Figure 5 and 6 were merged and indices were added to subpanels. Similarly, figure 4 and 8 were merged.

P18478, L15 For the comparison with the measured data: is there a bias in the model elevation that could explain some of the discrepancy between model and data?

The following text was added: “We recall that LPX is run with a resolution of 3.75° x 2.5° which implies mismatches between local site conditions (altitude, climate, etc) and grid-cell averages as used to force the model.”

References

Thomas W.D. Edwards, S. Jean Birks, Brian H. Luckman, Glen M. MacDonald, Climatic and hydrologic variability during the past millennium in the eastern Rocky Mountains and northern
In this paper Keel and colleagues have implemented oxygen isotope signals (_18O) in soil and leaf water pools and wood cellulose in the global-scale land surface model LPX-Bern. This model is forced by monthly, gridded meteorological fields from the CRU for the period 1901-2010 and monthly, gridded isotope forcing provided by the coupled atmosphere-land surface model ECHAM5-JSBACH for the period 1960 to 2012. The LPX-Bern model is then run at a daily timestep and tested against annually-resolved treering cellulose _18O dataset from field sites in Switzerland and 1960-2003 average tree-ring cellulose _18O data from sites across Europe. A sensitivity analysis of some relevant climate drivers or biophysical parameters is also performed.

In my opinion this paper is suitable for publication provided that the authors provide a bit more information on the model simulations and on how they draw some of the conclusions.

Thank you

Regarding the model simulations I could not see any information on how the monthly atmospheric forcing was used to run the LPX-Bern surface model at a daily time step.

Text was added in section 2.3 (page 18472, line 23 of the original MS): “The meteorological data are linearly interpolated to daily values, except for precipitation where a stochastic weather generator is applied to compute daily precipitation following Gerten et al. (2004).”

I was also surprised to see that daytime air relative humidity was assumed to be only 10
Apparenty, this sentence was incomplete. We noted in the text that relative humidity is downward corrected by an absolute value of 10%. Thus, we do not assume a relative humidity of 10%.

Regarding the way some conclusions are drawn, I was missing some steps in several places. For example, on page 18479 lines 13-15, the authors claim that the model reproduce treering \textsubscript{18}O across Europe “within the uncertainty of soil water \textsubscript{18}O”, but no statistical test is presented to support this statement, no value on the “uncertainty of soil water \textsubscript{18}O” is given, and the single-site example given to support the statement (Table 1) shows that the soil water \textsubscript{18}O is actually relatively well captured by the model while the biggest difference arise in the leaf water (and cellulose) \textsubscript{18}O signal. To me this is a clear indication that biases in relative humidity (and leaf temperature) are more likely responsible for the differences found between observed and modelled tree ring \textsubscript{18}O at this site. This is actually confirmed by the authors later on (e.g. page 18481 lines 14 and 18 or page 18482 line 9).

It is not our intention to imply that uncertainty in soil water \textsubscript{18}O data represent the largest uncertainty for simulated tree ring \textsubscript{d18}O values. To avoid confusion the statement was changed to read: “We conclude that LPX-Bern is able to represent the magnitude and the spatial climatological pattern of \textsubscript{d18}O in stem cellulose in Europe, generally within a few per mil of available observations.

The conclusion drawn on page 18480 lines 27-29 seems also to lack some steps as it does not seem to follow logically from what is said just before.

This sentence on line 27-29 was moved to the end of the previous paragraph (line 14 of the original MS)

I also found the the ordering of the figures is somehow confusing. I would not refer to figures in the material and methods if the figures are not commented there.

We removed references to figures in the material & methods. The new order of figures has been described above.

Other minor comments are given below:

Page 18464

Line 4 “not been made use of” could be reformulated. Line 5 “could” has an ambiguous subject
Sentence on line 4/5 was changed to: “So far the use of stable oxygen isotope signatures of tree
rings has not been systematically evaluated in dynamic global vegetation models (DGVMs).
DGVMs integrate many hydrological and physiological processes and their application could
improve proxy-model comparisons and the interpretation of oxygen isotope records.”

Lines 7-10 “compare well” (twice) is a bit too vague

“well” on line 7 was replaced by “lie within a few permil”, “well” on line 10 was deleted

Page 18465

Line 4-5 It should be noted that this is a difficult task as cross-lab synthesis of \(_{18}O\) data can
contain large biases. Do you have an idea of the bias on your particular dataset?

Most of the data used in our study are from the ISONET study for which an inter-laboratory
comparison has been made: Boettger, T., et al. (2007). For \(d_{18}O\) in cellulose the variation
reached 0.58 permil for the means.

Page 18466

Line 13 The term “boundary conditions” can be misleading as it suggests that the LPX-Bern
model is ran/used only on a limited domain, rather than at the global scale. Maybe use the term
“isotopic forcing”?

Term replaced by "used as oxygen isotope input data (i.e. isotope forcing)."

Also is it realistic to use CRU meteorological data together with ECHAM \(_{18}O\) data, e.g. if CRU
and ECHAM5 precipitation do not coincide? I guest at a monthly timescale it is not of an issue
but maybe at some locations during the dry season.

We are not aware of any data product that provides an observation-based evolution of soil water
\(d_{18}O\) during the past 50 years. Thus, we have to rely on the ECHAM data. Haese et al. (2013)
estimate that the root mean square error between precipitation \(d_{18}O\) simulated by ECHAM5-
JSBACH and the GNIP data is 1.78 ‰.
Page 18467 Line 1 This is very likely that evaporation or mixing would modify soil surface _18O. Is such assumption made in LPX-Bern or ECHAM5-JSBACH? It is not clear from the text. If it is the case it should be stated. If it is not the case I don’t see the reason to write this sentence.

Sentence modified to read: “The $\delta^{18}O$ of surface soil water reflects the $d^{18}O$ signal of precipitation averaged over a certain amount of time and is further modified by evaporation of soil water leading to evaporative enrichment and potentially by mixing with ground water.”

Line 10 This statement is incorrect because the evaporative enrichment (i.e. the Craig- Gordon $d^{18}O$ value) will also be higher (relative humidity effect).

Statement modified to read: “This Péclet effect tends to reduce the signal of evaporative enrichment in bulk leaf water and the effect is large when transpiration rates are high.”

Line 11 I would add “thought to be” 27‰ enriched. . . Also I would precise “bulk” leaf water.

Done.

We added an explanation for bulk leaf water (i.e. whole leaf water):

Page 18468

Line 6-7

Those extra steps are not “related to leaf water” (as stated in see line 3). These are for models of ^{18}O in treering cellulose.

Text changed to read: “but additional processes related to $d^{18}O$ signals in leaf water and stem cellulose are resolved at varying degrees of complexity”

Line 9-10 I am not sure it is the correct argument. If a large range of different species is involved, I would rather go for species-specific parameters. . .

Text on line 10 amended by: “. . . and as we lack detailed species-specific information, e.g. on water flow and the Péclet effect.”
Does it mean that you have multiple PFTs sharing the same soil and space, i.e., competing for light as well?

We now specify: ‘Light competition is modeled indirectly by assigning a higher mortality to PFTs with a small increment in fractional plant cover and biomass compared to PFTs with a large increment (Sitch et al., 2003).’

Is this maximum transpiration equal to potential ET?

No. Esupply is the maximum transport rate of water from the soil to the leaves. Text clarified to read

"Esupply is the product of root-weighted soil moisture availability and a maximum water supply rate that is equal for all PFTs (Sitch et al., 2003)."

Are g_m and m species-specific parameters?

We made this clear by adding:

“that are equal for all plant functional types”.

Why is the ratio of intercellular to ambient CO2 mixing ratio set to 0.8? It is very high no?

See above

I would reformulate “which is a Farquhar model”.

We reformulated this: "Photosynthesis is modeled following (Collatz et al., 1991, 1992), which is based on the formulation by Farquhar et al. (1980) and Farquhar and von Caemmerer (1982) generalized for global modeling purposes."

Does it mean the model is using a daily time step? It has not been stated so far.

Text added on p. 18468 and line 23: “.. Wania et a., 2009), and features a daily time step for photosynthesis and evapotranspiration.”
Line 2 I guess ___ is the same parameter that is set to 0.8 in the previous paragraph. Maybe introduce the symbol before?

Done.

Line 8 I think Farquhar and Lloyd (1993) is a better reference.

We replaced this reference by Farquhar and Lloyd (1993)

Line 19 Why using such a high value (32‰). This is the upper bound in the literature and it is quite controversial.

We chose the value based on an experimental assessment by Cappa et al. 2003 and added the reference.

Equation 6 Do you have a reference? It seems to come from Cuntz et al. (2007) but there is a typo there. Maybe use a different formulation that has no typo (e.g. Braud et al. 2005 Eq. C1 or Cuntz et al. 2007 Eq. A23) or mention original Eq. A22 but state there is a typo?

We added the reference Cuntz et al. (2007) and mention that there is a typo in equation A22 that we use.

Line 13 Rather than “high transpiration rates” I would say “low relative humidity” or “high evaporative demand”.

Page 18470

Page 18471
We prefer to keep the wording because it is indeed the leaf transpiration rate that determines the Péclet effect as evident from the equations given in the text.

Page 18472

Line 1 You cite Sternberg et al. (1986) above. Why about results from Sternberg and Vendramini (2001) (see their Figure 1)?

We could not find the publication by Sternberg and Vendramini (2001).

Line 8 “with a daily time step”: finally...

Page 18473

Line 7-12 This reduction in relative humidity between daytime and daily values seems rather low. How large is the reduction in the data from Meteoswiss? Also it is stated before that the output data from ECHAM5-JSBACH are at monthly time scale. How do you go to the daily time scale from then?

See comment above

Line 16-17 How is the ^{18}O of soil water in JSBACH used in the soil water scheme of LPX given that the soil vertical discretisation seems quite different? You would need to provide explanations for this important aspect. Also how is the soil evaporative enrichment treated in LPX?

We added: "In ECHAM5, there are no soil layers and the isotopic composition has no vertical gradient. Any water taken up by plants has the d18O of soil water. The soil layers in LPX do not affect the isotopic composition, but are exclusively used for quantitative assessment of water pools and fluxes."

In ECHAM5 the evaporative enrichment is affected by an equilibrium and a kinetic fractionation factor as described in more detail in Haese et al. (2013).

Page 18474

Line 23-25 But Tair is already 4 _C higher than the observed no?
Yes, Tair is indeed already about 4 degree C higher. We reran the simulation and reduced the leaf temperature by 3.5 degree, because on average measured air temperature at site DVN is 3.5 lower compared to CRU temperature used in LPX-Bern. The text was modified accordingly.

And what about the other terms that depend on leaf temperature, including the relative humidity term?

For this simple test we did not change any other terms and we added: ‘while all other terms remained unchanged.’

Page 18475 Line 11-13 Not very clear from this figure.

We added: ‘model time series shown in Figure 5...(thin lines in Fig. 5)’

Page 18477 Line 2 The order of the figures is a bit strange. I would not introduce them in the material and method section if not commented there.

We changed the order of figures as described above.

Page 18479 Line 10 30gC/m2 is extremely low. Are you sure of the units? Aso _18O of which pool are we talking about here?

The above ground biomass at this site is indeed very low as this grid cell is dominated by herbaceous plants. This is why we exclude it. We made this more clear: ‘extremely low biomass ..., because herbaceous plants dominate in this grid cell’ We added: ‘stem cellulose d18O” to make clear which pool we refer to.

Line 11 I guess “these” refer to the humid sites + CAZ but should be stated a bit more clearly maybe.

Was changed

Page 18480 Line 24 Not clear from figure. Maybe draw a line fo 2003?

Line was added to highlight year 2003.
We added: ‘e.g. the effect of soil water d18O varied around zero in the 1960s and is consistently positive in the 1990s (Fig. 9b).’

We added Haese et al. (2013).