Dear Dr. Roland Bol,

Thank you for providing us with the opportunity to address the reviewer’s comments and willingness to consider a revised version of our manuscript titled “Evidence of old soil carbon in grass biosilica particles” by P. E. Reyerson et al.

We thank the 3 anonymous reviewers for their time and work on our manuscript. In response to reviewer comments #2 and 3, we have re-organized the manuscript with more clarity in the results and discussion sections. We also clarified portions of the methodology as well as expanded the reasoning behind them. Consequently, we feel that the title did not optimally reflect our study content (explanation below in response to reviewer #2 comment), and we suggest the following new title:

“Unambiguous evidence of old soil carbon in grass biosilica particles”

Following your recommendations, all changes were done as concise as possible, and therefore 6 extra citations were added in the revised manuscript version. We believe our manuscript is much improved, and hope that it will meet with your satisfaction as well as that of the reviewers. Below, we detail the changes we have made to each of the reviewers comments (text in black). We are grateful for the chance to publish our work in BG.

Sincerely,

Dr. Guaciara dos Santos (on behalf of co-authors),
Research Project Scientist
Keck Carbon Cycle AMS Facility,
University of California, Irvine
Reviewer #2 comments

Introduction: Many vascular plants produce siliceous bodies known as phytoliths, and these can contain carbon occluded into their structure – termed phytC. The 13C of phytC and their 14C activities have been used for either paleoenvironmental reconstructions or dating, and recent work has repeatedly argued that phytC may represent a sizable atmospheric CO2 sink. But as Reyerson et al. note, there are several conceptual inconsistencies and knowledge gaps regarding our understanding of phytC, including a) poor knowledge of any relationship between 13C of phytC and climate, and b) systematic offsets between phytC 14C ages and the plant tissue 14C ages. These problems may be compounded by the poor inter-laboratory repeatability of phytC quantification. These issues led workers to posit a non-photosynthetic origin for some fraction of phytC, i.e. from some pool of ‘older’ soil carbon. This is the central issue that this manuscript seeks to address.

Reyerson et al. use a variety of experimental approaches, including above- and belowground C isotope manipulations. They also incorporate aspects of an inter-laboratory comparison/protocol test, CO2 flux measurements and a phytC thermal stability experiment. As a result, and because the experimental protocols are not fully described, it is often hard to identify exactly what has been done. Therefore, although the conclusions seem sensible, it is often hard to assess the extent to which they are supported by the data. At the level of individual sentences, this is a well-written manuscript. But because of these issues, at level of paragraphs to whole sections, I find the structure to be confusing and difficult to follow.

In general, the manuscript presents useful data and sensible conclusions that will be of interest to many workers and fall within the scope of Biogeosciences. I recommend the authors spend some time re-evaluating the structure of the manuscript – particularly the results - and considering carefully the degree to which the extra analyses they performed actually contribute to the results and conclusions. These extraneous details might even include the FACE experimental setup. I think the manuscript would be much stronger if it was reduced to the key messages – which I understand to be that phytC 13C and 14C can be explained as a mixing between soil carbon and photosynthetic (ambient) carbon, and that true phytC concentrations are lower than reported elsewhere.

We agree with the reviewer that we have a rather large and complex dataset to resolve the anomalous (lower than expected) phytC 14C.

As the photosynthetic CO2 to phytC had a strong intuitive appeal, a scientific inquiry of it was not properly done (or worst, considered an unnecessary expenditure). In Wilding (1967), the first to use 14C of ancient phytoliths, the difference between expected and phytC 14C age are in the order of ~10ka yrs. Although Wilding (1967) acknowledged that his phytolith 14C result was unexpected, his article has been continuously cited as proof-of-concept that phytC 14C are reliable (more details in Santos et al. 2010 and 2016). Consequently, phytC has been used as a dating material in 14C geochronology for decades, and more recently as a potential atmospheric CO2 sink.

A systematic evaluation of procedural chemical blank assessments on phytolith extractions reveals a non-photosynthetic origin of phytC (Santos et al. a. 2010), where phytC 14C offsets as large as 8ka yrs BP between phytolith extracts and plant tissue have been found. While blank analyses ruled out any possibility of exogenous impurities, a less intuitive mechanism involving soil C adsorption by roots through amino-acids was put forward (Santos et al. 2012a). Consequently, the “key message” that the reviewer refers to, has been already demonstrated and reported elsewhere. Even though the previous evidence was robust (Santos et al. 2010) and reasoning for it was discussed in Santos et al. (2012a), similar phytC 14C discrepancies than those
reported earlier and conceptual inconsistencies on 14C interpretation of phytC in this field continued (e.g. Sullivan and Parr 2013, and most recently Piperno 2015). Santos et al. (2012b, 2016) asserted the conceptual inconsistencies on those studies and reinterpreted the datasets shown. Unfortunately, poor laboratory practices (the omission of blank assessment and detailed information on 14C analysis) called for a comprehensive study on the subject. The point is that those works (Sullivan and Parr 2013, Piperno 2015) just add more confusing to the controversy surrounding the use of phytoliths for direct 14C dating, or as a viable C sequestration mechanism. Thus, if we wish to unequivocally establish that a fraction of phytC is indeed from soils, we must consider and rule out all other factors that can possibly bias the isotopic signatures of phytC.

In the revised version, we are making this message stronger to help the readers understand the phytC 14C previous inaccuracies. We also suggest making a small modification to the title to better reflect this point. Moreover, we modified the end of the introduction, several portions of the results and discussions (now together), and conclusions to better reflect the issues discussed above (highlighted in red in the main text for your viewing).

In order to provide recent examples of problems on phytolith analyses, we are also citing in the text two recent articles. The first shows extra anomalous phytC 14C results from post-bomb living vegetation in Neotropical regions (Piperno 2015), and the second addresses the issues of phytolith 14C misinterpretations (Santos et al. 2016), as mentioned above.

Major comments: The four different extraction protocols for phytoliths from modern plant material are referred to many times throughout the manuscript, but besides a brief indication in a figure legend it is not mentioned what they are or why some are more aggressive than others. At some points in the results/discussion, more confusion is introduced: e.g. what does it mean when phytoliths are ‘extracted simultaneously using just one protocol’?

Besides citing Corbineau et al. (2013) where the protocols we use were described in detail, we are now summarizing the main differences of the four extraction protocols we employed in the text (section 2.2.1 - Plant treatment and phytolith extraction). Moreover, following both reviewers’ suggestions, we split the above- and below-ground C manipulation experiments results into two subsections (e.g. 3.1 and 3.2, respectively), now under section 3 (Results and Discussions).

The statement, ‘extracted simultaneously using just one protocol’ refers to a subset of 6 targets from the below-ground C manipulation experiment produced from the 6 individual planters/substrates (A to F). The phytoliths from those were extracted simultaneously using just one protocol (e.g. 1a). For clarity, the statement was completely modified (section 3.2):

Relatedly, the different extraction protocols clearly have a important effect on the quantification of phytC (cf Pg. 15380-1) and on phytC 13C (cf. Fig 4). Therefore it would be nice if there was some recommendations for future work.

Recommendations on phytolith cleaning and purity screening methods (such as SEM-EDS) have been already offered in Corbineau et al. (2013), as we demonstrated that even very small amounts of surface C is enough to bias isotopic values (evidenced in Figure 2 of Santos et al. 2012a). Nevertheless, since phytC contains a broad continuum of carbon with complex mixture of chemical compounds of different turnover times (as evidenced by the thermograms of phytoliths as well – Figure 6), insufficient to excessive oxidations can move 14C dates from thousands, to hundreds, to back to thousands years old (as represented in Figure 7). Since soil-C compounds and ages are highly variable in soils (Telles et al. 2003, Torn et al. 2009), and soil/amendment properties can modify the molecular makeup of phytC (this work), any
heterogeneous pool of C will be partitioned differently upon different degrees of OM oxidation (or protocols). Therefore, there is no way to correct for the soil C fraction within phytC, so that phytC can be used as a reliable dating material. We are now making those messages stronger in our revised version. A summarized paragraph with the above message was added to section 4.1 (The SOM-derived C to phytC hypothesis set of evidence), followed by the citations Telles et al. 2003 and Torn et al. 2009 (added to the revised manuscript).

Also, are there inter-laboratory differences when using the same protocols?

We have not identified inter-laboratory differences when using the same protocols from the subsamples of the same biomass, and/or when evaluating procedural blank materials (added to every batch analyzed). This fact has been already reported in the third paragraph of section 2.3.3. (Radiocarbon Analysis), but now we added a succinct description of accuracy/precision based on our duplicate/triplicates and secondary standard at the beginning of section 3.1 (as per reviewer# 3 recommendation).

The results are not presented in a clear and logical manner. To my mind, it would make more sense to separate first into the above- and below-ground experiments, and then have subheadings for the different analyses (phytC, 13C, 14C: :). At the moment, section 3.1 (for example) includes (i) phytC concentrations (ii) 14C results from all substrates (including some not mentioned before: : :) (iii) extraction protocol differences and (iv) CO2 fluxes. Overall, this makes for confusing reading. I can not follow how 21 phytolith concentrates was arrived at (Pg 15376, ln. 8). If I understand correctly, there are six biomass samples from the above-ground experiment and 6 from the below-ground experiment. Multiplied by four labs and four protocols – this should be more than 21! And later (Pg 15380, ln 8) – why do they become 52 14C measurements?

In agreement with this reviewer remarks, we separated the above- and below-ground C experiments, and consequently the discussions of the respective set of results are now also separated. However, we felt that adding too many subheadings is unnecessary, as it will break the present text flow. Now each set of results are self-contained in their respective subsection (e.g. 3.1 and 3.2). This change made the results and discussions section a bit longer, but easier to follow.

Since the above- and below-ground C experiments are now separated, the number of phytolith extracts produced, and the number of duplicates and triplicates targets produced from those extracts (reported in the supplement tables) are better accounted for, and described.

The rationale for including the CO2 chamber flux measurements (section 2.2.3) and the thermal analysis (2.3.4) in this manuscript is unclear. When these are returned to in the results (briefly in section 3.2, and section 3.3 respectively), or the discussion, they seem to add little, and instead just distract from the main message.

The present experiments and multiple analyses were designed to definitively explain the anomalously low 14C values of phytC extracts, as mentioned earlier. We realize that our message regarding the need of the CO2 chamber flux measurements (section 2.2.3) and the thermal analysis (2.3.4) in our manuscript was not as clear as we planned.

While it might seem strange, speculative discussions regarding over excessive oxidative protocols altering the natural 14C signatures of phytC, or pesticide contaminations, directly fixation of atmospheric CO2 from both fossil fuel emissions and fires as well as soil dissolved inorganic carbon (DIC) to whole-plant carbon have been continuously invoked by researchers
(Sullivan and Parr 2013, Parr and Sullivan 2014, Piperno 2015) to explain phytC 14C discrepancies. In all those cases, no further isotopic measurements to support offsets have been provided, illustrating the inconsistencies in this field. Unfortunately, those articles have been cited as proof that phytC 14C works (Hodson 2015, for example). Thus, if we wish to unequivocally establish that a fraction of phytC is indeed from soils, we must consider and rule out all other factors that can possibly bias the isotopic signatures of phytC (as mentioned earlier). The CO$_2$ soil fluxes concentrations and associated isotopic values help us to demonstrate that there is no possibility to invoke CO$_2$ soil/amendment respiration, DIC or otherwise, to reconcile phytC 14C ages (as well as any other “outside” factor).

Regarding the thermograms, we show that phytC has the same physicochemical properties observed from complex carbon matrices, such as the carbon found in soils and sediments. We feel that this evidence is important, because the soil C to phytC hypothesis is by far less intuitive, and just recently (last 10 years or so) researchers were able to show that old, supposedly poorly accessible SOM can be decomposed by organisms or catalytic enzymes (as we addressed in section 4.5).

In our revised version, at the end of the introduction (section 1) we explain better the rationality behind the thermograms. We further address our thermogram profiles at the beginning of section 3.3. (Thermal stability of phytC), as well as add the citations of Plante et al. (2011, 2013), which show similar spectra from soils and sediments. We better explained what one should expect, from a mixed carbon pool such as phytC (the effects on %C losses and 14C age changes due to partitioning of labile and recalcitrant carbon) once samples are subjected to thermal treatments. With those concepts at hand, we can set the stage to explain the phytC 14C depletions by heat treatments observed in Yin et al. (2014) and (Santos et al. 2012a), as well as in this study (last paragraph of section 3.3, and second paragraph in section 4.3 - Implications for the use of phytC as a proxy of plant C).

Minor comments The figures could be larger, with more detailed captions.

Figures 2 was reformatted and enlarged. Furthermore, the captions under figures 1, 2 and 4 were modified to add clarity to the points addressed.

Pg 15379, line 9: what is 14C-free? - Although the 14C-free term is widely used in the radiocarbon community, we are now adding a footnote to clarify it in section 2.3.3 (Radiocarbon Analysis).

Pg 15384, line 3: measuring, not measured.

It has been fixed.

Fig 2b – is phytC ‘accessibility’ really what is meant here? Should it not be the opposite?

No. We used the term accessibility to reflect labile-accessible or prone to oxidation. So, in figure 2b, when the labile-accessible carbon is not removed 14C results are as close as possible to the values of the tissue of origin (e.g. phytC 14C offsets are hundreds, rather than thousands years old). Once the labile-accessible carbon is removed, or better the C fraction resistant to oxidation is isolated, the 14C ages as well as the %C in phytoliths tend to decline. So, the term is been used correctly.
Throughout – I can’t follow the logic of calling the SOM pool the ‘oldest’ if only one measurement was made.

The soil extraction fractions, bulk SOM and refractory (alkali-insoluble), were described at section 2.2.2, and the individual results from both fractions are shown in the Supplement (Tables S1 and S2). In this case, we have more than one measurement to represent the soil carbon pools. However, to test the mixing equation between the atmospheric CO$_2$ pool and SOM-derived C contributions, we make use the Fm14C average value of the oldest SOM-C fraction measured from each experiment (i.e., the Fm14C average value of the SOM 45-60 cm fraction for S. bicolor plots, and the refractory 0-15 cm fraction for T. durum plots). This was addressed previously in the discussion section, and in the revised manuscript it can be now found in section 3.1 (Isotopic results from above-ground C manipulation experiments).

Reviewer #3 comments

General comment: This study aims to support the assumption that organic carbon occluded in phytoliths (PhytOC) has a non-photosynthetic origin. This has important implications for the global C and Si biogeochemical cycle and for the understanding of mechanisms controlling C cycling in soil-plant systems. The work presented here can help to move the field forward by enhancing our understanding of the coupled cycle of Si and C in terrestrial environments. This study is challenging the budget of OC stored in soil-plant systems as the origin of PhytOC is partially explained by uptake of organic molecules from the soil organic matter pool. The pathways of organic molecules uptake from a mix of old and young SOM pool and occlusion in amorphous silica in plants is however not yet completely understood. This manuscript has the merit to put into question the use of PhytOC as a paleoenvironmental tool (proxy of plant C) and definitely demonstrates that a part of PhytOC has a non-photosynthetic origin and as such provides valuable perspectives in the field of OM translocations in soil-plant systems, and very promising research avenues in soil-plant interactions and SOM recycling. The results presented here could also highlight that a part of OM considered as stable in soil (old OC using 14C dating) is highly accessible for plant uptake and, as a consequence, can be rapidly recycled in soil-plant systems.

The assumptions stated in this study are supported by a very good dataset which is based on robust methodologies: use of reference materials/internal standard, interlaboratory measurements, replicates, experiments isolating atmospheric CO$_2$ and SOM pool, 4 protocols of OC extactions from phytoliths. The procedures are very well explained and presented. However the result part is quite confusing and very tricky to read. As suggested by the other anonymous reviewer, I strongly recommend to completely re-organize this part of the ms and to focus on absolutely necessary data for the purpose of the paper. The discussion is very clear but sometimes, it is hard for the reader to understand on which data the authors based their assumptions.

Specific comments:
- p15370, l2: seems quite confusing the use of PhytC instead of PhytOC, commonly used in literature I think so

We agree that it may appear confusing to have two terms to define the carbon embedded in phytoliths, e.g. phytC and phytOC. The term phytOC was born based on the assumption that carbon embedded in phytoliths is from a CO$_2$ photosynthetic origin. Moreover, the term also
implies that all the carbon embedded in phytoliths must be organic-based, a fact not yet established.

At the present study, just one amendment (in Planter B) contained inorganic-carbon from a natural deposit (greensand) as well as competing amounts of organic carbon of similar \(^{14}\)C age than its inorganic C fraction. PhytC stable isotope results from Planter B suggested that the inorganic-carbon contribution (if any) was undetectable (Figure 5, in this study). As yet, and based on one single amendment, we do not have other ways to infer if "inorganic carbon-containing compounds" cannot be encapsulated by phytoliths. Note that the term phytC has been also used in Santos et al. 2010, 2012a, 2012b, 2016; Corbineau et al. 2013, Gallagher et al. 2015, Alexandre et al. 2015, and recently Alexandre et al. 2015b (accepted in BGD).

- p15370, 11-15: it would interesting to read somewhere in the ms a bit more about the processes behind the mobilization of old SOM and the implication of this mobilization.

This is indeed an interesting question that we cannot properly address in the present work, as the pathways of soil C (byproduct or biologically-driven) were not the main focus here. Some of our previous analysis (NanoSIMS coupled with 3D-Xray microscopy analysis of the silica structure - Alexandre et al. 2015) suggested that the phytC occlusions occur at a very early stage of the inner cell silicification. Soil C may be concentrated in the vacuole as an unmetabolizable waste product, without any link with Si, and eventually occluded in the silica structure during silica precipitation and vacuole destruction. On the other hand, relationships between OM and other types of biosilicas (BSi), such as diatoms, or deep-sea sponges (spicules) have been already established. Ma et al. (2006) suggested that the uptake of dissolved Si in higher plants may be genetically controlled. So, the assumption of a connection between soil C and BSi (for phytoliths) may be feasible. In order to provide further BSi mechanistic information, involving the encapsulation of carbon in phytoliths, further analyses are necessary.

- P15372, lines 23-24: what do you mean by “optimized”?

We replaced “optimized” by “modified” protocols, and cite Corbineau et al. (2013), where those protocols are fully described.

- P15376, lines 14-23: this part is not clear. Could you please precise/clarify which extraction procedure is used for which SOM fraction.

Besides of the description on SOM chemical extractions at section 2.2.2 (Soil extraction fractions), we have added at the end of the first paragraph of the section 3.1 (Isotopic results from above-ground C manipulation experiments) a statement to clarify that SOM was chemically separated in two carbon fractions for isotopic analyses, e.g. labile-accessible and recalcitrant (alkali-insoluble).

- P15380, line 8: you have to clarify which sample is analyzed. This is not clear which experimentation is carried out for which sample: 21 phytolith concentrates and 52 \(^{14}\)C targets ??
- P15380, lines 13-14: what do you mean? Could you please clarify?

In agreement with both reviewers, we separated the above- and below-ground C experiments (see reply to reviewer#2).
- P15380, lines 15-16: when you discuss the extractions by the 4 protocols, the presentation of results are very hard to follow. Could you please find a better way to present your results? And what do you mean by “phytC yield”?

✓ The 4 protocols are now described in the text.
✓ The above- and below-ground C experiments were split (see reply to reviewer#2).
✓ phytC yield is now defined in section 3.2 and in the caption of figure 2.

- P15381, lines 15-16: how do you explain the link between the extraction aggressiveness and the increase of discrepancies?

The link is established by the phytC thermograms. Since soil/amendment properties can modify the molecular makeup of phytC (this study), once roots absorb heterogeneous pool of C from soils, upon different degrees of OM oxidation, and heat treatments (see the description of protocols in section 2.2.1) the phytC will be partitioned differently (as we demonstrated in Figure 6). This last sentence was added to section 3.2 (Isotopic results from below-ground C manipulation experiments) to clarify the reviewer’s remark.

- P15382, lines 3-8: this part is not clear/tricky to follow. Could you please rephrase/clarify?
- P15382, line 12: the use of the terminology “protocol 2b, 1b,: : :” is not the very useful to make the ms easier to read, and to follow the results. Could you use another terminology in which we can directly understand the degree of aggressiveness of the extract?
- P15382, lines10-15: this part is hard enough to follow - P15382, line 21: “showing that the inorganic fraction of the C-soil was: : :” is already a discussion of the results.
- P15383, lines 10-25: the results are not clearly presented. It seems that we are already in a discussion part.

The results and discussion sections have been completely reformatted.

- P15384, line 16: it could be good to find a better way to present this figure (Figure 2 a and b), which is not clear enough in the present state.

We agree that Figure 2 is complex and that it can be a bit difficult to understand. With that said, we considered multiple variations of the figure before arriving at the present format. We feel this format is the most concise and parsimonious arrangement of the data to visually demonstrate the reduction of %C in phytoliths and its association with the isolation of the oldest SOM C fraction. In addition, Figure 4 follows the same format and concept of Figure 2 panel b (e.g. how phytC 14C moves away from the photosynthetic 14C signature of bulk plant tissue and towards the soil/amendment 14C values, as the amount of soil C within phytoliths is isolated).

- P15385 lines 8-16: quite interesting to see that different fractions of SOM are occluded in phytoliths. How can you explain that a part of OC is taken up by plants form a pool of SOM considered as old and stable in soil?

Recently, researchers were able to show that old, supposedly poorly accessible SOM can be decomposed by organisms or catalytic enzymes. Consequently, those old pools of carbon are not completely stable, but rather turning over in a much slower rate than the labile/fast carbon pool (Torn et al. 2009). Furthermore, roots can also acquire soil C in a molecular form (through amino acids, among other molecules). Although the phenomenon might be small it has not been
assessed at the ecosystem scale. Those discussions are in section 4.5 (Implications for our understanding of soil C pools mobilization).

- P15385, lines 17-20: the mixing equation should be further explained.

 The mixing equation was explained at the caption of Figure 2. Now it is presented and further explained in the text (section 3.1. Isotopic results from above-ground C manipulation experiments).

- P15386, lines 1-5: not clear what is new compared to Alexandre et al. 2015?

 Indeed, this point was already discussed in Alexandre et al., 2015. However we found it worth being recalled, as it explains the heterogeneity of phytC pool accessibility. The paragraph was slightly changed to make it clear.

- P15386, line 8-11: Could you present a synthesis of the accuracy and reproducibility of extraction of OC and 14C measurement on your extracts? This would support your study and evidences.

 We have added a succinct discussion on phytC 14C accuracy and reproducibility at the beginning of section 3.1 (Isotopic results from above-ground C manipulation experiments).

- P15387, 6-7: “Third, : : :” I don’t see how this part is supported by your data?

 The reviewer refers to, “Third, contributions of soil respired CO₂ to mature plant tissue (and phytC) were also negligible.” The statement is supported by our CO₂ chamber flux measurements (section 2.2.3), as discussed above. To make the message clear, we now refer to the section 2.2.2, where the statement appears.

- P15389: I don’t really get the reason why some authors measure 1.5-3% of PhytOC while Santos et al. measured <0.1%. Did you isolate environmental factors (type of vegetation, climate, geology, soil type) that can influence the concentration of OC occluded in phytoliths? Could you please clarify?

 Indeed, there are many estimates of phytC quantities (as %) from phytoliths. We suspect that those high estimates of 1.5-3% of phytOC are products of insufficient cleaning during the extraction process. It should also be noted that the methods used by Santos et al. (2010); Santos et al. (2012); Corbineau et al. (2013), and this study (images and associated spectra in Supplement) are the only ones which use sample blanks in order to determine if the cleaning process itself can lead to contamination. Further, all of these papers (except Santos et al. (2010) used scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDS) as a way to verify that phytolith surfaces were devoid of organic residues. Checking for residues/contaminants by optical microscopy is simply not adequate. The amount of phytOC within phytoliths is extremely small – a few hundred parts per million at best. Thus, even very small amounts of surface C is enough to bias the isotopic result. We already discussed those issues in sections 4.2, but for further clarification they are also briefly recalled in section 4.3 and 4.4.
- P15390: I fully agree as it is quite paradoxal to talk about phytOC stabilization in soil-plant systems while phytoliths are known to be amorphous and highly soluble.

Unfortunately several articles continue to promote the idea that phytoliths are quite stable in soils, and that they can persist for several thousands of years (Song et al 2014 and references therein). This is true only for a very small fraction of all phytoliths produced. Thus, soil phytoliths are not a stable sink for Si and C, but rather they are dynamic, the result of inputs (production) and outputs (dissolution).

- P15390, line 7: “10% phytolith stability” I would disagree to use this 10% factor as it will largely vary depending on environmental conditions such as, activity of elements (Si, Al, Fe, H+) in soil solution, morphology of phytoliths and thus type of vegetation, elemental concentration of phytoliths and thus soil type, : : :

The reviewer is right, but we just do not have many studies which directly measure phytolith stability factors to provide a better assessment to phytolith stability in soils. Therefore, section 4.4 (Implications for long-term atmospheric CO₂ biosequestration) was rewritten to take into account this valuable remark.

- P15390, lines 12-14: good to point this: : : - P15390, line 20-28: good to clearly highlight the implications of the study. But it would be a good idea for the clarity of the ms to have a more detailed and clear presentation/discussion of your results (see general comment and the anonymous review#2).

The results and discussions sections were reformatted, as suggested by reviewers.

- P15391, line 27: why “in association with”? The transportation process would differ to the precipitation process.

The sentence was removed and the revised section dealing with soil C pools mobilization made clearer and shorter.

- P15392, lines 1-8: the role of oxalic acid exudates on the mobilization of OC and the likely uptake of the mobilized organic molecules is very interesting. But I don’t see the link with the dissolution of Si bearing phases during active Si uptake? Do you have scientific references to mentioning this? How can you state that the mobilized SOM is ready to be chelated with Si, as no scientific evidences support up to now a direct chelation process between Si and organic molecules? Could you please clarify?

In agreement with this comment, this section was shortened and speculating parts were removed.
References added to the revised manuscript:

References cited here but not in the manuscript:

All other references cited in this reply are listed in our original manuscript.
Unambiguous evidence of old soil carbon in grass biosilica particles

Paul E. Reyerson1,2, \dagger, Anne Alexandre3, Araks Harutyunyan1, Remi Corbineau3, Hector A. Martinez De La Torre1, Franz Badeck4, Luigi Cattivelli4, Guaciara M. Santos1,*

1Earth System Science, University of California, Irvine, USA.
2Department of Botany, University of Wisconsin-Madison, USA.
3Aix Marseille Université, CNRS, IRD, CEREGE UM34, 13545 Aix-en-Provence Cedex 4, France
4Consiglio per la Ricerca in Agricoltura e l’analisi dell’economis agraria - Genomics Research Centre, Fiorenzuola d’Arda, Italy.
\dagger Current address: Department of Geography and Earth Science, University of Wisconsin-La Crosse, USA.

Keywords: phytoliths, biomineralization, soil organic matter, root uptake, carbon sequestration

*Corresponding author. Guaciara M. Santos, Department of Earth System Science, 1222 Croul Hall, University of California, Irvine, Irvine, CA, 92697-3100, USA, phone: (+1-949-824-3674), fax: (+1-949-824-3256), E-mail address: gdossant@uci.edu
Abstract

Plant biosilica particles (phytoliths) contain small amounts of carbon called phytC. Based on the assumptions that phytC is of photosynthetic origin and a closed system, claims were recently made that phytoliths from several agriculturally important monocotyledonous species play a significant role in atmospheric CO₂ sequestration. However, anomalous phytC radiocarbon (¹⁴C) dates suggested contributions from a non-photosynthetic source to phytC. Here we address this non-photosynthetic source hypothesis using comparative isotopic measurements (¹⁴C and δ¹³C) of phytC, plant tissues, atmospheric CO₂, and soil organic matter. State-of-the-art methods assured phytolith purity, while sequential stepwise-combustion revealed complex chemical-thermal decomposability properties of phytC. Although photosynthesis is the main source of carbon in plant tissue, it was found that phytC is partially derived from soil carbon that can be several thousand years old. The fact that phytC is not uniquely constituted of photosynthetic C limits the usefulness of phytC either as a dating tool or as a significant sink of atmospheric CO₂. It additionally calls for further experiments to investigate how SOM-derived C is accessible to roots and accumulates in plant biosilica, for a better understanding of the mechanistic processes underlying the silicon biomineralization process in higher plants.
1. Introduction

Silicon (Si) is the most abundant element in the Earth’s crust and is widely recycled by higher plants. Si is acquired by roots from soils and precipitated in or between the cells as micrometric hydrous amorphous biosilica particles called phytoliths. Phytolith abundances range from <1% of dry weight (d.wt) in many plants to several % d.wt in grasses that are Si-accumulators (Geis, 1973, Runge, 1999, Webb and Longstaffe, 2000; Raven, 2003). Phytoliths contain small amounts of carbon (C) occluded during silica precipitation (Alexandre et al., 2015), commonly termed as phytC (or phytOC) and assumed to be of photosynthetic origin (Carter 2009, Piperno 2006) (Figure 1a). Thus, phytC isotopic signatures (δ^{13}C and δ^{14}C) obtained from buried soils and sedimentary archives have been interpreted in terms of paleoenvironmental changes (Kelly et al., 1991, Carter, 2009; McInerney et al., 2011), or used as a dating tool (McClaran and Umlauf, 2000; Piperno and Stothert, 2003; Parr and Sullivan, 2005, Piperno, 2006).

Motivated by anthropogenic emissions of carbon dioxide (CO_{2}) (Mauna Loa Observatory; NOAA-ESRL data at http://www.esrl.noaa.gov/) and their direct association with climate change, a set of recent studies has advanced the idea that many monocotyledonous crop species (bamboo, sugarcane, maize, rice, etc.) as well as grasslands in general (among the largest ecosystems in the world - Suttie et al., 2005) may play a significant role in C sequestration through a newly evidenced mechanism: CO_{2} biosequestration in grass biosilica particles (Parr and Sullivan, 2011, Parr et al., 2010, Parr et al., 2009, Parr and Sullivan, 2005, Song et al., 2013, Song et al., 2014, Toma et al., 2013). If correct, encapsulated atmospheric CO_{2} can be slowly and steadily accumulated in soils, with turnover times on the order of several hundreds to thousands of years (Parr and Sullivan, 2005). Selective use of silica accumulator crops could further enhance this sequestration mechanism (Song et al., 2013).

However, the validity of these interpretations has recently been challenged. First, attempts to properly calibrate the geochemical signals borne by phytC were inconclusive (Wilding, 1967, Kelly et al., 1991, McClaran and Umlauf, 2000, Smith and White, 2004, Webb and Longstaffe, 2010). Second, differences in the efficiency of phytolith extraction protocols may have contributed to inconsistencies and overestimations in phytC quantification (from 0.1 to 20% of phytolith d.wt.) (Corbineau et al., 2013 and references therein, Song et al. 2014 and references therein). Third, systematic offsets of phytC^{14}C ages relative to the^{14}C ages of the
plant tissues from which phytoliths originate have been published (Santos et al. 2010, Santos et al. 2012a,b, Sullivan and Parr 2013, Yin et al. 2014, Piperno 2015, Santos et al. 2016). These offsets can be as large as hundreds to several thousands of years, regardless of the chemical protocol used for phytolith extractions, indicating the presence of a secondary contributor of C to phytC. Together, these observations led to the hypothesis that a whole or a fraction of phytC may come from old soil C (Santos et al., 2012a) (Figure 1b). Previous analyses of macromolecules embedded in phytoliths suggested a variety of organic molecules (Bauer et al., 2011 and references therein), but there is no direct evidence that they are solely synthesized by the plant. Moreover, a recent Nano Secondary Ion Mass Spectrometry (NanoSIMS) investigation of phytC distribution in the silica structure suggests that a significant part of phytC can be lost at the very first stage of phytolith dissolution (Alexandre et al., 2015), thus dissociating the concept of phytC protection from phytolith stability.

Therefore, if the soil C to phytC hypothesis is definitively confirmed, it casts doubt on the efficiency of paleoenvironmental reconstructions based on phytC as a proxy of plant C, and raises questions regarding the present estimates of crop and grasslands phytolith efficiency in sequestering atmospheric CO₂, as well as its assessment of long-term stabilization in soils based on fossil phytolith ¹⁴C dating (decades versus hundreds, or thousands of years, as suggested by Parr and Sullivan, 2005). Additionally, confirmation of a dual origin (soil organic matter (SOM) and photosynthetic) of phytC would open new questions regarding plant-soil interactions and SOM recycling, relevant for our understanding of the role of terrestrial ecosystems in the C cycle.

To unequivocally establish that a fraction of phytC is indeed from soils, a robust dataset is produced here by considering and ruling out all other factors that can possibly bias the isotopic signatures of phytC. We reassess the old soil C contribution to phytC hypothesis (Santos et al. 2012a) on the basis of >200 isotopic results (δ¹³C and/or ¹⁴C) of phytoliths and associated materials (grass tissues, SOM fractions, amendments and hydroponic solutions, CO₂ respired from substrates or extracted from air). Pure phytolith concentrates were acquired from sets of above and below-ground C manipulation experiments. Phytolith concentrates were extracted using several protocols with different degrees of aggressiveness (Corbineau et al. 2013) in four different laboratories. Cutting-edge techniques assured phytolith purity, and multiple analyses of carbon isotope reference materials assured high quality and reproducibility of the isotopic
results. Furthermore, to establish a link between phytC heterogeneity in the sense of molecular complexity and resistance to oxidation (labile vs. recalcitrant), we subjected duplicates of pure phytolith extracts to thermal treatments. The multi-methodology approach used in this study allows us to completely address: a) the anomalous 14C results associated with phytC in the literature, b) the implications of a soil C contribution to phytC for 14C geochronology dates, and c) the shortcomings of using phytC as an atmospheric CO$_2$ sink.

2. Material and Methods

2.1. Samples

Our experimental design is based on a two-step process. First, in order to evidence whether the 14C signatures of phytC are solely of photosynthetic origin, we select samples from known-year specimens, and compare plant material grown under normal atmospheric CO$_2$ conditions to the artificially altered plant C isotope content of photosynthetically assimilated depleted-14CO$_2$ from Free Air Carbon Enrichment (FACE) experiments (section 2.1.1). Second, we seek to establish a causal connection between soil C and phytC by selecting samples from plant material grown under normal atmospheric CO$_2$ conditions, but altered substrate carbon pools (section 2.1.2). In both cases phytC and an array of samples associated with it were selected.

2.1.1. Above ground C manipulation experiments

The FACE experiments exposed the plants to elevated atmospheric CO$_2$ concentrations by continuously releasing CO$_2$ through jets from tubes installed in the surroundings and within the enclosures of the cultivation plots. Target mixing ratios of atmospheric and geologic CO$_2$ were maintained on plots until leaves were senescent and/or ready for harvesting.

Two grass species (Sorghum bicolor and Triticum durum) were grown in two FACE experiments, respectively: at the Maricopa Agricultural Center (University of Arizona, USA) in 1998-1999 (Ottman et al., 2001), and at the Genomics Research Centre of CREA (Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria) in Fiorenzuola d'Arda, Italy, in 2011-2012 (Badeck et al., 2012 - http://centrodigenomica.entecria.it/research/durumFACE). For each experiment, a plot cultivated under ambient atmospheric CO$_2$ was compared to a plot cultivated
under atmosphere enriched by 160-200ppm in fossil hydrothermal \({\text{CO}}_2 \), and therefore free of \(^{14}\text{C} \) (Leavitt, 1994, Ottman et al., 2001, Badeck et al., 2012). In terms of stable isotopic labelling, at the sorghum site the enriched \({\text{CO}}_2 \) had a \(\delta^{13}\text{C} \) value of -40‰ from 1995 to 1998. This stronger isotopic label was obtained from a mixture of natural \({\text{CO}}_2 \) from the Springerville, Arizona, USA geologic wells with 15% petroleum-derived \({\text{CO}}_2 \). During 1998-1999 only fossil hydrothermal \({\text{CO}}_2 \) was used (\(\delta^{13}\text{C} = -4.36 \)‰), while the background air \(\delta^{13}\text{C} \) was -8‰ (Leavitt et al., 2001).

At the durum wheat site, the commercial fossil \({\text{CO}}_2 \) from the Rapolano Terme, Poggio S. Cecilia (Tuscany) well had a \(\delta^{13}\text{C} \) of -6.07‰, which was slightly positive compared to the ambient \({\text{CO}}_2 \) value of -8‰.

Two samples of mixed stems and leaves (~100 g) were obtained from the sorghum site, while four separated samples (300-400 g each) of stems and leaves were collected at the durum wheat site. Eight soil samples (~5 g each) collected from the furrows of the sorghum plots at depths of 0-15, 15-30, 30-45 and 45-60 cm were also obtained from the archives of the Laboratory of Tree-Ring Research, University of Arizona, USA. While two soil samples were collected from the ongoing durum wheat experimental plots at a depth of 0-15 cm (~15 g each) during plant biomass harvesting.

To determine the precise \(^{14}\text{C} \) activity of the plant materials, radiocarbon measurements were conducted before the phytolith extractions started. Since the commercial \({\text{CO}}_2 \) used in both FACE enrichment sites was from a fossil source, its \(^{14}\text{C} \) signature as fraction of modern carbon (FmC or Fm\(^{14}\text{C} \); Stuiver and Polach, 1977) was close to zero. Therefore, the \(^{14}\text{C} \) signature of the enriched \({\text{CO}}_2 \) was highly depleted compared to ambient air, and the plant tissues were tagged accordingly. Radiocarbon signatures of the plant tissue yielded Fm\(^{14}\text{C} \) values of 0.640 (~3.6 kyrs BP; \(^{14}\text{C} \) years before present or 1950; UCIAMS53273 and 53274; Table S1 in Supplement) and 0.556 (~4.7 kyrs BP; UCIAMS109000 and 109001; Table S2 in Supplement) at the sorghum and durum sites, respectively. Alternatively, plant tissue from ambient \({\text{CO}}_2 \) plots was expected to yield the prescribed atmospheric \(^{14}\text{CO}_2 \) values of the given year that the growing season took place. At the sorghum site, the Fm\(^{14}\text{C} \) value of the bulk biomass harvested at the ambient \({\text{CO}}_2 \) plot matched with the Fm\(^{14}\text{C} \) value of the \({\text{CO}}_2 \) of the year of harvest (e.g. Fm\(^{14}\text{C} \approx 1.097, \) equivalent to the atmospheric \(^{14}\text{CO}_2 \) signature measured from clean air in 1999 - \text{http://calib.qub.ac.uk/CALIBomb/} database and calibration software). This \(^{14}\text{C} \) signature is higher than the present-day ambient \({\text{CO}}_2 \) due to nuclear weapon tests carried out during the
1950s and 1960s (Levin, 1997, Levin et al., 2013). The nuclear weapon tests doubled the ^{14}C content in the atmosphere, which created an isotopic chronometer (the ^{14}C bomb peak) during the last 60 years for all living organisms. At the durum wheat site, however, the ^{14}C signature of the biomass harvested at the ambient CO$_2$ plot was slightly depleted ($F_{m}^{14}\text{C} \approx 1.017$), as expected for CO$_2$ above urban areas in Europe in the early 2010s. For comparison, the ^{14}C signature of atmospheric-clean CO$_2$ stations in Central Europe was $F_{m}^{14}\text{C} = 1.040$ in 2012 (Levin, 1997, Levin et al., 2013).

2.1.2. Below ground C manipulation experiment

The second experiment relies on the simultaneous response of phytC to different carbon amendment treatments of grasses grown under photosynthetic natural conditions (i.e., ambient CO$_2$ air). *Sorghum bicolor* plants were grown outdoors in a ventilated area at the University of California, Irvine (UCI, USA), in six well-drained 40 L planters (A, B, C, D, E and F) filled with mineral substrates. Five of the planters were enriched with organic nutrients characterized by a broad range of ^{14}C signatures (from bomb spiked to fossil - Tables 1 and 2), while the last contained an inorganic nutrient devoid of C as a control (planter F). Although much concerning the direct root absorption of natural carbon remains unknown, beneficial responses of root and plant growth have been reported in association with the addition of either inorganic carbon (Hibberd and Quick, 2002) and/or humic acids (Nardi et al., 2002). Consequently, we chose as substrate for Planter B a natural carbonate-based sedimentary deposit mixed with organic carbon detritus of equal/even-age. For Planter E, fossil humic acids (extracted from leonardite) were chosen as the OC source.

Plants were fed as needed solely with 2 L of ultra-pure water (Planter A), or with a combination of ultra-pure water and their respective fertilizers and SiO$_2$ providers (Planters B-F) at a concentration of 1% (v/v) (Table 2). Additionally, the CO$_2$ in the air surrounding the planters was isotopically monitored by collecting air in evacuated 6 L cylinders for the duration of the experiment with the purpose of characterizing the local atmospheric CO$_2$ close to planters, and to serve as a reference for the ^{14}C signatures expected from plant tissue organs. Also, we isotopically measured commercial (sorghum) seeds to check if their ^{14}C signatures were recent. Finally, CO$_2$ fluxes respired from the planter substrates were also sampled to evaluate their
putative contribution to the phytC 14C signature. After 3.5 months the Sorghum bicolor plants (stem and leaf) were harvested in preparation for phytolith extractions and isotopic analyses.

2.2. Laboratory Procedures

2.2.1. Plant treatment and phytolith extraction

Stems and leaves samples (50-100 g each) were thoroughly rinsed with warm ultrapure water to remove air-dust, dried at 60 °C and ground using an industrial mill (IKA® M20 Universal Mill). About 10 mg of each sample was kept for bulk tissue 14C and δ^{13}C analyses.

Four phytolith extraction protocols with increasing aggressiveness (via organic compound oxidation and silica dissolution) were used to treat the samples from the above ground C manipulation experiment (Fig. 2). The protocols have been previously described in detail by Corbineau et al. (2013). They are based either on acid digestion and alkali or on multi-step dry ashing and acid digestion. They are summarized below and in Figure 2.

i. Protocols 1a and 1b - Plant samples were subject to strong wet-digestion steps in order to oxidize the organic matter (e.g., 1N HCl/2 hours, hot H$_2$SO$_4$/24 hours plus 30% H$_2$O$_2$ for 2-3 days, and > 65% HNO$_3$ plus 1 g KClO$_3$ for 24 hours). This was followed by 30 min of immersion in KOH solution at pH11 (protocol 1a) or pH13 (protocol 1b). The KOH immersions allowed final removal of any alkali-soluble forms of organic compounds remaining on phytolith surfaces.

ii. Protocols 2a and 2b - Plant samples were subjected to dry-ashing. Stepwise increases in temperature were used from 300°C to 500°C and the samples were then kept at 500°C for 6 hours (protocol 2a) or 12 hours (protocol 2b). Samples were then digested in a >65% HNO$_3$ and 70% HClO$_4$ mixture (2:1).

In order to assess local 14C contamination during chemical extractions, four laboratories were involved in the extractions. They are UCI (USA), CEREGE (France), the Soils and Sediments Analysis Lab (SSAL, the University of Wisconsin-Madison, USA), and the National Lacustrine Core Facility (LacCore, the University of Minnesota, Twin Cities, USA). Aliquots of pre-baked (900°C/3 hours) silicon dioxide powder (SiO$_2$; mesh# -325, Sigma Aldrich, St. Louis, MO, USA) were chemically pre-treated in parallel with the plant samples, and later analyzed as
phytolith extract to provide independent blank data for each laboratory following the procedures described in Santos et al. (2010).

Due to the limited amount of plant biomass produced by the below ground C manipulation experiment (session 2.1.2), only two protocols were tested (1a and 2b) at only three of the laboratories (UCI, CEREGE and LacCore), followed by blank sample materials as required.

2.2.2. Soil extraction fractions

Soils from the above ground C manipulation experiment were physically cleaned of roots and stones. The bulk SOM fraction was isolated after carbonate removal in 1N HCl baths at 60 °C. The refractory (alkali-insoluble) fraction was further isolated via multiple baths in 1M NaOH at 60 °C, followed by 1N HCl rinses (Santos and Ormsby, 2013). Upon chemical treatment, samples were adjusted to pH neutral and dried in a vacuum oven (Savant RT 100A refrigerated vapor vacuum pump system).

Amendments from the below ground C experiment were not subject to any chemical pretreatment, except for the tests performed to small aliquots of greensand (GS, Table 1), allowing us to isolate the organic fraction from its bulk mixture.

2.2.3. CO2 flux measurements

In the frame of the below ground C manipulation experiment, the rate of CO2 respired from Sorghum bicolor foliage (after sprouting), root systems and substrate was measured using closed dynamic soil CO2 flux chambers (Czimzik et al., 2006). Chamber headspace gasses were circulated through an infrared gas analyzer (840, 1400, LI-COR, Lincoln, NE, USA,) for 6 minutes at 0.5 L per minute, and the CO2 concentration was recorded every second. Once headspace CO2 concentrations reached twice that of ambient-air, the CO2 was collected in a molecular sieve trap for isotopic analysis, followed by ambient-air samples to serve as references.

2.3. Analytical procedures

2.3.1. Phytolith concentrate purity analysis
Small particulate organic contamination of phytolith concentrates may considerably bias isotopic and quantitative analyses of phytC. The purity of the phytolith concentrates was thus verified by Scanning Electron Microscopy with Energy-dispersive X-ray spectroscopy (SEM-EDS) (Corbineau et al., 2013). Extracted phytoliths, mounted directly on pre-cleaned aluminum stubs, were analyzed with a Schottky Thermal Field Emission FEI/Philips XL-30 SEM with back-scattering electron detector. EDS semi-quantitative analyses of C and Si were obtained from 10 to 30 μm locations on selected particles. Special attention was paid to organic-like particles showing tissue-like or non-phytolith morphologies. A total of ~30 analyses per sample were made. Samples with all C:Si peaks area ratios <0.1 were reported as devoid of organic particles. The equal/even accuracy and precision of the EDS analyses were evaluated by multiple measurements [Mean value (M)=1.17; Standard Deviation (SD)=0.02; n=21] of a silicon carbide (SiC) standard (#9441, Micro-Analyses Consultant Instrument LTD, St. Ives, UK).

2.3.2. Stable Isotope Analysis

Stems/leaves, SOM fractions, nutrients/fertilizers and phytolith samples were analyzed for their total C content and stable C isotope ratio (δ^{13}C) using a continuous flow stable isotope ratio mass spectrometer (Delta-Plus CFIRMS) interfaced with a Fisons NA-1500NC (for solid materials) and a Gasbench II (for CO_{2} input).

About 10 mg of phytoliths and 25 mg of soil were weighed out into pre-baked (100 °C per 2 hours) tin capsules (5 x 9 mm capsules from Costech Analytical Technologies Inc., Valencia, CA, USA) using a pre-calibrated microbalance (Sartorius AG, Göttingen, Germany). For accurate integration and calibration of carbon peaks of phytolith samples (~0.1% C), measurements were obtained by decreasing the helium carrier flow rate, and by measuring several size-matched aliquots of standards from the National Institute of Standards Technology. Aliquots of SiO_{2} blanks and fossil phytoliths (MSG70) used as an internal standard at CEREGE (Alexandre et al., 2015, Crespin et al., 2008) were included for background corrections and accuracy (Santos et al., 2010), respectively. For the bulk tissue samples, aliquots of CO_{2} gas were recovered after combustion, and sent to CFIRMS, which has a typical precision of 0.1‰. Stable isotope results are reported as δ values in ‰ relative to the Vienna Pee Dee Belemnite (vPDB).
2.3.3. Radiocarbon Analysis

Stems/leaves, SOM fractions, nutrients/fertilizers, CO$_2$ and phytolith samples were processed for 14C accelerator mass spectrometry (AMS) analyses. About 2 mg of plant tissue, 20-100 mg of SOM and 15-300 mg of phytoliths were loaded for tube-sealed combustion (Santos et al., 2004). To avoid CO$_2$ adsorption on phytolith surfaces, the loaded samples were kept and transferred warm (at 160 °C) to the evacuated line for sealing (Santos et al., 2010). Liquid solutions were freeze-dried directly into tubes prior to combustion. Atmospheric CO$_2$ was extracted from 6 L collection flasks of whole air, by attaching the flasks to an evacuated line. A similar procedure was used to recover the CO$_2$ collected in molecular sieve traps (from flux chambers). Once the CO$_2$ was cryogenically separated from other gasses, it was then transferred to a Pyrex tube at a flame-off port and sealed (Santos et al., 2010). Samples of CO$_2$ from tube-sealed combustions, flanks and traps were cryogenically isolated, and reduced to graphite (Santos et al., 2007, Xu et al., 2007), or transferred to Gasbench II CFIRMS for isotopic analysis.

The 14C measurements were performed at the Keck-CCAMS Facility (UCI). Precision and accuracy in measurements on >0.7 mg of near-modern carbon samples are typically 0.2–0.3% (Beverly et al., 2010), and 1% on samples in the 0.01 mgC range (Santos et al., 2007). The instrument provides the isotopic ratio 13C/12C, allowing for fractionation effects (either spectrometer induced or arising from biochemical processes) to be corrected for all targets measured.

Blanks from SiO$_2$ aliquots were also measured to provide background corrections. All labs and phytolith extraction protocols showed similar procedural blanks (~0.003 mg of modern C and ~0.002 mg of 14C freea). Those values were subtracted from the 14C data, including the results obtained from the MSG70 reference material, for accuracy. Details on such background subtractions can be found elsewhere (Santos et al., 2010). Radiocarbon results were expressed as Fm14C and when appropriate were discussed as ages.

aThe term 14C free is used in association with materials from which the original 14C radioisotope content has been reduced to zero or close to zero. However, those materials obviously continue to maintain their stable amounts of 12C and 13C. Consequently, the addition of 14C free (or organic carbon from subfossil 14C signatures) to pools of C containing present-day atmospheric CO$_2$ signals will lower the overall 14C signature of the pool. For each 1% fossil C present, an offset of 80 years is expected (Santos et al. 2016).
2.3.4. Thermal Analysis

We performed thermal analysis of phytoliths on a modified Thermal-Optical Carbon Aerosol Analyzer (RT 3080, Sunset Laboratory Inc.) (Bae et al., 2004). Phytolith concentrates of 7-10 mg were loaded onto a customized spoon (Jelight Company, Inc. USA), placed into the instrument and kept at 50 °C for ~10 minutes for surface cleansing. The stepwise temperature ramp started at 50 °C and ended at 850 °C 50 minutes later. Pure oxygen (65 mL/min) was used to avoid refractory carbon (char) formation. The CO$_2$ evolved was injected into a manganese dioxide oven at 870 °C, and later quantified by a non-dispersive infrared detector. Typical multi-point calibration curves, when analyzing known quantities of C ranging from 2-120 μg, yielded correlation coefficients greater than 0.998.

Two phytolith samples were analyzed. Durum wheat leaf phytoliths extracted using protocol 1a, and the CEREGE internal standard, MSG70, made of highly weathered fossil phytoliths (Alexandre et al., 2015, Crespin et al., 2008).

3. Results and Discussions

3.1. Isotopic results from above-ground C manipulation experiments

A total of 21 individual phytolith concentrates were produced for the above-ground experiments by all laboratories involved in this project. Those samples are tabulated in the Supplement (Tables S1 and S2), followed by details on the sample processing (protocols, laboratory and measurement identifiers). Note that when sufficient plant material was available (which was the case for the durum wheat samples) some labs could replicate the extraction (i.e. processing the same pool of biomass following the same protocol).

From those 21 phytolith concentrates, 51 14C results were produced to determine the phytC 14C signatures (number of targets includes duplicates and/or replicates, as specified in Tables S1 and S2). Two phytC 14C targets from MSG70, a fossil phytolith internal standard at CEREGE, were also produced to evaluate measurement reproducibility. Overall, the precision and accuracy of the phytC 14C data were better than 0.3%, based on duplicates and triplicates of graphite samples > 0.5 mgC. For the smaller sized samples, 1% or better were recorded in most cases, even after background corrections based on measurements of multiple SiO$_2$ aliquots were propagated into individual uncertainties (Tables S1 and S2). We have not identified significant
differences in inter-laboratory analyses when using the same protocol on subsamples of the same biomass sample, and/or when evaluating procedural blank materials (added to every batch analyzed – details in section 2.3.3). To help with determining the phytC carbon sources, other

\(^{14}\text{C}\) results shown in tables S1 and S2 are from the stems/leaves and SOM fractions (e.g. the carbon pools associated with the labile-accessible and recalcitrant (alkali-insoluble)).

PhytC concentrations were consistent for a given extraction method but showed a clear decreasing trend with increasing protocol aggressiveness. The phytC yields (phytC % relative to the d.wt of phytoliths) averages ranged from 0.24 to 0.06% for the less aggressive protocols 1a and 1b and from 0.05 and 0.002% for the more aggressive protocols 2a and 2b (Figure 2a, and Tables S1, S2).

Phytoliths extracted from either sorghum or durum wheat using protocol 1a produced phytC \(^{14}\text{C}\) signatures closest to the values of the stems and leaves of origin regardless of air \(\text{CO}_2\) concentration (ambient vs enriched \(\text{CO}_2\)) and grass species (Figure 2b). However, phytC \(^{14}\text{C}\) offsets were still evident when compared to the expected values given the year of harvest or artificial tagging (Table S1). For sorghum, absolute offsets varied from 85 (UCIAM123579 and -123580) to 610 years (UCIAM123577 and -123578) when using protocol 1a. The maximum offset increased when using protocols 1b (2633 years; UCIAMS95338), 2a (1920 years; UCIAMS130339), and 2b (1990 \(^{14}\text{C}\) years; UCIAMS95335 to -95337). Durum wheat ambient phytC \(^{14}\text{C}\) absolute offsets varied from 105 (UCIAM123572) to 1925 years (UCIAM125986), while phytC offsets from enriched plots varied from 310 (UCIAM123570 and -123571) to 2885 years (UCIAM125983).

The hypothesis that there is a contribution of SOM-derived C to phytC was tested estimating phytC as a mixture of i) C derived from plant photosynthesis and ii) C derived from the oldest SOM fraction measured. The mixing equation (eq.1) is:

\[
\text{Oldest SOM-derived C contribution} = \frac{(\text{Fm}^{14}\text{C}_{\text{SOM}} - \text{Fm}^{14}\text{C}_{\text{SL}})/(\text{Fm}^{14}\text{C}_{\text{phytC}} - \text{Fm}^{14}\text{C}_{\text{SL}})}
\]

where the \(^{14}\text{C}\) signatures of the oldest SOM, stems and leaves (SL) and phytC are expressed as \(\text{Fm}^{14}\text{C}_{\text{SOM}}, \text{Fm}^{14}\text{C}_{\text{SL}}\) and \(\text{Fm}^{14}\text{C}_{\text{phytC}}\). \(\text{Fm}^{14}\text{C}_{\text{phytC}}\) was expressed relative to \(\text{Fm}^{14}\text{C}_{\text{SOM}}\) (assigned a contribution value of 1) and \(\text{Fm}^{14}\text{C}_{\text{SL}}\) (assigned a contribution value of 0). The average \(\text{Fm}^{14}\text{C}\) values of the oldest SOM-C fractions measured in each experiment (i.e., the \(\text{Fm}^{14}\text{C}\) average
value of the SOM 45-60 cm fraction for *S. bicolor* plots – Table S1 in Supplement, and the refractory 0-15 cm fraction for *T. durum* plots – Table S2 in Supplement) were used for Fm14C$_{\text{SOM}}$.

The mixing curves associated with the SOM-derived C to phytC hypothesis are presented in figure 2b. The Fm14C values of two phytC samples from the Sorghum Ambient CO$_2$ experiment obtained using protocol 1a (UCIAMS123579 and -123580) and one phytC sample from the Durum wheat Enriched CO$_2$ experiment obtained using protocol 1b (UCIAMS130339) were higher than Fm14C values of the stems and leaves of origin, indicating that the soil pool still has remnants of 14C-labeled OC from the 1950s thermonuclear tests (Levin, 1997, Levin et al., 2013). In this case the SOM-derived C was assigned a contribution value of 0, and the stems and leaves a contribution value of 1 in figure 2b. Conversely, some of the phytC Fm14C values from the Durum wheat Enriched CO$_2$ experiment, obtained using protocols 1a, 2a and 2b (UCIAMS123566, 123567, 125985, 130334 and 130335), were lower (14C age older) than the Fm14C value of the oldest SOM fraction or 1 in figure 2b. This pattern suggests that the so-called oldest SOM fraction, which is a mixture of old and young SOM (Schrumpf et al., 2013) may still be “younger” than present-day in terms of its 14C signatures, if the C pool is still bearing some bomb-produced 14C OM or much older if aromatic complexes are dominant (Teller et al. 2003, Torn et al. 2009). For the sorghum experiment this trend was particularly obvious, as the ambient CO$_2$ and the upper soil layers were clearly imprinted with bomb 14C (Levin 1997). Therefore, figure 2b clearly showed that the phytC Fm14C values unambiguously trend toward the Fm14C value (or 14C age) of the oldest SOM fraction. Overall, the crucial point to be noticed is that the phytC 14C offsets shifted linearly towards positive values if the oldest SOM fraction was older than the biomass of origin (Sorghum Ambient and Durum wheat Ambient, Figure 2a), and towards negative values when the oldest SOM fraction was younger (Sorghum Enriched, Figure 2a). Thus, phytC 14C differences were clearly linked to the SOM 14C ages. Moreover, the agreement in phytC 14C values obtained from stems and leaves indicated that the offsets were not linked to plant anatomy.

Regarding δ^{13}C values, the phytC offsets relative to the tissue of origin did not systematically trend towards SOM δ^{13}C values, except for the Sorghum Ambient phytC undergoing the 2b protocol (-21.6±0.1‰ (n=2) as indicated in Figure 3; UCIAMS95335 and 95336). As described earlier, this protocol tends to isolate the most recalcitrant phytC fraction.
The difference between phytC δ13C values of durum wheat and sorghum was higher (~15.7‰) than the difference between δ13C values of the stems and leaves of origin (e.g. ~5.6 vs ~7.2‰ for wheat and sorghum, respectively), as previously reported for grasses with C\textsubscript{3} and C\textsubscript{4} photosynthetic pathways (Webb and Longstaffe, 2000, Webb and Longstaffe, 2010). Without further discrimination of the molecular composition of SOM-derived C absorbed by the plant roots, in-depth discussion of the δ13C differences between phytC and plant biomass is difficult. Nevertheless, the observed differences between phytC and stems and leaves δ13C values were consistent with previous calibration studies, and were explained by preferential occlusions of plant molecular 13C-depleted compounds in phytoliths (Webb and Longstaffe, 2010).

3.2. Isotopic results from below-ground C manipulation experiments

A total of 12 individual phytolith concentrates and phytC 14C targets were produced for the below-ground experiments, with duplicates or triplicates from the same biomass samples (from Planters A, B and C), but subjected to different degrees of oxidation (e.g. protocols 2a and 2b). Other 14C results shown are from the stems/leaves, nutrients/fertilizers, and CO\textsubscript{2} extracted from 6 L flasks and flux chambers (Figure 4). The complete set of isotopic results and sample processing details are tabulated in the Supplement (Tables S3).

Phytoliths produced phytC yields ranging from 0.08 to 0.1% d.wt. when using the less aggressive protocol 1a and from 0.01 to 0.04% d.wt when using the more aggressive protocol 2b (Table S3).

Significant offsets of the phytC 14C values relative to the stem and leaf Fm14C values were again found in association with the C sources in the soils (e.g. substrates/amendments). The highest phytC 14C offset of 3610 years (UCIAMS104366) was obtained from the phytC 14C from Planter B when using protocol 2b, showing again that the increased age discrepancies were due to protocol aggressiveness (e.g. from 1a to 2b). The effect is also observed in the phytoliths associated with Planter C, which received very low amounts of below-ground organic carbon relative to all other treatments (Tables 1 and 2). Specifically, the Planter C phytC 14C offsets increased from 160 (UCIAMS130346; protocol 1a) to 1150 (UCIAMS104362; protocol 2a), and finally to 1760 years (UCIAMS104900; protocol 2b).

Even when we processed biomass samples from all Planters following the same protocol (such as the less aggressive 1a protocol), 14C age discrepancies between phytC and the plant of
origin were highly evident, and correlated to the \(^{14}\)C signatures of amendments (UCIAMS130344 to 130348). PhytC \(^{14}\)C offsets were greater for amendments containing sufficient amounts of C of extreme \(^{14}\)C-signatures (e.g. positive 320 years to Planter A, and negative 680 years to Planter E in Table S3). Note that the Planter A substrate was composed of rich bulk-complex OC imprinted with \(^{14}\)C-bomb values (or Fm\(^{14}\)C signatures higher than present-day values), while the Planter E substrate received a solution of fossil OC (Fm\(^{14}\)C\(\approx\)0; close to \(\sim\)43 kyr BP; n=3) (Tables 1 and 2). As in the above C manipulation experiment, in figure 4 we assigned values of 0 and 1 to the Fm\(^{14}\)C associated with stems and leaves of origin and amendments, respectively (Table S3), and used the same mixing equation (eq.1).

The bulk stems and leaves produced Fm\(^{14}\)C signatures that were very similar to the local ambient air \(^{14}\)CO\(_2\) values collected in the 6L cylinders during the growing season, excluding any possibility that the phytC \(^{14}\)C depletions are a product of urban fossil atmospheric CO\(_2\) fixation. The small discrepancies between the stem and leaf \(^{14}\)C values (e.g. from 25 to 65 years) (Table S3) are attributed to heterogeneities in C distribution within plant cells during C fixation (Pausch and Kuzyakov, 2011, Wichern et al., 2011). The commercial seeds of sorghum were also measured by \(^{14}\)C-AMS (Figure 4) to verify their recent radiocarbon activity (UCIAMS83120 and 83121; Table S3). As expected, once early-fixed photosynthetic CO\(_2\) became dominant, remobilized \(^{14}\)C from seeds made little contribution to mature biomass tissue.

Although Fm\(^{14}\)C values of substrate CO\(_2\) fluxes were depleted towards amendment \(^{14}\)C bulk signatures (UCIAMS83842 to 83845, Table S3), soil CO\(_2\) plant tissue refixation via photosynthesis (and its influence on phytC) was found to be negligible, and cannot be invoked to explain the anomalous phytC \(^{14}\)C results. CO\(_2\) fluxes from the planters’ substrates upon sprouting varied from 0.34 to 1.72 ppm/sec (\(\approx\)10\(^{-5}\) g/m\(^2\)/yr) (Table S3), indicating very little microbial activity. For comparison, global soil CO\(_2\) fluxes vary from 60 to 1000 g/m\(^2\)/yr (Raich and Sclesinger, 1992).

\(\delta\)\(^{13}\)C offsets between phytC and stems and leaves were \(\sim\)6.5‰ on average, including the phytC from Planter B (which contain a mixed C pool of OM detritus of plant origin and carbonate deposits - Table 1), showing that the inorganic fraction of the soil C was not a significant source of phytC (Figure 5). Also in Figure 5, we show the stable isotopic signatures of the CO\(_2\) fluxes (UCIAMS83842 to 83845; Table S3) collected using closed dynamic soil CO\(_2\) flux chambers (Czimzik et al., 2006). The results fell mostly between the air and bulk plant
tissue averages, as expected for CO$_2$ produced from above- and below-ground biomasses, supporting our previous observations of negligible effects of soil CO$_2$ respired to phytC.

This dataset clearly shows that amendment-derived C, adsorbed through root plants, altered the phytC 14C signatures.

3.3. Thermal stability of phytC

Chemical compositional insights on carbonaceous materials can be obtained via oxidation reactivity to thermal treatments; such treatments have been frequently used on organic compounds from soils and sediments (Plante et al. 2011, 2013, Rosenheim et al., 2013). For instance, single bonded carbon structures usually show a lower thermal stability than those dominated by double bonds, such as conjugated and aromatic structures (Harvey et al., 2012). Here, we make use of the same chemical-thermal stability concept to evaluate the heterogeneity of phytC in reacting to heat treatments.

Thermograms obtained from phytoliths of the durum wheat leaves and fossil phytoliths (MSG70) indicated a continuum of phytC CO$_2$ with different degrees of resistance or accessibility (Figure 6). Although the overall production of CO$_2$ was lower for MSG70, the continuum temperature-dependency pattern of phytC was preserved. For example, at 250 °C both phytolith extracts produced CO$_2$, however the leaf phytoliths show lesser amounts of CO$_2$ evolved than soil phytoliths. At 500 °C half of the phytC CO$_2$ in both samples had been evolved, and at 800°C all of the phytC has been completely removed.

Phytoliths typically melt at ~573 °C (Deer et al., 1992), but embedded metals (e.g. Al, Fe, etc) within their structures could lead to a decrease in temperature stability (Wu et al., 2014). Nevertheless, phytC that required much higher temperatures (e.g. $>>$ 573°C) to fully oxidize, places it at the upper-end of the carbon recalcitrance continuum (Cheng et al., 2013, Harvey et al., 2012, Plante et al., 2005, 2011, 2013). Furthermore, even if char occurred during combustion leading to some elemental carbon formation, it does not explain the phytC 14C discrepancies obtained here (Figures 2 and 4) or elsewhere (Santos et al., 2010, Santos et al., 2012a, Santos et al., 2012b, Sullivan and Parr, 2013, Yin et al., 2014).

Santos et al. (2012a) and Yin et al. (2014) intentionally heated phytolith aliquots from a single extract, and observed shifts in 14C ages towards older values. This effect is similar to that observed in total carbon or SOM distributions in soils and sediments when subject to thermal
decomposability (Plante et al. 2011, 2013). Thus, phytolith extractions that employ heat treatments would better isolate the oldest soil C fraction within phytoliths, as previously found (in sections 3.1. and 3.2). Basically, if the C pool in phytoliths is supposedly homogeneous and from a single source (100% atmospheric CO$_2$), the 14C results from all CO$_2$ temperature-fractions should be in absolute agreement, as Fernandez et al. (2015) demonstrated by subjecting carbonaceous materials to ramp pyrolysis and subsequently measuring them by 14C-AMS.

4.1. The SOM-derived C to phytC hypothesis set of evidence

Results from both above- and below-ground experiments showed that the 14C offsets between phytC and stems and leaves pointed toward the oldest SOM 14C values (Figures 2 and 4). This confirmed that a fraction of the old SOM-derived C occluded in phytoliths was more resistant (or less accessible) to oxidation than the occluded C derived from recent photosynthesis or from recent SOM. Once the most labile (or more accessible) C had been removed, the older and more resistant carbon fraction became dominant. This behavior mirrors that in a recent study showing an increase in 14C age offsets of phytoliths with increasing combustion temperature (Yin et al., 2014), and also the thermal decomposability pattern illustrated in the phytC thermograms (Figure 6).

Our findings also imply that a portion of SOM-derived C is absorbed by the roots, transferred to the stems and leave and finally occluded into phytoliths. In the bulk plant organs, the old SOM-derived C amount is far too small to be 14C detected in tissue clippings, as it is masked by the large amounts of photosynthetic atmospheric carbon tissue (bulk stems and leaves averaged \sim41% carbon; Tables S1-S3). On the other hand, in phytoliths, the old SOM-derived C becomes overrepresented when the most labile-accessible phytC starts to be oxidized. It should be noted that the 14C ages of the oldest SOM fraction are averaged bulk values that do not yield any precise assessment of the fine-scale 14C age of the C that may have been absorbed. These drawbacks prevent precise quantification of the old SOM (probably diluted by the young SOM)-derived C contribution to phytC. The impossibility of quantifying precisely the amounts of soil C and associated 14C signatures in phytC precludes application of any correction that would allow phytC to be used as a reliable dating material. As in any other heterogeneous carbon pool, the phytC continuum can be similarly partitioned differently by distinctive chemical extractions. For instance, in Piperno (2015) the entire dataset of post-bomb Neotropical plant phytolith extracts
were neither accurate nor precise. While 14C offsets reached discrepancies as high as 4.4 kyrs between expected calendar ages and phytC, two pairs of phytolith extracts obtained by distinct chemical treatments (sulfuric vs. nitric) yielded a 50 percent reproducibility rate (Table 1, Santos et al. 2016).

Recent 3D X-Ray microscopy and NanoSIMS measurements of a phytolith sample from the Durum wheat enriched CO$_2$ experiment (TD-F-L/1a-CEREGE, Table S1) (Alexandre et al., 2015) suggested two locations for phytC: in micrometric internal cavities and within the silica network. Rapid opening of internal cavities during the dissolution process resulted in losses of phytC found in these locations, which is expected when phytoliths are subject to rapid oxidation. Conversely, phytC in the silica network is homogeneously distributed at the micrometric scale, and is less accessible to oxidation. These two pools of phytC may account for the heterogeneity of phytC accessibility to oxidation.

4.2. Rebuttals to possible arguments against the SOM derived-C contribution to phytC hypothesis

Our experiments and dataset allow the rejection of several hypotheses for the “anomalously” old 14C ages for phytC. First, bias due to exogenous C contamination during the phytolith extractions performed simultaneously by several laboratories and artifacts of errors in background corrections are highly unlikely. In these cases the 14C offsets would trend in a single direction, rather than being both positive and negative (Figures 2b and 4). In addition, aliquots of SiO$_2$ blank and fossil phytoliths (MSG70) reference material yielded 14C values in close agreement with the expected results, giving no indication of the presence of unusual contaminants. Second, natural- or spectrometer-produced anomalous δ^{13}C shifts of phytC were not observed here (Figures 3 and 5) nor elsewhere (Santos et al., 2010, Santos et al., 2012b, Sullivan and Parr, 2013). Third, contributions of soil resired CO$_2$ to mature plant tissue (and phytC) were also negligible (section 2.2.3). Fourth, phytC 14C results were not biased by organic matter residues, as the efficiency of the phytolith extraction protocols was fully checked by SEM-EDS analyses (e.g. acceptance threshold of C:Si ≤ 0.1 of 30 frames or more) (Corbineau et al., 2013), a method superior to microscopic evaluation alone (Figures S1 and S2) (Kameník et al., 2013, Santos et al., 2012a). Moreover, our extracts were consistently reproducible regarding phytC yields across all labs involved (Tables S1-S3) and thermal decomposability properties.
Since it has been established that plants do not photosynthesize all carbon found within their tissues (details in section 4.5), the uptake of SOM-derived C via the root system and its allocation to phytC is the only plausible explanation for the phytC 14C offsets.

4.3. Implications for the use of phytC as a proxy of plant C

Since phytoliths (and to some extent plant tissues) contain a broad continuum of C with a complex mixture of chemical compounds of different turnover times as evidenced here (Figures 2, 4, and 6), we believe that insufficient to excessive oxidations can result in wild moves in phytC 14C dates from thousands, to hundreds, to back to thousands years old (Figure 7).

While pure surface phytoliths produced from a less aggressive protocol (e.g. 1a) may minimize 14C offsets to some degree, two factors remain that may explain the anomalous thousands of years old age of phytC indicated in the literature (Wilding, 1967, Kelly et al., 1991, McClaran and Umlauf, 2000, Santos et al., 2010, Santos et al., 2012a, Sullivan and Parr, 2013, and recently, Piperno 2015 and Santos et al. 2016). The first factor is the incomplete removal from phytolith concentrates of refractory SOM residues, either extraneous in the case of litter and soil samples or from the plant tissue itself. The accumulation effect of small quantities of residual recalcitrant (and somewhat older) SOM derived-C from concentrates due to incomplete digestion (Figure 7), which can be detected via C:Si peaks with SEM-EDS (Corbineau et al. 2013), may be undetected under natural light microscopy. For instance, Santos et al. (2010) reported phytC 14C age offsets of 2.3 to 8.5 kyrs BP on phytolith concentrates extracted from living grasses using conventional digestion protocols, such as Kelly et al. (1991). Later, OM remnants in association with those anomalous 14C results were detected by SEM-EDS on phytolith concentrates (Figure 2 in Santos et al. 2012a), thus demonstrating that even very small amounts of surface C were enough to bias the phytC 14C results. Attempts to reproduce the atmospheric 14CO$_2$ bomb-peak in phytC from bamboo litter and mature leaves subjected to microwave digestions, also yielded offsets of several hundreds to 3.5 kyrs (Santos et al., 2012b, Sullivan and Parr, 2013). Similarly, a set of post-bomb Neotropical plant phytolith extracts produced by two protocols yielded phytC 14C ages that were highly inaccurate, e.g. phytC 14C offsets range from several decades to 4.4 kyrs (Santos et al. 2016). In those cases, preferential bias due to post-depositional occlusion of SOM was unlikely. All phytolith extracts analyzed were obtained from living or close to living vegetation, undergoing different extraction
procedures coupled with optical microscope analyses (for purity evaluations). Cumulative effects of OM remnants on phytoliths would also explain the higher phytC yields (Kelly et al., 1991, Li et al., 2014, Parr and Sullivan, 2005, Santos et al., 2010, Song et al., 2014). The second factor is the increasing relative proportion of old SOM-derived C in phytC when phytolith extraction aggressiveness is high enough to remove the phytC fraction most sensitive to oxidation (e.g. the labile-accessible C fraction termed ‘protocol 2’ in Figure 7). Once carbon partitioning takes place via either further chemical extractions or increased combustion temperatures, phytC concentrations tend to drop followed by increased 14C offsets to thousands of years old (Santos et al. 2012a, Yin et al., 2014 and the present work).

Since the range of old SOM-derived C content in phytC left by a given protocol can be large (Figure 2), and can vary in association to the abundances of C fractions within the substrates and their respective 14C signatures (Figure 4), any attempt to apply a systematic correction to obtain a phytC Fm14C signature derived solely from photosynthesis is likely to fail. We can also assume that when grasses are forced to reach greater rooting depths (Sivandran and Bras, 2012) than the ones sampled here, where the proportion of intrinsic-older organic compounds is likely to rise (Teller et al. 2003, Torn et al. 2009, Kleber, 2010, Petsch et al., 2001), old SOM-derived C in phytC and its Fm14C depletions would also increase. Furthermore, by themselves the 14C signatures of phytC pools with competing 14C ages (recent SOM-derived C vs present-day atmospheric 14CO$_2$) are insufficient to distinguish them. Therefore, the old soil-C to phytC contributions found here in the 14C signatures of phytoliths extracted from living grasses are likely to be only a very small fraction of the total SOM contribution to phytC, as discussed earlier.

Further work is still needed to assess the full impact of SOM (e.g., the different fractions of labile vs. recalcitrant carbon; Han et al., 2007) to the phytC pool. At natural conditions the presence of SOM-derived C in phytC may bias the δ^{13}C signature to a lesser extent if the SOM and the plants of origin have similar photosynthetic pathways (C$_3$ or C$_4$). The bias may however be significant if they are not. The δ^{13}C signature of SOM can be hard to assess, especially in the case of phytoliths extracted from sedimentary archives. Thus, we suggest that the use of 14C and δ^{13}C signatures of phytC as a dating tool or as a proxy of plant or atmospheric CO$_2$ signatures should be reappraised in the light of the present findings.
4.4. Implications for long-term atmospheric CO₂ biosequestration

The evidence for a SOM-derived C contribution to phytC decreases the putative effectiveness of grasslands and crops to sequester atmospheric CO₂ for two reasons. Besides negatively affecting phytolith C storage capacity, our findings most importantly invalidate phytC accumulation rates estimated from direct \(^{14}\)C dating of soil phytoliths (Parr and Sullivan, 2005). In addition, other issues may also come into play. For instance, the phytolith biosequestration hypothesis is based essentially on the following premises. First, high phytC concentrations are required. Values of 1.5-3% d.wt. have been quantified (e.g. Li et al., 2013, Parr and Sullivan, 2011, Parr et al., 2010). These values are more than 10 times higher than the concentrations recently measured by others (<0.1% d.wt. [Santos et al., 2010]). Differences in the efficiency of phytolith extraction protocols (Kameník et al., 2013), combined with the lack of proper control (blanks) and reproducibility of results (Corbineau et al., 2013) may have contributed to these high phytC concentrations. Second, a soil phytolith stability factor of 70 to 90% based on a few \(^{14}\)C measurements of soil phytoliths (e.g. Parr and Sullivan, 2005) has been estimated and widely used (Li et al., 2014) regardless of soil type. These high percentage estimates differ from those of biogenic Si fluxes, based on Si pool measurements in tropical soil-plant systems. For instance, according to Alexandre et al. (2011) investigating two soil/plant systems in intertropical areas, only 10% of phytoliths produced annually are in fact preserved for extended periods, the remaining 90% being rapidly dissolved due to weathering (Oleschko et al., 2004). These proportions would reasonably depend on environmental conditions such as activity of elements (Si, Al, Fe, H+) in soil solution, morphology of phytoliths (and thus vegetation type), elemental concentration of phytoliths (and thus soil type).

Only as an exercise, we used the highest phytC yield measured in the frame of the present study (0.3% of phytoliths) coupled with the 10% phytolith stability factor estimated from Alexandre et al. (2011), to recalculate a global grassland phytC-sink. We obtain a value of r 4.1 \(\times 10^4\) tC yr\(^{-1}\), which is roughly one hundred times lower than the 3.7 \(\times 10^6\) tC yr\(^{-1}\) value reported elsewhere (Song et al., 2014 and references therein). This amount is insignificant when compared to the 2.6 \(\times 10^9\) tC yr\(^{-1}\) estimate for the land C sink (I.P.C.C. Staff, 2007), or to the 0.4\(\times 10^9\) tC yr\(^{-1}\) global mean long term soil C accumulation rate (Schlesinger, 1990). This
suggests that previous conclusions on the importance of developing silica accumulator crops for increasing atmospheric C sequestration should be reconsidered.

4.5. Implications for our understanding of soil C pools mobilization.

Our findings have important implications for our understanding of the mobilization of soil C pools. Several studies have shown that terrestrial plant roots can uptake soil dissolved inorganic carbon (DIC). DIC can be transported directly by the transpiration stream or fixed in mycorrhizal and root tissues and subsequently translocated in the form of amino acid (Gioseffi et al., 2012, Rasmussen et al., 2010, Talbot and Treseder, 2010). DIC can represent 1 to 3% of total leaf-fixed CO$_2$ (Ford et al., 2007, Ubierna et al., 2009). However, as DIC is expected to be in equilibrium with soil CO$_2$ respired from autotrophic and heterotrophic sources, its 14C signature should reflect an average of SOM 14C signatures, close to contemporary. Assuming soil DIC as the soil end-member in Figure 2, the phytC samples from ambient CO$_2$ experiments would plot along mixing lines with lower slopes than the actual ones. The 14C age of several thousand years systematically measured for the most resistant phytC, rather suggests that an older SOM fraction supplies the SOM-derived C absorbed by the roots, up-taken and transported to the stem and leaves tissues.

The fact that roots can also acquire soil C in a molecular form has been previously inferred from the detection in roots, stems and shoots of polycyclic aromatic hydrocarbons (PAH) (Gao et al., 2010, Yu et al., 2013), and soil amino acids (AA) (Paungfoo-Lonhienne et al., 2008, Warren, 2012, Whiteside et al., 2012, Whiteside et al., 2009). Although reported PAH concentrations were three orders of magnitude below phytC concentrations (e.g. 10^{-9} g/g vs. 10^{-6} g/g, assuming 0.1% d.wt. for both phytolith concentration in plants and phytC content in phytoliths), AAs make up several tenths of % of the plant nitrogen requirements (Lipson and Näsholm, 2001). Arbuscular mycorrhizal fungi, which colonize 70% of plant families (Talbot and Treseder, 2010, Treseder and Turner, 2007) are probably at the base of the transfer of molecular C from the rhizosphere to the roots, although intact protein has also been shown to enter root cells without the help of mycorrhizae, most likely via endocytosis (Paungfoo-Lonhienne et al., 2008). At lower scales, AA transporters were shown to confer the ability of plants to absorb molecular C from the soil solution (Lipson and Näsholm, 2001, Tegeder, 2012). Root acquisition of humic substances (active and passive) and its positive effect on plant nutrient
uptake has been also reported (Trevisan et al., 2010). The incorporation of below-ground physical, chemical and biological processes in the rhizosphere (e.g. microbial priming effect or nitrogen (N) and C cycles interactions) have also been proposed (Heimann and Reichstein, 2008 and references therein). The results of the present study go a step further by demonstrating that part of the soil molecular C absorbed by roots is several thousand years old. Recent studies also show that old, supposedly poorly accessible SOM (Kleber, 2010, Petsch et al., 2001, Schmidt et al., 2011), can be decomposed by organisms or catalytic enzymes (Dungait et al., 2012, Marín-Spiotta et al., 2014). Common sources of dissolved Si for plants are clay minerals and amorphous silicates (allophane, imogolite). Due to their small size, high surface functional groups, area, and porosity, these minerals stabilize SOM either by adsorption onto their surface or by aggregation (Basile-Doelsch et al., 2007, Jones and Singh, 2014, Kögel-Knabner et al., 2010). Further studies are needed to investigate whether dissolution of Si-bearing forms during active uptake of Si (Ma et al., 2006) may also promote old SOM mobilization, ready to be chelated with Si, absorbed by the roots and translocated to the stems and leaves.

5. Conclusion

Although photosynthesis is the main source of C in plant tissue, we have demonstrated here that grass biosilica (phytoliths) occlude SOM-derived C that can be several thousand years old, debunking the common assumption of phytC photosynthetic carbon exclusivity. This finding suggests causes for previous anomalously older phytC 14C ages found in the literature. Moreover, the fact that phytC is not uniquely constituted of photosynthetic C limits the usefulness of phytC either as a dating tool or as a significant sink of atmospheric CO$_2$. Revised estimates of atmospheric CO$_2$ biosequestration by phytoliths led to values that are insignificant compared to the total land C or soil C sinks. All in all, by demonstrating that old SOM-derived C is accessible to roots and builds-up in plant biosilica, this study constitutes a basis to further investigate the mechanism and amplitude of old SOM recycling by roots for a better understanding of the C cycle at the soil/plant interface.
Author Contributions: G.M.S. conceived the study. G.M.S., A.A., P.E.R., and R.C. designed the experiments and conceived the strategies for phytolith extraction and purity analyses. G.M.S., P.E.R., A.A., A.H., R.C. and H.M. performed the experiments and contributed to analysis tools. F.B. and L.C. provided bulk tissue and soil samples from T. Durum FACE. G.M.S., A.A., and P.E.R. interpreted the data and wrote the paper. All authors discussed the results and implications, and commented on the manuscript.

Acknowledgements: The authors gratefully acknowledge the support of the U.S. National Science Foundation (DEB-1144888 to GMS), the French FIR 2010 (Aix-Marseille Université), ECCOREV 2011, AIR Archéométrie 2011(CNRS) and Labex OT-Med 2013. PER wishes to thank J.A. Mason (University of Wisconsin-Madison) and the National Lacustrine Core Facility (University of Minnesota) for lab space usage. GMS thanks M.J. Ottman, B. Kimball, S.W. Leavitt, E. Pendall, P. Pinter, G. Hendrey, H. L. Cho and R. Rauschkolb for providing the archived Maricopa FACE samples. Financial support provided by the Durum experiment via the "Fondazione in rete per la ricerca agroalimentare" with the AGER program: agroalimentare e ricerca is gratefully acknowledged. We thank J. Southon for help with the 14C-AMS analyses, and C. Czimczik and M. Lupasco for technical support with the CO$_2$ flux measurements, help in interpreting the data, and suggestions and comments on an early version of this paper. We would like to thank X. Xu for the stable isotope analysis and technical support for CO$_2$-air cryogenic extraction, and Q. Lin and the Laboratory for Electron and X-ray Instrumentation (LEXI) at UC Irvine for access to lab space and assistance with X-ray analytical techniques. We also thank S. Fahrni for providing the inorganic fertilizer used in the control planter, and K. Gallagher for her efforts on the estimates of percent carbon of some amendments. A.A. thanks J. Balesdent (CEREGE) for helpful discussion on root absorption of molecular C. The authors also wish to extend their thanks to the Editor Dr. Roland Bol and the three anonymous reviewers for the constructive comments.
References

Levin, I. Twenty Years of Atmospheric CO_{2} Observations At Schauinsland Station, Germany. Radiocarbon, 39, 205-218, 1997.

Plants can use protein as a nitrogen source without assistance from other organisms.

Song, Z., Parr, J. F., Guo, F. Potential of global cropland phytolith carbon sink from optimization of cropping system and fertilization. PLOS One, 8, e73747, 2013.

Table 1: Below-ground experiment. Details of substrate amendments, their carbon content, radiocarbon values (as Fm14C and 14C age) and C isotopic signatures.

<table>
<thead>
<tr>
<th>Name</th>
<th>Major Contents</th>
<th>%C (mass)a</th>
<th>Fm14C</th>
<th>$\pm 1\sigma$</th>
<th>14C age</th>
<th>$\pm 1\sigma$</th>
<th>δ^{13}C (%)b</th>
<th>$\pm 1\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miracle Gro® (MG)</td>
<td>Sphagnum Moss, Perlite, Compost, NH$_4$NO$_3$, (NH$_4$)$_3$PO$_4$, Ca$_3$(PO$_4$)$_2$, K$_2$SO$_4</td>
<td>49.5 (n=2)</td>
<td>1.0849</td>
<td>0.0028</td>
<td>-650b</td>
<td>25</td>
<td>-26.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Greensand (GS)</td>
<td>Glaucnite with organic and inorganic detritus, MnO$_2$, SiO$_2</td>
<td>0.10c</td>
<td>0.1591 (n=2)</td>
<td>0.0016</td>
<td>14765</td>
<td>78</td>
<td>-24.3(OC; n=4)</td>
<td>0.1</td>
</tr>
<tr>
<td>Ionic Grow (IG)</td>
<td>Ca(NO$_3$)$_2$, KNO$_3$, H$_3$PO$_4$, HNO$_3$, K$_2$SO$_4</td>
<td>0.8</td>
<td>0.0374 (n=2)</td>
<td>0.0101</td>
<td>26550</td>
<td>2192</td>
<td>-26.4</td>
<td>0.1</td>
</tr>
<tr>
<td>Earth juice (EJ)</td>
<td>Kelp meal, MgSO$_4$ borax, CaSO$_4$, FeSO$_4$, MnSO$_4$, Na$_2$MoO$_4$, ZnSO$_4</td>
<td>15.44 (n=2)</td>
<td>0.4991 (n=3)</td>
<td>0.0013</td>
<td>5583</td>
<td>24</td>
<td>-24.1 (n=2)</td>
<td>0.2</td>
</tr>
<tr>
<td>Fossil Fuel (FF)</td>
<td>Humic acids (from leonardite or lignite coal</td>
<td>33.04 (n=2)</td>
<td>0.0055</td>
<td>0.0003</td>
<td>43340</td>
<td>1700</td>
<td>-26.2 (n=2)</td>
<td>0.2</td>
</tr>
<tr>
<td>Inorganic in-house fertilizer (IF)d</td>
<td>NaH$_2$PO$_4$, MgSO$_4$, Ca(NO$_3$)$_2$, KNO$_3</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Silica Blast (SB)d</td>
<td>Na$_2$SiO$_3$, K$_2$SiO$_3</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
</tbody>
</table>

aTotal percent carbon was determined by manometric measurements of CO$_2$ after combustion of solids. Those values are estimates only, as it does not take in account volatile organic C losses during the drying procedure of the amendments as solutions; bnegative 14C ages are associated with material that fixed C during the post-nuclear testing period (e.g. Post-AD 1950 to present); cGS %C is based on its total C amount by d.wt., with 0.06% of it constituted of organic matter detritus with the remaining C pool from marine carbonates. %C estimates of independent fractions were based on stable isotopic measurements of bulk and HCl treated (OC fraction) subsamples (section 2.2.2). Nevertheless, the 14C values of the organic C and bulk fractions are similar, and are shown here as an average value. The δ^{13}C values of both fractions are shown as reference; dattempts to produce CO$_2$ from solids (upon freeze-dry) confirmed the absence of C in those amendments, and therefore those are not shown.
Table 2: Below-ground experiment. Planters’ major features: substrates and amendments, living plant appearance, biomass by d.wt. and phytolith yields. All nutrients and fertilizers were administered in aqueous solutions, except for MG. In bold: main amendment.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amendments</td>
<td>In MG</td>
<td>In GS, IG<sup>a</sup></td>
<td>IG<sup>a</sup></td>
<td>EJ, IF<sup>b</sup></td>
<td>FF, IF<sup>b</sup></td>
<td>IF<sup>b</sup></td>
</tr>
<tr>
<td>Silica Provider</td>
<td>In MG</td>
<td>In GS</td>
<td>SB</td>
<td>SB</td>
<td>SB</td>
<td>SB</td>
</tr>
<tr>
<td>Appearance</td>
<td>Dark green</td>
<td>Dark green</td>
<td>Dark green</td>
<td>Green</td>
<td>Yellowish green</td>
<td>Green</td>
</tr>
<tr>
<td>Biomass (g)</td>
<td>98.57</td>
<td>79.09</td>
<td>89.24</td>
<td>86.67</td>
<td>54.78</td>
<td>53.37</td>
</tr>
<tr>
<td>Phytolith yield<sup>c</sup></td>
<td>0.12</td>
<td>0.78</td>
<td>0.83</td>
<td>0.83</td>
<td>1.77</td>
<td>1.35</td>
</tr>
</tbody>
</table>

^aIG has a very low %C. Therefore, its C contribution to planters B and C after dilution into solution (e.g. ~ 0.02 grams of C per feeding) was found to be very small, a conclusion supported by isotopic analyses (Table S3);^bIF (which does not contain measurable amounts of C) was added to those planters to supply micronutrients to support plant growth;^cas % of dry leaf and stem biomass combined.
Fig. 1: Sketch of a) the conventional hypothesis of plant C occlusion during silica precipitation based solely on atmospheric CO$_2$ as a source, and b) the emerging hypothesis of a dual origin (atmospheric CO$_2$ and SOM) for plant C (and phytC). Young and old soil C distributed in leaf epidermis (green tissue) and phytoliths (illustrated by the bilobate type shape outlined in black) are represented by black and orange dots, respectively, in the microscope diagram.
Fig. 2: Above ground C manipulation procedure. a) Averaged Fm14C values versus averaged phytC yields (or concentration in % of phytoliths). Constant solid lines correspond to the averaged Fm14C values obtained for stems and leaves (SL) of origin and the oldest extracted SOM fraction. b) Oldest SOM-derived C contribution to phytC calculated using the mixing equation (eq. 1) presented in the text expressing the 14C signature of phytC as the result of mixing between the C derived from plant photosynthesis and the C derived from the oldest...
extracted SOM fraction. Phytolith samples are labeled according to the extraction protocol (1a, 1b, 2a, 2b described in caption and in the text) used and the laboratory of extraction (UCI, CEREGE, LacCore and SSAL).

Fig. 3. Above-ground C manipulation experiment. δ^{13}C values of stems and leaves, phytC, and soil SOM fractions obtained for A) sorghum and B) durum wheat experiments. To facilitate comparisons between groups, samples from ambient and enriched CO$_2$ plots are plotted next to each other. Values are reported as per mil (%) related to PDB. Results of the bulk and refractory SOM fractions were averaged; consequently results and uncertainties indicate multiple data points. Individual results are shown in Tables S1 and S2.
Fig. 4. Below ground C manipulation procedure: Oldest amendment-derived C contribution to phytC calculated using the mixing equation (eq. 1) presented in the text expressing the \(^{14}\)C signature of phytC as the result of mixing between C derived from plant photosynthesis (seeds, stems and leaves represented by the green squares) and C derived from the oldest amendment (MG, EJ, GS, IG, FF defined in table 1 and represented by the red squares). Phytolith samples are labeled according to the phytolith extraction protocol used (1a and 2b) and the laboratory of extraction (UCI, CEREGE and SSAL). Selected age benchmarks from substrate amendments and soil CO\(_2\) fluxes are shown for reference on the right axis.
Fig. 5. Below-ground C manipulation experiment. δ^{13}C values of the respired CO$_2$, stems and leaves, amendments and phytC for the five planters enriched in organic carbon nutrients (A-E). Values are reported as per mil (‰) related to PDB, and individual symbols represent single results as reported in Table S3. For planter B we report two values, its OC fraction (-24.3‰) and its bulk fraction (-12.1‰ – a mixture of OC and inorganic carbon) (Table 1). Constant solid lines correspond to the average δ^{13}C values of ambient-air CO$_2$ and bulk plant tissues.
Fig. 6: Thermograms (n=2; blue and red lines) of phytoliths obtained from a) durum wheat leaves, phytoliths extracted following protocol 1a (Table S2), and b) soil phytoliths MSG70 extracted using a conventional protocol adapted to soil and sediment materials. Peaks are artifacts of the 100°C temperature-step increments. Vertical lines indicate main temperature thresholds, as explained in text.
Fig. 7: Conceptualization of the impact of phytolith extraction aggressiveness and C removal on 14C age of phytoliths. Incomplete digestion leads to an accumulation of old SOM residues on phytolith extract surfaces. Protocol 1 removes all surface OM and better preserves the dual source phytC signature. Protocol 2 removes all surface OM and labile (intrinsically young) phytC from inside the silica network. For illustration purposes, young and old C are represented by black and orange dots, respectively (cf Figure 1b).