We thank both referees for their valuable comments and appreciate the associated improvements to the manuscript.

Referee#1:

“1. Despite continuous monitoring of N2O fluxes (Fig. 3) the authors give no values of cumulative losses per year and don’t address this aspect in the discussion (see also details below). However it is quite important to interpret the impact of their findings, i.e. to which extent observed isotope fluxes are representative to agricultural ecosystems. So these numbers should be reported and discussed.”

Answer: We addressed this comment by including a corresponding paragraph in section 4.7 (see below in the response to the specific comment “Section 4.7”).

“2. The authors use the relationship between isotope values (average d15N, d18O and SP) to estimate and discuss possible N2O reduction. While this is justified, it should be better illustrated. Instead of showing isotope maps of d18O vs d15Nbulk only, they should also show SP vs d18O and also illustrate their postulated reduction events. Here I suggest to give isotope maps (SP/d18O and d15Nbulk/d18O) showing the change in values during estimated reduction events. Reduction vectors could be added in these figures to show agreement or deviation of observed data from previously reported reduction dynamics. These figures might be given in the appendix.”

Answer: We changed the manuscript accordingly and included a SP/d18O map (see below in response to the specific comment “P1590, Section 4.4”).

P1576 L 13.14: this reasoning is not exactly correct here: independence of SP from precursors is due to the fact that N2O is the first molecule with two N atoms and thus SP is not existent in precursor compounds

Answer: in order to be unequivocal we reworded to “..., as SP remained constant in the de novo produced N2O even though ...”

L 26 suggest to address N2O isotopocules (or isotopologues) instead of SP since d15Nbulk and not SP is used in the cited examples

Answer: Agreed and changed to “In addition, N2O isotopocules can be used for ...”

P1577 L 5 see previous comment

Answer: Agreed and changed to “N2O isotopomers can be ...”

L7 flask sampling with chambers is better in spatial resolution than atmospheric measurement (N = 1) which gives not info on spatial resolution at all

Answer: We agree that measurements in the surface layer cannot be replicated and that for some experimental designs (e.g. different treatments on an experimental field), a chamber setup is indispensable. However, we want to raise the point that chamber measurements are representative for the usually small chamber area and are therefore limited in spatial representation. As a consequence, we changed the section to “… is limited in temporal resolution and spatial representation of a given site”

L 21 how about soil properties?

Answer: In this study, measurements were made above one intensively managed grassland site for which soil properties are assumed to be constant on the timescale of this study. Therefore, an analysis with respect to variations in soil properties is not possible.

L 22 goal (iii) can clearly not be achieved with this approach as there is no way to check the process information from isotopomers independently. Please modify accordingly or explain how you can test this with your approaches
We agree and removed (iii) from the objectives.

Study site: please report numbers on soil texture, Corg, C/N, pH and bulk density since these are very important to compare findings to other sites.

Answer: We included information on bulk density, texture, pH as well as C and N content in section 2.1

P 1579 L 16 suggest “(increase of 0.31: : : per mil.”

Answer: Changed to “(increase by 0.31 ..... per mille ...“)

P 1583 L 21 please better explain “surface layer”, lowest ten of m is quite vague, maybe add a reference here?

Answer: The term surface layer is now explained at the beginning of section 3.2: “Air samples were taken at 2.2 m height which is in the lowest 10% of the atmospheric boundary layer (ABL) where mechanical generation of turbulence exceeds buoyant generation or consumption. This part of the ABL is called surface layer, hence corresponding air samples are referred to as surface layer air samples.”.

P 1587 L 4 data are representative for this site, but not for agricultural land in general, please clarify

Answer: This sentence was meant to explain that simple averages do not represent the isotopic composition of any given treatment, site or ecosystem, but we agree that our wording might be misleading. Therefore we changed to a more general term: “Representative isotopic composition of N2O emitted from a given site or treatment can be ....”

P1590 L 8 Please add that the preferred cleavage of N-O bonds between lighter isotopes leads to increasing d18O and SP in residual N2O

Answer: The explanation is included now: “However, in the terminal step of denitrification, namely the reduction of N2O to N2, N-O bonds between lighter isotopes are cleaved preferentially, leading to an increase in SP, \( \delta^{15}N_{\text{bulk}} \) and \( \delta^{18}O \) in the remaining N2O”.

P 1590, Section 4.4 suggest to add an SP/d18O plots (see discussion on problems of SP/d15N plots in Well et al 2012, Geochimica et Cosmochimica Acta 90, 265–282 Lewicka-Szczebak et al., 2014 Geochimica et Cosmochimica Acta, 134, 55-73, Lewicka-Szczebak et al 2015 Rapid Comm Mass Spectrometry 29:269-282). The extremely large range in d15N of the endmember areas make the use of d15N really difficult. Moreover, these ranges might even be larger than reported in the literature due to the unknown d15N of NO3 in active microsites. Conversely, d18O of N2O produced by denitrification is mostly governed by O exchange with soil water and thus less variable.

Answer: We agree with the referee and figure 7’s right panel was substituted by a panel showing SP as a function of \( \delta^{18}O \) (see uploaded figure). We also indicated the development of isotopic composition during management events and the rewetting event as suggested by the referee in the general comments to the manuscript. The text in section 4.4 was adapted accordingly.
L 15 to 20: please compare your endmember areas with those given and discussed in Zou et al. 2014 Soil Biology and Biochemistry, 77, 276–291.

Answer: Zou et al. give endmember areas in a SP/d15N map for the processes “Nitrification”, “Nitrifier-denitrification”, “Fungal denitrification” and “Denitrifier-denitrification”. While the SP-values representing the areas’ corner nodes are literature values, the corresponding d15N-values were calculated from the analyzed isotopic composition of N2O precursors (NO3- / NH4+) and the range of fractionation factors derived from literature for the four process groups (see table below). As our isotopologue measurements integrate over a large and (depending on wind direction) variable area, it was not possible within the scope of the presented study to sample and analyze the isotopic composition of N2O substrates. We appreciate the referee comment and the approach chosen by Zou et al., but due to the lack of knowledge on the substrate’s isotopic composition, we had to decide for a more general approach. To cover the whole range of potential d15Nbulk values, minimum and maximum values of fractionation factors reported in literature for the process groups N2O\text{N} (nitrification and fungal denitrification) and N2O\text{D} (denitrification and nitrifier denitrification) were selected and combined with the endpoints of literature values reported for the N2O precursors. Overall, as can be derived from the table below, these approaches are very much alike, but the lack of the substrate’s isotopic composition does not allow for an application of the approach chosen by Zou et al.

<table>
<thead>
<tr>
<th>Study</th>
<th>(SP_{\text{nit}})</th>
<th>(SP_{\text{fungalDen}})</th>
<th>(SP_{\text{N2ON}})</th>
<th>(SP_{\text{den}})</th>
<th>(SP_{\text{nit-den}})</th>
<th>(SP_{\text{N2OD}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zou</td>
<td>31.4 (31.4-35.6)</td>
<td>37 (34.1-39.6)</td>
<td>-2 (-6.9-1.4)</td>
<td>-3.8 (-13.6-5)</td>
<td>-1.6 ± 3.8</td>
<td></td>
</tr>
<tr>
<td>This study</td>
<td>32.8 ± 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.6 ± 3.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\varepsilon) (\text{nit})</th>
<th>(\varepsilon) (\text{fungalDen})</th>
<th>(\varepsilon) (\text{N2ON})</th>
<th>(\varepsilon) (\text{den})</th>
<th>(\varepsilon) (\text{NH3/NO2})</th>
<th>(\varepsilon) (\text{NO2/N2O})</th>
<th>(\varepsilon) (\text{N2OD})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zou</td>
<td>-68 to -46.9</td>
<td>-36.2 to -24.1</td>
<td>-37 to -11</td>
<td>-39.8 to -10.6</td>
<td>-39.5 to 31.4</td>
<td></td>
</tr>
<tr>
<td>This study</td>
<td>-90 to -40</td>
<td></td>
<td>-40 to -15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

L 28 here and elsewhere: BACTERIAL denitrification, since isotopologues of fungal denitrification are close to NH2OH-N2O.
"bacterial" was added to revoke the unclear wording.

P 1591 L 6-7 you might refer to the discussion of this aspect in Well et al. 2012, Geochimica et Cosmochimica Acta 90, 265–282.
Answer: Reference was added

P1592 L10 note that N2O_N includes Nitrification AND fungal denitrification. You can’t exclude the fungi (see Sutka et al., 2008 Rapid Commun Mass Spectrom. 2008 3989-96,. Rohe et al., 2014 Rapid communications in mass spectrometry, 28, 1893-1903, please discuss).
Answer: The section was corrected to “...due to increased contribution of nitrification or fungal denitrification, ...”.

P1593 L18 please show linearity of Keeling plots
Answer: Keeling plots for each single day are provided as supplementary file S1, and a corresponding reference to the supplementary material was placed in the text.

P 1994 L 6-9 not clear to me why the footprints are different, please explain
Answer: An explanation was added in section 4.6: “Alternatively, the variation in isotope values associated with small overnight concentration increase may result from other land use or land cover. The EC fluxes are calculated from the turbulent fluctuation of concentration and vertical wind speed (i.e. the covariance of the concentration and wind speed deviations from the half-hourly mean) and therefore account for the modulation of concentration around a short term (30 min) mean caused by locally emitted N2O. Isotopic composition based on Keeling plots, however, is determined from total N2O accumulated in the nocturnal boundary layer and, thus, this approach also contains molecules that had been emitted outside the flux footprint, which almost exclusively comprised our grassland site (Zeeman et al. 2010), within the larger concentration footprint (Griffis et al., 2007).”

Section 4.7 pleas discuss cumulated N2o fluxes of this site in comparison to other grassland sites in order to interpret to which extent flux weighted isotope values can be seen representative. In view of high mean fluxes it seems to me that this site is a real hot spot. (rough look at Fig 3 suggests that flux level is at least higher tha 5 kg N/ha and year). This needs to be taken into account in the discussion here or at least addressed somewhere.
Answer: We address this issue at the end of section 4.6: “Secondly, the CHA grassland can be characterized as a site with vigorous N2O emission and therefore may dominate the determined N2O isotopic composition as the influence of a source area increment scales with the source strength. The grassland was restored in 2012 which lead to extraordinary high N2O-N emission of 29.1 kg ha⁻¹ year⁻¹ (Merbold et al 2014). In the following year, 2.5 kg N ha⁻¹ were released. This value is still in the range of maximum emissions reported for another intensively managed Swiss grassland, emitting 1.5-2.5 kg N ha⁻¹ year⁻¹ and at least a factor of five compared to an extensively managed grassland with less than 0.5 kg N ha⁻¹ year⁻¹ (Ammann et al. 2009). With regard to distant land use and land cover, the 2.5 kg N ha⁻¹ are also more than double the median of all reported values for cultivated temperate sites and higher than the maximum value reported for forests presented in a study containing 1008 N2O emission measurements from agricultural fields (Stehfest and Bouwman, 2006).”

P 1595 L 5 and elsewhere: add fungal nitrification since it is not distinguishable from NH2OH oxidation.
Answer: fungal denitrification was added.
The manuscript reports a technical feat: the on-line isotopic characterisation of N2O emitted from an agricultural area. All descriptions, data and discussion relating to the isotopic characterisation are excellent science. A weak point is the relation of isotopic compositions to N2O flux (and soil parameters) measured on the experimental grassland plot. There are probably something like four orders of magnitude in size difference between the concentration footprint (in the order of 10 x 10 km; from which isotopic compositions were derived) and the N2O flux footprint (in the order of 0.1 x 0.1 km).

By relating changes in isotopic composition to N2O flux (and soil conditions) on the experimental grassland plot, the implicit assumption is made that N2O emitted from the grassland plot is representative, in terms of isotopic composition, for a much larger area. Looking at aerial photographs of Chamau (e.g. Google Earth), it seems there is a large proportion of arable crops and also forest within the concentration footprint (I am not familiar with this site, but think to have located it at 47 degrees 12’ and 24” N and 8 degrees, 24’ and 32” E). This mix of different landuse constitutes the concentration footprint and is the source of observed changes in the isotopic composition observed during nocturnal inversions. In contrast, the N2O flux measured by eddy covariance relates to the grassland site, where also the soil parameters (soil temperature and moisture, inorganic N) were measured. I would propose to drop the N2O flux part of the manuscript and relate observed changes in isotopic composition during nocturnal inversions solely to meteorological parameters (“wet phase” and “dry phase”, as in section 3.5), which are much more likely to have been homogenous within the concentration footprint, than N2O flux or soil parameters (in particular NH4+, NO3-, DOC,) or management events.

Answer: We agree with referee#2 that there is a remarkable difference in size between flux and concentration footprint and therefore the concentration footprint associated with our measurements of N2O isotopic composition certainly comprises adjacent areas differing in land use or land cover. In summary, however, we are confident, that the grassland represents a major contribution to the analyzed isotopic signature of the N2O accumulated above the grassland in the nocturnal boundary layer. To better illustrate our argumentation, but also to present potential limitations, we added the following changes to the manuscript:

1) The manuscript title was changed from “First on-line isotopic characterization of N2O emitted from intensively managed grassland” to “First on-line isotopic characterization of N2O above intensively managed grassland”.

2) As given above in response to referee#1 (see comment to P 1994 L 6-9) an explanation was added why flux and concentration footprint are different and how this could influence N2O isotope analysis. In addition we added the following wording to the end of section 4.6: “However, it cannot be excluded that N2O isotopic signatures analyzed above the grassland were influenced by adjacent ecosystems”. As well as section 4.7: “One has to keep in mind, however, that part of the observed variability may be attributed to the fact that the footprint area of the N2O isotopic composition includes areas with other land use or land cover”.

3) As detailed above in response to referee#1 (see comment to section 4.7) the weight of influence scales with source strength and distance so that areas of high source strength and low distance to the sample inlet have a higher influence on the determined isotopic composition. The grassland on which our measurements were carried out was restored in 2012 which caused extraordinary high N2O emission in 2012 (29.1 kg ha\(^{-1}\)). Emissions during the measurement campaign were also distinctly elevated with up to 500 µg m\(^{-2}\) h\(^{-1}\) and the grassland site CHA can be considered as a site with vigorous N2O emission. In the study by Griffis et al. (2007) the shift of source signature was calculated for different concentration footprint sizes, assuming an increasing area of contributing C3 canopy. However, Griffis et al. postulated a constant source strength for C3 and C4 canopy, which is certainly not the case for CHA.

4) In addition, the linearity of the Keeling plots, given in the supplementary file S1, indicates a constant source process. During the overnight concentration increase, which was used for the Keeling plots, wind speed and direction were not constant over the several, approx. 16 minute
intervals during which surface layer air was pre-concentrated. Consequently, influences from other grasslands, land use or land cover with different isotopic composition would result in Keeling plots that show a deviation from a linear relation of isotopic composition with 1/concentration. This is especially the case for d15Nbulk as this value is most variable due to its dependence on precursor composition which can be expected to vary significantly in space. To highlight this, the following phrase was added to the text: “However, two facts indicate a major influence of the studied grassland on the determined N2O isotopic composition: First, the N2O isotopic composition is very stable for a noon-to-noon period as indicated by a linear relationship between individual measurements (supplementary file S1). This relationship persists even though wind speed and direction are changing and, therefore, individual N2O isotope measurements integrating over 16 minutes sampling interval originate from different source areas.”

Owing to the considerable source strength in combination with the strictly linear Keeling plots (given as supplementary material), we assume that the grassland studied has a major influence on the determined isotopic composition. Nonetheless, we clearly give credit to the possibility that adjacent regions may have influenced the determined N2O isotopic composition.

Page 1575, lines 13-15 state: “Hence, the development of adequate mitigation strategies is pertinent and requires a better understanding of the processes driving N2O fluxes.”
Please return in your discussion to this statement and try to show how the study has contributed to this goal (maybe as a follow-up to sections 4.4 and 4.5).

Answer: As stated at the end of section 4.4, a better understanding of processes driving N2O emission cannot be reached to date by determination of N2O isotopic composition alone, but will need to be combined with other methods determining isotopic composition in the substrates and quantification of N2 emission.

Minor:
Page 1576, line 22: insert space between “in” and “Toyoda”.
Answer: done
Page 1579, line 18, and page 1594, line 22: maybe “compatibility” instead of “compatability”?
Answer: The term “compatibility” is used to refer to the agreement between results from different laboratories, in accordance with the vocabulary for metrology (see GAW report No. 213, 2013).
Page 1584, line 22: Results of DOC measurements are presented here, without the DOC measurements having been explained in the Methods section.
Answer: Section 2.7 was supplemented by a corresponding paragraph
First on-line isotopic characterization of \( \text{N}_2\text{O} \) emitted from above intensively managed grassland

Running head: Real-time grassland \( \text{N}_2\text{O} \) isotopic signature

1,2Benjamin Wolf, 3Lutz Merbold, 3Charlotte Decock, 1Béla Tuzson, 1Eliza Harris, 3Johan Six,
1Lukas Emmenegger, 1Joachim Mohn

1Laboratory for Air Pollution / Environmental Technology, Empa, Überlandstrasse 129, CH-8600 Dübendorf
2Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute or Technology, Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen
3Department of Environmental Systems Science, ETH Zurich, Universitaetsstrasse 2, CH-8092 Zürich

Corresponding author: Benjamin Wolf, benjamin.wolf@kit.edu, +49 8821 183288

Keywords: \( \text{N}_2\text{O} \), isotopomers, QCLAS, source partitioning, grassland, nitrification, denitrification, \( \text{N}_2\text{O} \) reduction

Paper type: primary research
Abstract

The analysis of the four main isotopic N$_2$O species ($^{14}$N$^{14}$N$^{16}$O, $^{14}$N$^{15}$N$^{16}$O, $^{15}$N$^{14}$N$^{16}$O, $^{14}$N$^{14}$N$^{18}$O) and especially the intramolecular distribution of $^{15}$N (site preference, SP) has been suggested as a tool to distinguish source processes and to help constrain the global N$_2$O budget. However, current studies suffer from limited spatial and temporal resolution capabilities due to the combination of discrete flask sampling with subsequent laboratory-based mass spectrometric analysis. Quantum cascade laser absorption spectroscopy (QCLAS) allows selective high-precision analysis of N$_2$O isotopic species at trace levels and is suitable for in-situ measurements.

Here, we present results from the first field campaign, conducted on an intensively managed grassland in central Switzerland. N$_2$O mole fractions and isotopic composition were determined in the atmospheric surface layer (2.2 m height) at high temporal resolution with a modified state-of-the-art laser spectrometer connected to an automated N$_2$O preconcentration unit. The analytical performance was determined from repeated measurements of a compressed air tank and resulted in measurement repeatability of 0.20, 0.12 and 0.11‰ for $\delta^{15}$N$^\alpha$, $\delta^{15}$N$^\beta$ and $\delta^{18}$O, respectively. Simultaneous eddy-covariance N$_2$O flux measurements were used to determine the flux-averaged isotopic signature of soil-emitted N$_2$O.

Our measurements indicate that in general, nitrifier-denitrification and denitrification were the prevalent sources of N$_2$O during the campaign, and that variations in isotopic composition were rather due to alterations in the extent to which N$_2$O was reduced to N$_2$, than other pathways such as hydroxylamine oxidation. Management and rewetting events were characterized by low values of the intra-molecular $^{15}$N site preference (SP), $\delta^{15}$N$^{\text{bulk}}$ and $\delta^{18}$O, suggesting nitrifier denitrification and incomplete heterotrophic bacterial denitrification responded most strongly to the induced disturbances. Flux-averaged isotopic composition of N$_2$O from intensively managed grassland was
6.9 ± 4.3, -17.4 ± 6.2 and 27.4 ± 3.6 ‰ for SP, δ^{15}N_{bulk} and δ^{18}O, respectively. The approach presented here is capable of providing long-term datasets also for other N₂O emitting ecosystems, which can be used to further constrain global N₂O inventories.
1 Introduction

Atmospheric nitrous oxide (N$_2$O) mole fraction is increasing since pre-industrial times predominately due to increased agricultural activity (Davidson, 2009; Mosier et al., 1998). Owing to the approximately 300 times higher global warming potential (GWP) compared to CO$_2$, this greenhouse gas (GHG) currently accounts for 6% of total anthropogenic radiative forcing (Myhre et al., 2013). Recent estimates showed that N$_2$O is in addition the single most important ozone-depleting substance (Ravishankara et al., 2009). Because at least 60% of total anthropogenic N$_2$O emissions is attributed to food production (Syakila and Kroeze, 2011), growing human population and meat consumption per capita as well as biofuel production will accelerate the rate of increase in atmospheric N$_2$O concentration. Hence, the development of adequate mitigation strategies is pertinent and requires a better understanding of the processes driving N$_2$O fluxes. To date, nitrification, nitrifier denitrification and denitrification are considered to constitute the dominant N$_2$O producing processes, especially in agricultural soils (Wrage et al., 2001). Other N$_2$O source-processes such as abiotic N$_2$O production, co-denitrification and heterotrophic nitrification have also been observed; a concise overview of observed processes is given elsewhere (Butterbach-Bahl et al., 2013). This complexity inherent in the N cycle and associated transformation processes is a major challenge in developing mitigation strategies, as attribution of N$_2$O production to the respective processes is required to tailor target-oriented actions (Baggs, 2008). Approaches for apportioning of N$_2$O emissions to nitrification, denitrification, and N$_2$O reduction to N$_2$ (source partitioning) have mostly relied on acetylene (C$_2$H$_2$) inhibition and isotope labeling (Groffman et al., 2006), but denitrification rates are underestimated by the C$_2$H$_2$ method (Butterbach-Bahl et al., 2013; Groffman et al., 2006; Watts and Seitzinger, 2000). Isotope labeling approaches are vulnerable to incomplete diffusion of the tracer and to stimulation of process rates by the addition of the labeled substrates themselves (Groffman et al., 2006).
Changes in natural abundance of $^{15}\text{N}$ and $^{18}\text{O}$ in $\text{N}_2\text{O}$ have been explored to investigate $\text{N}_2\text{O}$ production processes, but the determined $\delta^{15}\text{N}$ and $\delta^{18}\text{O}$ depend on both fractionation factors and isotopic composition of precursors, which in turn exhibit strong variations (Baggs, 2008; Bedard-Haughn et al., 2003; Heil et al., 2014; Toyoda et al., 2011).

$\text{N}_2\text{O}$ is a linear molecule and four main isotopic species can be discerned: $^{14}\text{N}^{14}\text{N}^{16}\text{O}$, $^{14}\text{N}^{15}\text{N}^{16}\text{O}$, $^{15}\text{N}^{14}\text{N}^{16}\text{O}$ and $^{14}\text{N}^{14}\text{N}^{18}\text{O}$. The isotopic species $^{14}\text{N}^{14}\text{N}^{16}\text{O}$, $^{14}\text{N}^{14}\text{N}^{18}\text{O}$ and $^{14}\text{N}^{15}\text{N}^{16}\text{O}$ (or $^{15}\text{N}^{14}\text{N}^{16}\text{O}$) are isotopologues, while $^{14}\text{N}^{15}\text{N}^{16}\text{O}$ and $^{15}\text{N}^{14}\text{N}^{16}\text{O}$ are isotopomers and will be termed $^{15}\text{N}^\alpha$-$\text{N}_2\text{O}$ and $^{15}\text{N}^\beta$-$\text{N}_2\text{O}$ (Toyoda and Yoshida, 1999). The umbrella term isotopocule is used for both isotopomers and isotopologues. The intra-molecular distribution of $^{15}\text{N}$ in $\text{N}_2\text{O}$ (‘site preference’; $\text{SP} = \delta^{15}\text{N}^\alpha - \delta^{15}\text{N}^\beta$) has been reported to be independent of the substrate’s isotopic composition, as $\text{SP}$ in the de novo produced $\text{N}_2\text{O}$ remained constant even though $\delta^{15}\text{N}$ and $\delta^{18}\text{O}$ values of both $\text{N}_2\text{O}$ and substrates changed markedly during experiments with pure cultures (Heil et al., 2014; Sutka et al., 2003, 2006, 2008; Toyoda et al., 2005). Therefore, $\text{SP}$ can be considered as a tracer conserving the source process information (Ostrom and Ostrom, 2011).

The $\text{SP}$ of different processes has been characterized in a number of pure-culture, mixed culture (Ostrom et al., 2007; Sutka et al., 2003, 2006; Toyoda et al., 2005; Wunderlin et al., 2012, 2013), and soil-incubation studies (Köster et al., 2011, 2013a; Lewicka-Szczebak et al., 2014; Well et al., 2006, 2008) with a compilation of data in Toyoda et al. (2011). A recent review on source partitioning and $\text{SP}$ (Decock and Six, 2013b) concluded that $\text{SP}$ is capable of distinguishing between the process groups $\text{N}_2\text{O}_\text{N}$ (NH$_2$OH-oxidation, fungal denitrification and abiotic $\text{N}_2\text{O}$ production; $\text{SP} = 32.8 \pm 4.0 \%\$) and $\text{N}_2\text{O}_\text{D}$ (nitrifier-denitrification and denitrification; $\text{SP} = -1.6 \pm 3.8 \%\$). In addition, the intramolecular distribution of $^{15}\text{NN}_2\text{O}$ isotopocules can be used as an independent validation of the global, measurement-based bottom-up $\text{N}_2\text{O}$ budget and has
already confirmed that the isotopically light sources such as agriculture and industry contribute to
the increase in atmospheric N$_2$O (Toyoda et al., 2013; Yoshida and Toyoda, 2000). Owing to the
temporal and spatial variability of isotopomer ratios, it is indispensable to derive flux-weighted
average values from different sources (such as ecosystems) for later use in budget analysis using
box models (Kim and Craig, 1993; Perez et al., 2001; Yoshida and Toyoda, 2000).

Intramolecular distribution of $^{15}$N in N$_2$O isotopomers can be measured by mass
spectrometry, but it requires discrete flask sampling with subsequent laboratory analysis. Hence,
this approach is limited in temporal resolution and spatial representation of a given site. Additionally it is indirect, as information on the site-specific isotopic composition is derived from
the analysis of the NO$^+$ fragment and N$_2$O$^+$ molecular ion. Recently, a quantum cascade laser
absorption spectrometer (QCLAS) capable of selective analysis of the three most abundant N$_2$O
isotopocules has been presented (Waechter et al., 2008) and its potential for in-situ measurements
in conjunction with an automated pre-concentration unit has been shown (Mohn et al., 2010,
2012). Here we present the results obtained from a, to our knowledge worldwide first, campaign
in which the isotopic composition of N$_2$O (SP, $\delta^{15}$N, $\delta^{18}$O) in the atmospheric surface layer was
determined on-line by using an optimized state-of-the-art laser spectrometer. With the
combination of N$_2$O isotopic analysis by QCLAS, accompanying eddy-covariance based N$_2$O
flux measurements as well as monitoring of environmental conditions and inorganic nitrogen
concentrations, our specific objectives for this study were: i) to demonstrate the capability of
QCLAS systems for high precision isotopic analysis of (soil emitted) N$_2$O in ambient air; ii) to
investigate management and weather effects on isotopic composition and source processes; iii) to
test the capability of the N$_2$O isotopic composition for source partitioning; and iv (and iii) to
characterize the flux-averaged isotopic composition of N$_2$O emitted from an intensively managed grassland.
2  Material and Methods

2.1  Study site

The agricultural research station Chamau (CHA) is located in Central Switzerland at an elevation of 400 m a.s.l.. The experiment was conducted on an intensively managed grassland belonging to CHA which is primarily used for fodder production and occasional winter grazing by sheep (Zeeman et al., 2010). The soil type is a cambisol with a bulk density of 0.97 g cm$^{-3}$, 30.6% sand, 47.7% silt and 21.8% clay in the top 10 cm and pH of 5.7-6.2. Soil carbon and nitrogen content in the top 10 cm was 37.9 g kg$^{-1}$ and 4.1 g kg$^{-1}$ (Roth, 2006). Mean annual temperature and annual precipitation are 9.1°C and 1151 mm, respectively (Zeeman et al., 2010). Management practices aim at fodder production and consist of mowing followed by slurry application, with up to six mowing/slurry applications per year and occasional grazing of sheep and cattle in October and November. During the campaign in summer 2013, three management cycles were carried out. Harvest dates were June 6th, July 11th and August 21st and slurry was applied within 10 days after each mowing event. Nitrogen input was calculated from the applied amount of slurry brought to the field and the N concentration determined (Labor für Boden- und Umweltanalytik, Eric Schweizer AG, Thun, Switzerland) in a sample drawn from the supply to the trailing hose applicator. The applied N amounted to 30, 40 and 43.3 kg N ha$^{-1}$ for the first, second and third application, respectively. The grassland is re-established via ploughing and resowing approximately every 10 years. The last re-establishment event took place in 2012 (Merbold et al., 2014).

2.2  Instrumental setup for analysis of N$_2$O isotopocule ratios

The four most abundant N$_2$O isotopic species were quantified using a modified QCLAS (Aerodyne Research Inc., Billerica MA, USA) equipped with a continuous wave quantum cascade laser (cw-QCL) with spectral emission at 2203 cm$^{-1}$, an astigmatic Herriott multi-pass
absorption cell (204 m path length, AMAC-200), and reference path with a short (5 cm) N$_2$O–
filled cell to lock the laser emission frequency (Tuzson et al., 2013). During the campaign, the
QCLAS was operated in an air-conditioned trailer located 60 m west of the eddy-covariance (EC)
tower. This trailer position contributes < 20 % to the main flux and is at the far side of prevailing
wind direction (Zeeman et al., 2010). The sample air inlet was installed next to the inlet of the EC
tower (2.2 m height). Sample air was drawn through a PTFE tube (4 mm ID) by a membrane
pump (PM 25032-022, KNF Neuberger, Switzerland). Upstream of the pump, the sample air was
pre-dried with a permeation drier (MD-050-72S-1, PermaPure Inc., USA). Following the pump,
the pressure was maintained at 4 bar overpressure using a pressure relieve valve. Humidity, as
well as CO$_2$, were quantitatively removed from the gas flow by applying a chemical trap filled
with Ascarite (7 g, 10 – 35 mesh, Fluka, Switzerland) bracketed by Mg(ClO$_4$)$_2$ (2 x 1.5 g, Fluka,
Switzerland). Finally, the sample gas was passed through a sintered metal filter (SS-6F-MM-2,
Swagelok, USA) and directed to a preconcentration unit described in detail previously (Mohn et
al., 2010, 2012). For an increase of N$_2$O mixing ratios from ambient level to around 50 ppm N$_2$O,
approx. 8 litres of ambient air were preconcentrated. Afterwards, the preconcentrated N$_2$O was
introduced into the evacuated multi-pass cell of the QCLAS. Isotopic fractionation during
preconcentration (increase by 0.31 ± 0.10, 0.34 ± 0.16 and 0.29 ± 0.07 ‰ for $\delta^{15}$N$_{\alpha}$, $\delta^{15}$N$_{\beta}$ and
$\delta^{18}$O, respectively) was quantified by preconcentration of N$_2$O with a known isotopic
composition and subsequently corrected. Compatibility of N$_2$O isotopomer analysis by QCLAS
with isotope ratio mass spectrometry (IRMS) laboratories was recently demonstrated in an inter-
laboratory comparison campaign (Mohn et al., 2014).

2.3 Measurement and calibration strategy
To ensure high accuracy and repeatability of the analytical system, a measurement and
calibration strategy similar to the one presented by Mohn et al. (2012) was applied. It is based on
two standard gases differing in N\textsubscript{2}O isotopic composition, which were produced by dynamic
dilution of pure medical N\textsubscript{2}O (Pangas, Switzerland) with defined amounts of isotopically pure
(>98 \%) \textsuperscript{14}N\textsuperscript{15}N\textsuperscript{16}O (Cambridge Isotope Laboratories, USA) and (>99.95 \%) \textsuperscript{14}N\textsuperscript{14}NO (ICON
Services Inc., USA). Subsequent gravimetric dilution with high purity synthetic air (99.999 \%,
Messer Schweiz AG) resulted in pressurized gas mixtures with 90 ppm N\textsubscript{2}O (parts per million,
10\textsuperscript{-6} moles of trace gas per mole of dry air). Both standards were calibrated against primary
standards which were previously measured by the Tokyo Institute of Technology (TIT, Toyoda
and Yoshida) to anchor \(\delta\)-values to the international isotopic standard scales. The first standard
(S1, Table 1) was used as an anchor point to international \(\delta\)-scale and used as input data for data
analysis algorithms (see data processing). Therefore, the N\textsubscript{2}O isotopic composition of S1 was
targeted to closely resemble background air. As the N\textsubscript{2}O isotopic composition of surface layer air
is mainly a mixture of soil-derived and background composition, the second standard (S2, Table
1) used for span correction was depleted in \(\delta^{15}\text{N}^{a}, \delta^{15}\text{N}^{b}\) and \(\delta^{18}\text{O}\) compared to background air in
accordance with the expected terrestrial source signatures.

The measurement protocol started with the injection of S1, dynamically diluted to 50 ppm, the
mole fraction of ambient N\textsubscript{2}O after preconcentration. After flushing the absorption cell with
synthetic air, S2 was injected, also diluted to 50 ppm. For determination of the slight
concentration dependence already reported (Mohn et al., 2012), S1 was injected again but at a
higher mole fraction of 67 ppm (later referred to as S1\textsubscript{h}). This mole fraction represents the mole
fraction expected after preconcentration of high concentration surface layer air. Subsequently, S1
was injected again, diluted to 50 ppm, before the cell was filled with preconcentrated ambient
N\textsubscript{2}O (A). This subroutine (S1+A) of injection of S1 and preconcentrated ambient N\textsubscript{2}O took 35
minutes and was repeated three times. For an independent determination of repeatability, the
fourth sample was preconcentrated compressed air (target gas). During the campaign, two compressed air cylinders (C1 and C2, referred to as target gas) were used. Isotopic composition and N₂O mixing ratio of both cylinders were determined in the laboratory prior to campaign start (Table 1). N₂O mole fractions and isotopic composition analysed in the laboratory and at the field site agreed within their analytical uncertainty. Following target gas analysis, S1 and S₁₄ were analyzed again. Another set of three subroutines S₁+A completed one run. One complete cycle of 6 ambient air samples and one compressed air sample took 340 minutes, leading to approx. 25 ambient air samples being analysed during 24 hours. N₂O mole fractions were determined according to Mohn et al. (2012).

2.4 Data processing

Data processing is based on individual mixing ratios of the four main N₂O isotopic species and spectrometer characteristics as recorded by the instruments’s software (TDLWintel, Aerodyne Research Inc., Billerica, MA, USA). In the first step, variations in the isotope ratios induced by drifts in the instrument working parameters during the field operation were corrected. A linear additive model explaining the deviation of isotope ratios Rᵣ, Rᵢ and R¹⁸O for repeated measurements of standard S1 from their mean value by absorption cell temperature (T₁), laser temperature (T₂), line position (LP) and pressure (p) was calibrated based on S1 injections. For isotope ratios of S1, S₁₄, S₂, sample air and compressed air, these systematic deviations were corrected based on the respective values of T₁, T₂, LP and p. In a second step, concentration dependence of isotope ratios, determined using the measurements of S1 and S₁₄, was addressed with corrections (0.013, 0.028 and 0.004 ‰ ppb⁻¹ for δ¹⁵Nᵣ, δ¹⁵Nᵢ and δ¹⁸O) being in the same range as described earlier (Mohn et al., 2012). Subsequently, remaining drifts were corrected based on analysis of S1. Finally, isotope ratios were converted to δ-values using a 2-point calibration derived from corrected values of S1 and S2.
2.5 Determination of soil-emitted N\textsubscript{2}O isotopic composition

Isotopic composition of the source process “soil N\textsubscript{2}O emission” was derived using the Keeling plot approach (Keeling, 1958), where δ-values measured (here in 2.2 m height) are plotted versus the inverse of N\textsubscript{2}O mole fractions. The intercept of the linear regression line can be interpreted as the isotopic composition of soil emitted N\textsubscript{2}O (Pataki et al., 2003). Therefore, determination of soil N\textsubscript{2}O isotopic composition requires an increase in N\textsubscript{2}O mole fraction. During the day, turbulence mixes surface layer air to the atmospheric background. At night, the surface layer becomes more stable and the N\textsubscript{2}O mole fraction increases, shifting isotopic composition towards its source composition. As a consequence, Keeling plots were based on noon-to-noon periods. This approach is discussed in section 4.6.

2.6 N\textsubscript{2}O Flux measurement

At CHA, greenhouse gas mole fractions, including N\textsubscript{2}O, are measured continuously since 2012 by means of the eddy covariance (EC) method (Baldocchi and Meyers, 1998). The system consists of a three-dimensional sonic anemometer to measure wind speed and direction (2.41 m height, Solent R3, Gill Instruments, Lymington, UK) and a QCLAS (mini-QCLAS, Aerodyne Research Inc., Billerica, MA, USA) to determine N\textsubscript{2}O mole fractions at a temporal resolution of 10 Hz. Both data streams are merged near-real time within a data acquisition system (MOXA embedded Linux computer; Moxa, Brea, CA, USA) via an RS-232 serial data link (Eugster and Plüss, 2010). The setup has been described in detail previously (Merbold et al., 2014). Post-processing of N\textsubscript{2}O fluxes included screening for obvious out-of-range values (+/- 100 nmol m\textsuperscript{-2}s\textsuperscript{-1}). N\textsubscript{2}O fluxes were further aggregated to noon-to-noon daily averages to smoothen the large variability in the 30 min flux averages. Daily averages were calculated for days where more than 30 half-hour values were available, with this filter excluding three days from analysis.
Soil inorganic N, dissolved organic C and environmental conditions

Ammonium (NH$_4^+$) and nitrate (NO$_3^-$) concentrations were determined from soil (0-20 cm depth) sampled at 10 positions along a transect within the footprint of the EC measurements following the predominant wind direction. Samples were taken weekly throughout the campaign or daily during mowing and slurry application events. Per sample, ~15 g of fresh soil were added to specimen vessels containing 50 ml 1M KCl. After 1 hour on a shaker, the supernatant was filtered (Whatman no.42 ashless filter paper, 150 mm diameter) and analysed colorimetrically for NH$_4^+$ and NO$_3^-$. For a subset of extracts, we determined dissolved organic carbon (DOC) concentrations by combustion of KCl extracts using a total organic C analyzer (Shimdazu TOC-V, Columbia, MD, USA).

Soil temperatures and volumetric soil moisture contents at 10 cm depth were measured at the same 10 locations along the transect (5TM-sensors, Decagon Devices Ltd., Pullman, USA). Data were stored as 10 minute averages on a data logger (EM50, Decagon Devices Ltd., Pullman, USA). The volumetric water content was converted to water filled pore space (wfps) using a bulk density of 1.09 g cm$^{-3}$. Precipitation was measured with a tipping bucket rain gauge (Type 10116, Toss GmbH, Potsdam, Germany) and stored as 10 min averages on a data logger (CR10X-2M, Campbell Scientific Inc., Logan, USA).
3 Results

3.1 Long term precision for target gas analysis

System performance for N₂O mole fractions and isotopic composition was determined based on repeated analysis of compressed air from target gas tanks (C1, C2). There was no significant drift in the δ-values and N₂O mole fractions, indicating stability of the applied measurement technique. Repeatability, calculated as the standard deviation (σ) of 331 target gas measurements, amounted to 0.20, 0.12, 0.10, 0.12 and 0.22 ‰ for δ¹⁵Nα, δ¹⁵Nβ, δ¹⁸O, δ¹⁵Nbulk and SP, respectively (Figure 1). Standard deviation for the N₂O mole fraction of the target gas was 0.25 ppb.

3.2 N₂O mole fractions and isotopic composition at 2.2 m height

N₂O isotopic composition of the surface layer (lowest tens of meters above ground) were taken at 2.2 m height which is within the lowest 10% of the atmospheric boundary layer (ABL) where mechanical generation of turbulence exceeds buoyant generation or consumption. This part of the ABL is called surface layer, hence corresponding air samples are referred to as surface layer air samples. N₂O isotopic composition of the surface layer air samples (n = 2130) ranged from 2.5 to 16.1 ‰, -11.9 to -2.4 ‰, 37.6 to 44.6 ‰, -4.6 to 6.6 ‰, and 14.3 to 19.3 ‰ for δ¹⁵Nα, δ¹⁵Nβ, δ¹⁸O, δ¹⁵Nbulk and SP, respectively (Figure 2). Surface layer N₂O mole fractions varied between 325 and 469 ppb and followed a diurnal cycle with highest values during the night when the boundary layer became more stable. Increasing N₂O mole fractions were associated with decreasing δ-values, indicating that soil emitted N₂O that mixed into the surface layer was depleted in ¹⁵N as compared to N₂O in the atmospheric background.
3.3 Auxiliary measurements

Half hourly $\text{N}_2\text{O}$ fluxes were averaged from noon-to-noon ($f_{\text{N}_2\text{O}}$), and ranged from -1 to 5 nmol m$^{-2}$ s$^{-1}$. Maximum $\text{N}_2\text{O}$ fluxes coincided with an overnight build up in $\text{N}_2\text{O}$ mole fractions ($\Delta\text{N}_2\text{O}$) as analysed by QCLAS and could not be attributed to slurry application events alone (Figure 3). Among the correlations of $f_{\text{N}_2\text{O}}$ and auxiliary variables, only the one with nitrate concentration ($r^2 = 0.18$) was significant ($p<0.01$). Soil water content (wfps) was modulated by precipitation and two clear states could be identified. During the “wet” part of the campaign lasting until July 7th, average wfps was with 62 ± 4 % significantly (t-test, $p < 0.001$) higher than the average of 37 ± 4 % calculated for the remainder of the campaign (referred to as the “dry” part). Soil temperature did not show such a clear two-phase pattern, however temperatures during the first, “wet” part were with 16.7±4 °C significantly ($p<0.001$) lower than during the “dry” phase with 21.2±2 °C.

Background $\text{NH}_4^+$ and $\text{NO}_3^-$ concentrations were smaller than 3 µg g$^{-1}$ soil and clearly responded to mowing and slurry application in the second and third management events. The $\text{NO}_3^-$ concentration was higher than the $\text{NH}_4^+$ concentration and peaked at 16 and 50 µg g$^{-1}$ soil, while $\text{NH}_4^+$ concentration peaked at 9 and 15 µg g$^{-1}$ soil for these two management events. In contrast, dissolved organic carbon concentrations (DOC) did not respond to management events, but were higher during the “dry” phase of the campaign ($p < 0.001$).

3.4 Isotopic composition of soil-emitted $\text{N}_2\text{O}$

The uncertainty of the determined source isotopic composition was estimated based on the standard error of the Keeling plot intercept and depends on the degree to which soil air accumulated in the surface layer ($\Delta\text{N}_2\text{O}$, Figure 4). For instance, the intercept (source) standard error ranged from 0.3 to 82 ‰ for SP. To apply the Keeling plot approach only to situations in
which soil air accumulated in the surface layer, only source isotopic compositions for overnight
increases in N₂O mole fractions of more than 12 ppb were considered in this study. This filter
lead to a maximum and average (μ) standard error of 6.8 (μ=2.2) ‰, 4.5 (μ=1.4) ‰ and 2.2
(μ=1) ‰ for SP, δ¹⁵Nbulk and δ¹⁸O isotopic source signatures, respectively.
During the field campaign, Keeling plot derived isotopic composition of soil-emitted N₂O ranged
from 1.4 to 17.3 ‰, -29 to -3 ‰ and 22.6 to 34.8 ‰ for SP, δ¹⁵Nbulk and δ¹⁸O, respectively. All
explanatory variables except NH₄⁺ and NO₃⁻ were found to significantly correlate with SP (Table
2). For δ¹⁵Nbulk, correlations with ΔN₂O, wfps, soil temperature, DOC and NO₃⁻ and for δ¹⁸O
correlations of fN₂O, ΔN₂O, precipitation, soil temperature and NO₃⁻ were significant. However,
the adjusted r² for all regressions was below 0.4; in addition, multiple explanatory variables such
as NH₄⁺ and NO₃⁻ or wfps and temperature (Figure 5) did not increase the explained variance
above this value.

3.5 Event-based data aggregation
As already described in the section “Auxiliary measurements”, there was a “wet” phase (n=27
Keeling-plot derived N₂O isotopic compositions) in the beginning of the campaign, which lasted
about one month and a “dry” phase lasting about two months (n=38). Therefore, the dataset was
split in two corresponding parts with averages of 7.4 ± 3.6 ‰ versus 11.1 ± 4.2 ‰ for SP, -
19 ± 3.8 ‰ versus -12.5 ± 5.9 ‰ for δ¹⁵Nbulk and 28.7 ± 2.2 ‰ versus 29.7 ± 3.4 ‰ for δ¹⁸O in
the wet versus the dry phase, respectively. Averages of SP and δ¹⁵Nbulk were significantly
different (p < 0.001) but δ¹⁸O averages were not. Based on this simple classification, the dry
phase contains rewetting events. A rewetting event was defined as a two day period starting at the
day for which wfps increased. Exclusion of these rewetting events during the dry phase increased
average δ-values (n=30) as well as decreased standard deviations for SP, δ¹⁵Nbulk and δ¹⁸O to
12.5 ± 3.4, -10.8 ± 4.5 and 30.7 ± 2.8 ‰. Moreover the difference in δ¹⁸O was significant (p < 0.001).

In addition to the dry/wet classification, we also defined three subsets representing the N₂O emission associated with management events of mowing followed by fertilization (“Mana I” – “Mana III”), one subset representing a rewetting event between Mana II and III (“Rewetting”) and one subset representing background (“BG”, all remaining measurements). There were two distinct rewetting events between management events II and III, but N₂O isotopic composition is only available for the first one (07/29/2014 - 07/31/2014). Isotopic compositions of soil-emitted N₂O were assigned to subsets of management or rewetting if the associated flux or nutrient concentration was elevated. This classification scheme led to 3 to 7 measurements for management and rewetting events (Figure 3, underlaid in transparent blue) while 47 measurements were assigned to class BG. Boxplots for SP, δ¹⁵Nbulk, δ¹⁸O, and wfps (Figure 6) showed characteristic δ-values and wfps for management and rewetting, but not for subset BG. Measurements assigned to BG covered practically the whole range of values observed across all the other classes. Therefore, standard deviations for class BG were one order of magnitude larger than for the four other classes.

Statistical analysis is confounded by low and unequal sample size so that we compared exclusively the subsets management and rewetting using multiple non-parametric Wilcoxon tests after having checked homogeneity of variances using Bartlett test. For all investigated δ-values, only differences between groups Mana II and Mana III were significant.

3.6 Averages of N₂O isotopic signature for intensively managed grassland

Simple averages of daily isotopic composition of soil-emitted N₂O were 9.6 ± 4.4, -15.2 ± 6.0 and 29.3 ± 3 ‰ for SP, δ¹⁵Nbulk and δ¹⁸O, respectively (n=62). Representative isotopic
For agricultural land, the composition of N\textsubscript{2}O emitted from a given site or treatment can be estimated based on flux-weighted averages of daily signatures. For some noon-to-noon periods included in the above average, thus with an overnight increase in N\textsubscript{2}O mole fractions of at least 12 ppb, negative N\textsubscript{2}O fluxes were detected by the EC system (\(-0.17 \pm 2.1\) nmol m\textsuperscript{-2}s\textsuperscript{-1}; \(n=14\)). This might be due to the uncertainty of N\textsubscript{2}O flux measurements, temporal averaging over positive and negative fluxes in a noon-to-noon period or different footprint regions for N\textsubscript{2}O flux and isotopic analysis (flux vs. concentration footprint). To avoid bias to the flux-weighted average of emitted N\textsubscript{2}O by either one of the above mentioned possible reasons, the weighted averages were calculated for positive flux events only. Flux weighted averages were \(6.9 \pm 4.3\), \(-17.4 \pm 6.2\) and \(27.4 \pm 3.6\) \(\circ\) for SP, \(\delta^{15}\text{N}\text{bulk}\) and \(\delta^{18}\text{O}\) respectively (\(n=48\)).
4 Discussion

4.1 Analytical performance
To our knowledge, only two pilot studies exist demonstrating the potential of QCLAS based analytical techniques for on-line and high-precision analysis of N$_2$O mole fractions and isotopic composition in surface layer air. While Mohn et al. (2012) analyzed the three most abundant $^{15}$N-isotopocules ($^{14}$N$^{14}$N$^{16}$O, $^{15}$N$^{14}$N$^{16}$, $^{14}$N$^{15}$N$^{16}$O), Harris et al. (2014a) included the $^{18}$O isotopologue ($^{14}$N$^{14}$N$^{18}$O). In both studies, however, the instrument was located in the laboratory. Based on three weeks of measurements, Mohn et al. (2012) reported a precision of 0.24 and 0.17 ‰ for $\delta^{15}$N$^\alpha$ and $\delta^{15}$N$^\beta$, respectively and Harris et al. (2014a) reported 0.17, 0.19 and 0.32 ‰ for $\delta^{15}$N$^\alpha$, $\delta^{15}$N$^\beta$ and $\delta^{18}$O, respectively, for a twelve days period. In both studies, analytical performance was determined, in accordance with the presented study, based on repeated analysis of compressed air samples. Thereby, the analytical precision reached in the presented study, was distinctly higher for $\delta^{15}$N$^\beta$ and $\delta^{18}$O and similar for $\delta^{15}$N$^\alpha$ compared to these two previous studies, even though the measurements were done under field-conditions and over a much longer, three months, period. This confirms the high level of precision associated with QCLAS based determination of N$_2$O isotopic composition. Standard errors for Keeling plot intercepts (Figure 4) confirm that this precision is sufficient to resolve the variability of atmospheric N$_2$O sampled close to the ground. As our instrument was located directly at the field site and measurements were conducted over a period of more than three months, our study indicates that this level of repeatability can be achieved both at long time scales and in the field.

4.2 N$_2$O isotopic composition in the atmospheric surface layer (2.2 m height)
In our study, $\delta$-values of single preconcentrated air samples were between atmospheric background and 14.3 ‰ (SP) and -4.7 ‰ ($\delta^{15}$N$_{\text{bulk}}$). Mohn et al. (2012) reported similar values between atmospheric background and 12 ‰ (SP) and -4 ‰ ($\delta^{15}$N$_{\text{bulk}}$). Therefore the variation
observed in both studies is much higher compared to the measurements by Harris et al. (2014a) where the N₂O isotopic composition deviated only slightly from atmospheric background. A consistent decrease in $\delta^{15}$N$_{\text{bulk}}$ in parallel with increasing N₂O mole fractions (accumulation of soil-derived N₂O) confirms that the soil N₂O source is depleted in $^{15}$N-N₂O relative to ambient N₂O (Toyoda et al., 2013). A similar pattern was found for $\delta^{18}$O; an increase in N₂O mole fraction was associated with a decrease in $^{18}$O-N₂O, again indicating that soil emissions were depleted in $^{18}$O-N₂O with respect to the atmospheric background. In contrast, Harris et al. (2014a) reported a decoupling of $\delta^{18}$O and $\delta^{15}$N$_{\text{bulk}}$. This may have been due to only marginal influence of soil-emitted N₂O since the measurements were carried out in urban area and approx. 95 m above the ground. Studies on N₂O derived from combustion processes indicate that some of these sources might be less depleted or even enriched in $^{15}$N-N₂O compared to ambient N₂O (Harris et al., 2014b; Ogawa and Yoshida, 2005).

4.3 Isotopic composition of soil-emitted N₂O

SP of soil-emitted N₂O observed in our study (1 to 17 ‰) is within the ranges expected for a mixture of the two process groups N₂O$_{N}$ and N₂O$_{D}$, and does not necessarily indicate significant contribution of N₂O reduction, an effect which is discussed further below. Isotopic composition of soil-emitted N₂O has been predominately determined in laboratory incubation studies (Köster et al., 2013a, 2013b; Perez et al., 2006; Well and Flessa, 2009b; Well et al., 2006, 2008). Additionally, results from field experiments using static chambers (Opdyke et al., 2009; Ostrom et al., 2010; Toyoda et al., 2011; Yamulki et al., 2001) and N₂O accumulation below a snowpack have been published (Mohn et al., 2013). Based on pure culture studies SP values from 19.7 to 40 ‰ and -8.7 to 8.5 ‰, were observed for N₂O$_{N}$ and N₂O$_{D}$, respectively (Decock and Six, 2013b). In field experiments SP was found to range between -1 and 32 ‰ (Opdyke et al., 2009), -3 and 18 ‰ (Yamulki et al., 2001), -14 and 90 ‰ (Toyoda et al., 2011) and 0 and 13 ‰ (Ostrom
et al., 2010). The very high SP values detected by Toyoda et al. (2011) may have resulted from extensive N₂O reduction to N₂, a process increasing SP, \( \delta^{15}N^{\text{bulk}} \) and \( \delta^{18}O \) (Ostrom et al., 2007).

For \( \delta^{15}N^{\text{bulk}} \) and \( \delta^{18}O \), a much wider variation as compared to SP is expected, because these variables depend both on fractionation factors, which vary among different microbial communities and depend on reaction conditions, as well as on the isotopic composition of the substrate (Baggs, 2008). Under field conditions, \( \delta^{15}N^{\text{bulk}} \) was reported to range between -17 and 9 ‰ (Opdyke et al., 2009), -27 and 1 ‰ (Yamulki et al., 2001), -44 and 34 ‰ (Toyoda et al., 2011) and -18 and -15 ‰ (Ostrom et al., 2010), covering the range of -29 to -3 ‰ observed in this study. With respect to \( \delta^{18}O \), the values of 22.6 to 34.8 ‰ detected for grassland in this study are at the lower end of measurements under field conditions (4-82 ‰).

4.4 Changes in N₂O source signatures induced by N₂O reduction to N₂

Quantitative source partitioning between process groups N₂O\(_N\) and N₂O\(_D\) based on SP is possible only when no other processes except those contained in the process groups have an influence on the site-specific N₂O isotopic composition. However, in the terminal step of denitrification, namely the reduction of N₂O to N₂, where N₂O is the substrate, the N-O bonds between lighter isotopic species are cleaved preferentially, leading to an increase in SP, \( \delta^{15}N^{\text{bulk}} \) and \( \delta^{18}O \) in the remaining N₂O. Consequently, part of the N₂O originating from a combination of the two process groups, i.e. N₂O\(_N\) and N₂O\(_D\), may have been consumed by N₂O to N₂ reduction prior to emission.

For identification of processes determining N₂O isotopic composition, isotopocule maps were suggested in which site preference is plotted versus the difference in substrate and product isotopic composition (Koba et al., 2009). Determination of isotopic composition in the substrates is time consuming and additionally confounded in our study by the large and varying footprint.
Therefore, we present a modified isotope map of SP versus $\delta^{15}$N$_{\text{bulk}}$ (Figure 7, left panel) instead of $\Delta \delta^{15}$N, the $\delta^{15}$N differences between substrate and product (i.e. N$_2$O gas). Rectangles for process groups N$_2$O$_N$ and N$_2$O$_D$ are defined by SP values given by Decock and Six (2013b) and by $\delta^{15}$N$_{\text{bulk}}$ values calculated based on process fractionation factors and substrate isotopic composition. For nitrification and denitrification minimum and maximum fractionation factors of -90 to -40 %o and -40 to -15 %o were assumed (Baggs, 2008), for the isotopic compositions of the N$_2$O precursors (i.e., NH$_4^+$ and NO$_3^-$) a range of -20 to +10 %o and -25 to 15 %o were assumed. Koba et al. (2009) attributed a concurrent decrease in $\delta^{15}$N$_{\text{bulk}}$ with increasing SP values as indicative for an increasing contribution of N$_2$O$_N$. In contrast, an increase in $\delta^{15}$N$_{\text{bulk}}$ in parallel to increasing SP values (enrichment of $^{15}$N in the $\alpha$-position relative to the $\beta$-position), as observed in the present study, was allocated to a substantial increase in N$_2$O reduction to N$_2$. For $\varepsilon^{15}$N$_{\text{bulk}}$/SP of N$_2$O reduction, Koba et al. (2009) assumed a factor of 1.2 based on previous publications. Our results (Our results (Figure 7) indicate that N$_2$O is predominately formed by denitrification, and that deviations in the isotope values from denitrification may have been caused by variations in the extent to which N$_2$O was reduced to N$_2$. Additionally, $\delta^{18}$O was found to be positively correlated with $\delta^{15}$N$_{\text{bulk}}$, which enforces the interpretation that varying shares of N$_2$O reduction occurred because it acts on both N and O isotopic composition (Koehler et al., 2012). It is noteworthy that based on such modified isotope maps, systematic changes in $\delta^{15}$N$_{\text{bulk}}$ induced by systematic changes in N isotopic composition of one of the precursors NH$_4^+$ or NO$_3^-$ could be misinterpreted as reduction events (Well et al., 2012).
The ratios of fractionation factors for $\delta^{18}\text{O}$ and $\delta^{15}\text{N}_{\text{bulk}}$ ($r_{\text{on}}$) and SP and $\delta^{18}\text{O}$ ($r_{\text{sp-o}}$) during $\text{N}_2\text{O}$ reduction were suggested for estimation of the share of $\text{N}_2\text{O}$ reduction to $\text{N}_2$ since these ratios were found to be 2.5 and 0.2 to 0.5, respectively in laboratory incubation experiments. In addition to the SP/$\delta^{15}\text{N}_{\text{bulk}}$ maps, SP/$\delta^{18}\text{O}$ maps have been suggested to trace $\text{N}_2\text{O}$ reduction to $\text{N}_2$ (Lewicka-Szczebak et al., 2014, 2015; Well et al., 2012). While $\delta^{15}\text{N}_{\text{bulk}}$ depends on the isotopic composition of the precursor (e.g. $\text{NO}_3^-$) and, thus, may vary considerably, $\delta^{18}\text{O}_{\text{N}_2\text{O}}$ is expected to be more stable as during both nitrification and denitrification, oxygen (O) later found in $\text{N}_2\text{O}$ may almost completely originate from water (Kool et al., 2009). Due to this almost complete O-exchange with water, relatively stable $\delta^{18}\text{O}$ in soil water, and the observed constant ratio of fractionation factors for SP and $\delta^{18}\text{O}_{\text{N}_2\text{O}}$ ($r_{\text{sp-o}}$), variation in the share of $\text{N}_2\text{O}$ reduced to $\text{N}_2$ should be reflected by a linear relationship between SP and $\delta^{18}\text{O}_{\text{N}_2\text{O}}$ with a slope of 0.2-0.5 (Jinuntuya-Nortman et al., 2008; Ostrom et al., 2007; Well and Flessa, 2009a). In this study, a linear relationship with a slope of 1.02 was found (Figure 7, right panel). Tracking the management events (ManaI to ManaIII) and the rewetting event in SP/$\delta^{18}\text{O}$ space revealed that the onset of such an event is associated with a decrease of both SP and $\delta^{18}\text{O}$, gradually increasing back to approximately initial values, except for ManaII. During ManaII, no significant change in SP/$\delta^{18}\text{O}$ occurred (Figure 7, right panel, red trace). The gradual increase in isotopic composition supports the conclusion from the SP/$\delta^{15}\text{N}_{\text{bulk}}$ map that $\text{N}_2\text{O}$ was mainly produced by bacterial denitrification and that variations in isotopic composition may have been caused predominately by $\text{N}_2\text{O}$ reduction to $\text{N}_2$. This interpretation is in agreement with observations of isotopic composition of $\text{N}_2\text{O}$, $\text{NO}_3^-$ and $\text{NH}_4^+$ during a rewetting event in an agricultural field (Decock and Six, 2013a). Additionally, $\delta^{18}\text{O}$ was found to be positively correlated with $\delta^{15}\text{N}_{\text{bulk}}$, which
enforces the interpretation that varying shares of N\textsubscript{2}O reduction occurred because it acts on both N and O isotopic composition (Koehler et al., 2012). We calculated these ratios.

As introduced above, the ratios of fractionation factors for \(\delta^{18}O\) and \(\delta^{15}N\text{bulk}\) (\(r_{o-n}\)) and SP and \(\delta^{18}O\) (\(r_{sp-o}\)) during N\textsubscript{2}O reduction were 2.5 and 0.2 to 0.5 in laboratory incubation experiments (Jinuntuya-Nortman et al., 2008; Ostrom et al., 2007; Well and Flessa, 2009a). In our study, \(r_{o-n}\) and \(r_{sp-o}\) were 0.5 and 1, respectively for the whole dataset. We calculated these ratios also for a subset of data for which all \(\delta\)-values (SP, \(\delta^{15}N\text{bulk}\) and \(\delta^{18}O\)) increased for two consecutive days, indicating that N\textsubscript{2}O reduction may have occurred. Such events were observed on 8 occasions. If source processes (N\textsubscript{2}O\textsubscript{D}, N\textsubscript{2}O\textsubscript{N}) contributed constantly over two consecutive measuring days, changes in the isotopic composition of emitted N\textsubscript{2}O were solely attributed to changes in the fraction of N\textsubscript{2}O reduction. Under such conditions one would expect that the ratio of the changes in \(\delta^{18}O\) and \(\delta^{15}N\text{bulk}\) (\(r_{o-n}\)) is around 2.5 and that the ratio of the changes in SP and \(\delta^{18}O\) (\(r_{sp-o}\)) is between 0.2 and 0.5. The mean (median) ratios for \(r_{o-n}\) and \(r_{sp-o}\) for these selected events were 0.69 (0.44) and 2.1 (1.16), respectively. While the high values of \(r_{sp-o}\) indicate that for instance changing physical conditions such as soil moisture may play a role in field measurements, the deviation of \(r_{o-n}\) from the value of 2.5 could either indicate that the fractionation factor for \(^{18}O\) might be smaller than the one for \(^{15}N\) or that there is no correlation of fractionation factors in natural environments. This is in line with recent findings showing that apparent isotope effects associated with N\textsubscript{2}O reduction are sensitive to experimental conditions which influenced diffusive isotope effects (Lewicka-Szczebak et al., 2014, 2015). The same study also showed that fractionation factors during N\textsubscript{2}O reduction for \(^{15}N\) and \(^{18}O\) were variable (from -11 to +12 \(\%\) and from -18 to +4 \(\%\), respectively), and not predictable for field conditions yet. Therefore, to date,
the amount of N₂O reduction prior to emission cannot be inferred with sufficient robustness from field measurements alone, without the knowledge of isotopic composition of the substrates.

4.5 Controls on isotopic composition and event based data aggregation

The high temporal resolution of N₂O isotopic and auxiliary measurements allowed us to investigate controls on N₂O isotopic composition over the 3 months campaign period. Correlations with isotopic composition were highest and positive for DOC and soil temperature (Table 2). The significant correlation with temperature for the whole campaign was due to a significant correlation during the “dry” part of the campaign. If the increase in SP was due to increased contribution of nitrification, δ¹⁵N°bulk should decrease due to the higher isotopic fractionation during this process. The simultaneous increase in SP, δ¹⁵N°bulk and δ¹⁸O revealed in Figure 7, however, indicates an increased share of N₂O reduction to N₂ which might have been triggered by increased substrate availability (DOC) for heterotrophic denitrification. The reported effect of temperature on the N₂O:N₂ ratio is not without any doubt, but a decrease has been observed with increasing temperature, supporting the hypothesis that N₂O reduction increased as temperature rose throughout the measurement period (Saggar et al., 2013).

Though substrate availability has been identified as a major control on N₂O source processes (see references in Saggar et al., 2013), correlations between N₂O isotopic composition and NO₃⁻ and NH₄⁺ concentrations were low, except for the correlation with δ¹⁵N°bulk. The reason might be both the number of measurement points for substrate concentrations being lower compared to other explanatory variables and substrate concentrations not necessarily reflecting process or turnover rates (Wu et al., 2012).

The low explanatory power of all linear regressions underlines that drivers for N₂O emissions are highly variable and may even change from event to event. In absence of management or
rewetting events (group BG), isotopic composition covered the whole range of measured values, while management or rewetting events were characterized by lower variability in isotopic composition. Values for SP, δ¹⁵N_{bulk} and δ¹⁸O were low for Mana I, rewetting and Mana III, whereas event Mana II showed increased SP, δ¹⁵N_{bulk} and δ¹⁸O. This indicates that processes must have been different for Mana II, although management was almost identical.

4.6 Short term variation of isotopic composition

The Keeling plot approach is based on conservation of mass and assumes that the atmospheric concentration of a gas in the surface layer is a mixture of background atmospheric concentration and a variable amount of gas added by a source, raising the atmospheric concentration above background. The source’s isotope value can be determined given that its isotope value remains constant during the observation period. In this study, we used noon-to-noon data in the Keeling plots to determine isotope values of soil-derived N₂O for the respective noon-to-noon period. Hence, the source processes underlying these N₂O emissions have to be constant on this time scale. Currently, little is known about the rate of change of N₂O source processes over time-steps of minutes to hours. However, changing relative contributions of source processes, which change the isotopic composition in soil-emitted N₂O, would be reflected by deviations from a linear relation between inverse concentration and isotopic composition. As the Keeling plots showed no obvious deviations from a linear relation within our measurement precision, we conclude (1) that the use of the Keeling plot approach was valid in our study, and (2) that changes in N₂O source processes in our study site occurred at a time step of one day or more. While our data suggests that there are little or no changes in source processes underlying N₂O emissions within a noon-to-noon period, clear and distinct day-to-day variation in isotope values of soil derived N₂O, especially in SP, were observed. Such changes were often strong and abrupt following management events (Mana I & III, Rewetting), indicating a significant response of microbial
processes to the imposed disturbance. Larger than expected variability in isotope values was observed in between management events (class BG), when no obvious variation in environmental drivers occurred. Since noon-to-noon concentration increases were very small during these periods, part of this variability may be attributed to increased uncertainty around the intercept of the Keeling plot. This is also reflected in the relatively large error bars around isotope values on days when \( \text{N}_2\text{O} \) fluxes were low (Figure 3). Alternatively some of the variation in isotope values associated with these small fluxes may result from air masses not representative of the grassland site as the concentration footprint influencing the \( \text{N}_2\text{O} \) source signature is larger than the flux footprint (Griffis et al., 2007). As the Keeling plots showed no obvious deviations from a linear relation within our measurement precision (See supplementary file S1), we conclude (1) that the use of the Keeling plot approach was valid in our study, and (2) that changes in \( \text{N}_2\text{O} \) source processes in our study site occurred at a time step of one day or more. While our data suggests that there are little or no changes in source processes underlying \( \text{N}_2\text{O} \) emissions within a noon-to-noon period, clear and distinct day-to-day variation in isotope values of soil derived \( \text{N}_2\text{O} \), especially in SP, were observed. Such changes were often strong and abrupt following management events (ManaI & III, Rewetting), indicating a significant response of microbial processes to the imposed disturbance. Larger than expected variability in isotope values was observed in-between management events (class BG), when no obvious variation in environmental drivers occurred. Since noon-to-noon concentration increases were very small during these periods, part of this variability may be attributed to increased uncertainty around the intercept of the Keeling plot. This is also reflected in the relatively large error bars around isotope values on days when overnight \( \text{N}_2\text{O} \) concentration increase was low (Figure 3). Alternatively, the variation in isotope values associated with small overnight concentration increase may result from other land use or land cover. The EC fluxes are calculated from the turbulent fluctuation of
concentration and vertical wind speed (i.e. the covariance of the concentration and wind speed deviations from the half-hourly mean) and therefore account for the modulation of concentration around a short term (30 min) mean caused by locally emitted N₂O. Isotopic composition based on Keeling plots however is determined from total N₂O accumulated in the nocturnal boundary layer and, thus, this approach also contains molecules that had been emitted outside the flux footprint, which almost exclusively comprised our grassland site (Zeeman et al., 2010), within the larger concentration footprint (Griffis et al., 2007). However, two facts indicate a major influence of the studied grassland on the determined N₂O isotopic composition: First, the N₂O isotopic composition is very stable for a noon-to-noon period as indicated by a linear relationship between individual measurements (supplementary file S1). This relationship persists even though wind speed and direction are changing and, therefore, individual N₂O isotope measurements integrating over 16 minutes sampling interval originate from different source areas. Secondly, the CHA grassland can be characterized as a site with vigorous N₂O emission and therefore may dominate the determined N₂O isotopic composition as the influence of a source area increment scales with the source strength. The grassland was restored in 2012 which lead to extraordinary high N₂O-N emission of 29.1 kg ha⁻¹ year⁻¹ (Merbold et al., 2014). In the following year 2.5 kg N₂O-N ha⁻¹ were released. This value is still in the range of maximum emissions reported for another intensively managed Swiss grassland, emitting 1.5-2.6 kg N ha⁻¹ year⁻¹ and at least a factor of five compared to an extensively managed grassland with less than 0.5 kg N ha⁻¹ year⁻¹ (Ammann et al., 2009). With regard to distant land use and land cover, the 2.5 kg N₂O-N are also more than double the median (between the 70 and 75 percentile) of all reported values for cultivated temperate sites and higher than the highest value reported for forests presented in a study containing 1008 N₂O emission measurements from agricultural fields (Stehfest and Bouwman,
However, it cannot be excluded that N\textsubscript{2}O isotopic signatures analyzed above the grassland were influenced by adjacent ecosystems.

4.7 Flux weighted averages of source isotopic compositions

N\textsubscript{2}O isotopic composition can be used to calculate and further constrain the global N\textsubscript{2}O budget (Kim and Craig, 1993; Yoshida and Toyoda, 2000). The analysis of emissions from different sources such as agricultural soils or managed grasslands based on box models and isotopic composition is complicated by distinct temporal and spatial variability of isotopic composition (Kim and Craig, 1993; Toyoda et al., 2011; Yoshida and Toyoda, 2000); hence, flux weighted averages are required to obtain representative values for agricultural N\textsubscript{2}O (Perez et al., 2001). Our flux weighted averages of 6.9 ± 4.3, -17.4 ± 6.2 and 27.4 ± 3.6 ‰ for SP, δ\textsuperscript{15}N\textsubscript{bulk} and δ\textsuperscript{18}O are well within the range of values 2.9 to 36.6, -41.5 to -1.9 and 23.2 to 51.7 ‰ for agricultural soils (Park et al., 2011; Toyoda et al., 2011). The comparison with other grassland soils (Opdyke et al., 2009; Park et al., 2011) indicates that the variability of isotopic composition within a group, such as grassland, may be considerable (for SP: 2.2 to 11.1 ‰). Part One has to keep in mind, however, that part of the observed variability may be attributed to the fact that the footprint area of the N\textsubscript{2}O isotopic composition includes areas with other land use or land cover. Another part of the variability might be also explained by a limited compatibility of laboratory results, as recently demonstrated in an inter-laboratory comparison campaign (Mohn et al., 2014). The uncertainty in budgets derived by isotopic composition depends on the uncertainty of the representative isotopic composition for a single source, which can be reduced by a quasi-continuous measurement approach, as shown in this study.
5 Conclusion

Our field observations indicate that nitrifier-denitrification and denitrification (process group N$_2$O$_3$) dominated throughout the measurement period and that variation in isotopic composition was more likely due to variation in the extent of N$_2$O reduction rather than contributions of NH$_2$OH oxidation or fungal denitrification. High temporal resolution of isotopic composition in soil-emitted N$_2$O showed that at the beginning of the growing season, medium wfps and low temperature induced low isotope values (representative for process group N$_2$O$_3$), whereas in the second part of the measurement period, higher temperature and DOC stimulated N$_2$O reduction to N$_2$, although wfps was lower. Management or rewetting events were mostly characterized by low SP, $\delta^{15}$N$^{\text{bulk}}$ and $\delta^{18}$O, but the event Mana II indicated that processes underlying N$_2$O emissions can vary even under similar management conditions. With this study, a new method is available that can provide real-time datasets for various single N$_2$O emitting (eco)systems, such as grasslands or agriculturally used regions, which will help in further constraining the global N$_2$O budget based on box model calculations. However, future campaigns should be accompanied by footprint modeling for optimization of the inlet height and associated concentration footprint size.
Acknowledgements

We are grateful to Hans-Ruedi Wettstein and his team for the collaboration with the ETH research station Chamaau and Christoph Zellweger for support with determination of GHG mixing ratios in our target gases. Antoine Roth is acknowledged for his support during the field campaign. This project was funded by the State Secretariat for Education and Research (SER) within COST Action ES0806. The QCLAS used for EC measurements was funded by the R’Equip Project (206021 133763) by the Swiss National Science Foundation. Funding from GHG-Europe (FP7, EU contract No. 244122) and COST Action ES0804 - ABBA is gratefully acknowledged. Instrumental developments at Empa were supported by the Swiss National Science Foundation (SNSF). Technical support on the eddy covariance station has been provided by Thomas Baur and Peter Plüss. Preparation of N₂O isotope standards and inter-laboratory comparison measurements were supported by the EMRP ENV52 project 'Metrology for high-impact greenhouse gases'. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.
References


Köster, J. R., Cárdenas, L., Senbayram, M., Bol, R., Well, R., Butler, M., Mühling, K. H. and Dittert, K.: Rapid shift from denitrification to nitrification in soil after biogas residue application


Tables

Table 1: Reference gas and compressed air tanks used during the campaign. S1 and S2 represent the anchor and calibration standard. C1 and C2 are the target gases used for determination of system performance. The reported precision is the 1σ standard deviation.

<table>
<thead>
<tr>
<th>Tank</th>
<th>δ^{15}Nα [‰]</th>
<th>δ^{15}Nβ [‰]</th>
<th>δ^{18}O [%]</th>
<th>δ^{15}N_{bulk} [%]</th>
<th>SP [%]</th>
<th>mixing ratio [ppm] / [ppb] *</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>15.66 ± 0.03</td>
<td>-3.22 ± 0.13</td>
<td>34.89 ± 0.05</td>
<td>6.22 ± 0.07</td>
<td>18.88 ± 0.13</td>
<td>90.09 ± 0.01</td>
</tr>
<tr>
<td>S2</td>
<td>10.38 ± 0.03</td>
<td>-10.55 ± 0.1</td>
<td>25.44 ± 0.06</td>
<td>-0.09 ± 0.05</td>
<td>20.93 ± 0.10</td>
<td>87.28 ± 0.003</td>
</tr>
<tr>
<td>C1</td>
<td>15.40 ± 0.08</td>
<td>-3.04 ± 0.06</td>
<td>43.65 ± 0.08</td>
<td>6.18 ± 0.05</td>
<td>18.44 ± 0.10</td>
<td>327.01 ± 0.05</td>
</tr>
<tr>
<td>C2</td>
<td>15.65 ± 0.17</td>
<td>-4.27 ± 0.08</td>
<td>44.20 ± 0.07</td>
<td>5.69 ± 0.09</td>
<td>19.92 ± 0.19</td>
<td>327.45 ± 0.05</td>
</tr>
</tbody>
</table>

* ppm for S1 and S2, ppb for C1, C2
Table 2: Adjusted $r^2$ and $p$-values for regression analysis of Keeling-plot derived isotopic compositions in soil-emitted $N_2O$ versus auxiliary variables $N_2O$ flux ($f_{N_2O}$), difference of maximum and minimum concentration over a noon-to-noon period ($\Delta N_2O$), precipitation (prcp), soil moisture (wfps) and nutrient concentrations ($NO_3^-$, $NH_4^+$ and DOC).

<table>
<thead>
<tr>
<th>explanatory</th>
<th>SP $r^2$</th>
<th>SP $p$</th>
<th>$\delta^{15}N_{\text{bulk}}$ $r^2$</th>
<th>$\delta^{15}N_{\text{bulk}}$ $p$</th>
<th>$\delta^{18}O$ $r^2$</th>
<th>$\delta^{18}O$ $p$</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_{N_2O}$</td>
<td>0.14</td>
<td>**</td>
<td>0.04</td>
<td>0.06</td>
<td>0.16</td>
<td>**</td>
<td>62</td>
</tr>
<tr>
<td>$\Delta N_2O$</td>
<td>0.09</td>
<td>*</td>
<td>0.1</td>
<td>*</td>
<td>0.11</td>
<td>*</td>
<td>65</td>
</tr>
<tr>
<td>prcp</td>
<td>0.24</td>
<td>**</td>
<td>0.03</td>
<td>0.08</td>
<td>0.24</td>
<td>**</td>
<td>62</td>
</tr>
<tr>
<td>wfps</td>
<td>0.14</td>
<td>*</td>
<td>0.29</td>
<td>**</td>
<td>-0.009</td>
<td>0.52</td>
<td>65</td>
</tr>
<tr>
<td>$T$</td>
<td>0.22</td>
<td>**</td>
<td>0.30</td>
<td>**</td>
<td>0.12</td>
<td>*</td>
<td>65</td>
</tr>
<tr>
<td>DOC</td>
<td>0.23</td>
<td>*</td>
<td>0.30</td>
<td>*</td>
<td>0.03</td>
<td>0.23</td>
<td>18</td>
</tr>
<tr>
<td>$NO_3^-$</td>
<td>0.04</td>
<td>0.14</td>
<td>0.27</td>
<td>*</td>
<td>0.16</td>
<td>*</td>
<td>31</td>
</tr>
<tr>
<td>$NH_4^+$</td>
<td>-0.03</td>
<td>0.75</td>
<td>-0.03</td>
<td>0.89</td>
<td>-0.03</td>
<td>0.93</td>
<td>31</td>
</tr>
</tbody>
</table>

Significance codes: *: $p < 0.05$; **: $p < 0.001$. Sample size (n) differs due to data availabilities.
Figure legends

Figure 1: Long-term stability (standard deviation $\sigma$) derived by target gas injections ($n=331$) over a 3-month period. As two target gas tanks were used, histograms show deviation of respective tank means, $\bar{x}$, for $\delta^{15}$N$^\alpha$, $\delta^{15}$N$^\beta$, $\delta^{18}$O, $\delta^{15}$N$^\text{bulk}$ and SP, respectively.

Figure 2: Target gas (red) and surface layer (black) N$_2$O mole fractions (top) and $\delta$-values (three bottom panels) measured in the atmospheric surface layer in 2.2 m height during the field campaign. Each couple of vertical dashed blue lines indicates the management events mowing (first line) and fertilization (second line).

Figure 3: Noon-to-noon averaged N$_2$O flux ($f_{N_2O}$), overnight increase in N$_2$O mole fractions (difference in minimum and maximum N$_2$O concentration in a noon-to-noon period; $\delta$N$_2$O), Keeling-plot derived isotopic composition of soil-emitted N$_2$O (SP, $\delta^{15}$N$^\text{bulk}$, $\delta^{18}$O), nutrient concentrations (ammonium, nitrate and dissolved organic carbon; DOC), water filled pore space (wfps), precipitation (prcp) and soil temperature (T) over the measurement period. Each couple of vertical dashed blue lines indicates the management events mowing (first line) and fertilization (second line). Transparent blue boxes represent periods of N$_2$O emission influenced by management or rewetting (third box).

Figure 4: Standard error for SP ($\varepsilon_{SP}$) of soil-derived N$_2$O estimated by the Keeling plot approach as function of overnight N$_2$O accumulation in the surface layer. The red dashed lines show 12 ppb increase in N$_2$O mole fractions. Red full circles represent the selected subset.

Figure 5: SP - NH$_4^+$ / NO$_3^-$ and SP - wfps / soil temperature maps. The size of the points is inversely scaled to Keeling plot intercept standard error so that biggest points are those with lowest uncertainty.
Figure 6: Boxplots for Keeling-plot derived SP, $\delta^{15}N_{\text{bulk}}$, $\delta^{18}O$ of soil-emitted N$_2$O and wfps of management events (Mana I – III), rainfall after a dry period (Rewetting), and the remaining measurement period (BG).

Figure 7: **Left panel:** map of N$_2$O isotopic composition SP/$\delta^{15}N_{\text{bulk}}$ with rectangles representing process groups N$_2$O$_N$ and N$_2$O based on SP values in Decock and Six (2013b) and $\delta^{15}N_{\text{bulk}}$ estimated from minimum and maximum fractionation factors reported in Baggs (2008) and substrate isotopic compositions reported by Bedard-Haughn et al (2003), Pörtl et al. (2007) and Toyoda et al. (2011). **Right panel:** map of SP/$\delta^{18}O$ with traces of management events (ManaI in black, ManaII in red, ManaIII in green) and the rewetting event (blue). Isotopic compositions are plotted for the transparent blue boxes in Fig. 3 including one preceding and one following composition. The preceding composition is represented by the enlarged filled triangle and transparency of the line connecting the compositions decreases with event duration.
Figures

Figure 1

Figure 2
Figure 3
Figure 4

Figure 5
Figure 6
Figure 7