Photomineralization and photomethanification of dissolved organic matter in Saguenay River surface water

Y. Zhang¹,², H. Xie²

¹Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong Province 264003, P. R. China

²Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada

Correspondence to: H. Xie (huixiang_xie@uqar.ca)

1
Abstract. Rates and apparent quantum yields of photomineralization (AQY$_{DOC}$) and photomethanification (AQY$_{CH_4}$) of chromophoric dissolved organic matter (CDOM) in Saguenay River surface water were determined at three widely differing dissolved oxygen concentrations ([O$_2$]) (suboxic, air-saturation, and oxygenated) using simulated-solar radiation. Photomineralization increased linearly with CDOM absorbance photobleaching for all three O$_2$ treatments. Whereas the rate of photochemical dissolved organic carbon (DOC) loss increased with increasing [O$_2$], the ratio of fractional DOC loss to fractional absorbance loss showed an inverse trend. CDOM photodegradation led to a nearly complete mineralization under suboxic conditions but to only a partial mineralization under oxic conditions. AQY$_{DOC}$ determined under oxygenated, suboxic, and air-saturated conditions increased, decreased, and remained largely constant with photobleaching, respectively; AQY$_{DOC}$ obtained under air-saturation with short-term irradiations could thus be applied to longer exposures. AQY$_{DOC}$ decreased successively from ultraviolet B (UVB) to ultraviolet A (UVA) to visible (VIS), which, alongside the solar irradiance spectrum, points to VIS and UVA being the primary drivers for photomineralization in the water column. The photomineralization rate in the Saguenay River was estimated to be 2.31 × 108 mol C yr$^{-1}$, accounting for only 1% of the annual DOC input into this system.

Photoproduction of CH$_4$ occurred under both suboxic and oxic conditions and increased with decreasing [O$_2$], with the rate under suboxic conditions ~7-8 times that under oxic conditions. Photoproduction of CH$_4$ under oxic conditions increased linearly with photomineralization and photobleaching. Under air-saturation, 0.00057% of the photochemical DOC loss was diverted to CH$_4$, giving a photochemical CH$_4$ production rate of 4.36 × 10$^{-6}$ mol m$^{-2}$ yr$^{-1}$ in the Saguenay River and, by extrapolation, of (1.9–8.1) × 108 mol yr$^{-1}$ in the global ocean. AQY$_{CH_4}$ changed little
with photobleaching under air-saturation but increased exponentially under suboxic conditions. Spectrally, AQY_{CH_4} decreased sequentially from UVB to UVA to VIS, with UVB being more efficient under suboxic conditions than under oxic conditions. On a depth-integrated basis, VIS prevailed over UVB in controlling CH_4 photoproduction under air-saturation while the opposite held true under O_2-deficiency. An addition of micromolar levels of dissolved dimethyl sulfide (DMS) substantially increased CH_4 photoproduction, particularly under O_2-deficiency; DMS at nanomolar ambient concentrations in surface oceans is, however, unlikely a significant CH_4 precursor. Results from this study suggest that CDOM-based CH_4 photoproduction only marginally contributes to the CH_4 supersaturation in modern surface oceans and to both the modern and Archean atmospheric CH_4 budgets, but that the photochemical term can be comparable to microbial CH_4 oxidation in modern oxic oceans. Our results also suggest that anoxic microniches in particulate organic matter and phytoplankton cells containing elevated concentrations of precursors of the methyl radical such as DMS may provide potential hotspots for CH_4 photoproduction.

1. Introduction

Solar radiation in the ultraviolet (UV) and visible (VIS) regimes can break down chromophoric dissolved organic matter (CDOM), leading to the loss of absorbance (i.e. photobleaching) (Del Vecchio and Blough, 2002) and dissolved organic carbon (DOC, i.e. photomineralization) (Obernosterer and Benner, 2004) and the production of CO_2 (Miller and Zepp, 1995), biolabile carbon (Kieber et al., 1989; Miller et al. 2002), and various biologically and atmospherically active trace compounds (Moran
Photomineralization alone or combined with photochemically stimulated biomineralization has been suggested as a significant sink of DOC in many rivers and lakes (e.g. Bertilsson and Tranvik, 2000; Vähätalo and Wetzel, 2004; Cory et al., 2014) and a major sink of terrigenous DOC in coastal and shelf waters (Miller and Zepp, 1995; Aarnos et al., 2012; Fichot and Benner, 2014). Many trace gases produced from CDOM-involved photoprocesses are supersaturated in natural waters (e.g. carbonyl sulfide, iodomethane, carbon monoxide), thereby contributing to their budgets in the atmosphere (Liss et al., 2014). CDOM photochemistry therefore plays an important role in biogeochemical cycling of DOC and trace gases in natural waters (Mopper and Kieber, 2002; Zafiriou, 2002).

Methane (CH₄), the second most important greenhouse gas, is one of the trace gaseous compounds known to emit from aquatic systems to the atmosphere (Cicerone and Oremland, 1988; IPCC, 2013). Although CH₄ in natural waters has long been thought to be produced exclusively under anaerobic conditions (Reeburgh, 2007), recent studies have revealed that aerobic microbial metabolism can also generate CH₄ through decomposition of methylated precursors, such as methylphosphonates (Karl et al., 2008; Metcalf et al., 2012). More recently, a number of studies observed correlations between CH₄ concentration and concentrations of dimethylsulfoniopropionate (DMSP) and/or dimethylsulfoxide (DMSO) in the Arctic and Pacific Oceans (Damm et al., 2008, 2015; Weller et al., 2013; Zindler et al., 2013). Carbon isotope tracer experiments also confirmed DMSP and its degradation product, dimethylsulfide (DMS), to be plausible substrates of methylotrophic microbes leading to CH₄ production in surface seawater (Damm et al., 2010; Florez-Leiva et al., 2013). In addition to biomethanation, abiotic processes have also been suggested as potential
CH₄ production pathways in oxygenated natural waters. Tilbrook and Karl (1995) observed formation of CH₄ from sediment trap-collected sinking particles after exposure to solar radiation and suspected a photochemical source. Bange and Uher (2005) assessed the possibility of CH₄ photoproduction (i.e. photomethanification) from CDOM in a number of river and estuarine systems and concluded that this pathway is significant only under anoxia in the presence of an added methyl radical precursor. They only tested acetone but suggested that other water-soluble methyl radical precursors such as acetonitrile, methionine, and dimethyl sulfide (DMSO), could be good candidates as well.

The purpose of this study is to explore the role of photochemistry in the cycling of DOC and CH₄ in the highly colored surface water of the Saguenay River on the north shore of the St. Lawrence estuary (Canada). We determined the apparent quantum yields (AQYs) of photomineralization and photomethanification of CDOM and examined the effects of dissolved oxygen (O₂) and the dose and spectral composition of incident light on these two photoprocesses. Given the recent finding of the involvement of DMS in microbial CH₄ production (Florez-Leiva et al., 2013), we also investigated this compound as a potential precursor of CH₄ photochemically produced.

2. Experimental Section

2.1. Study site and sample collection

The Saguenay River (Fig. 1), extending 165 km long from Lac Saint-Jean to Tadoussac and having a mean discharge of 1194 m³ s⁻¹ (Bélanger, 2003), is the principal tributary of the St. Lawrence estuary. Seasonal variations in both discharge
rate and water quality tend to be equalized due to regulation by hydropower dams in
the upper reach of the river (Schafer et al., 1990; Roy et al., 2000). The Saguenay
River intersects the St. Lawrence estuary near Tadoussac, where tides can propagate
upriver to ~15 km upstream of Chicoutimi. About 15 km downstream of Chicoutimi
lies the Saguenay Fjord, which is characterized by a strong vertical stratification with
a thin surface mixed layer of 5–20 m in summer (Drainville, 1968) and a thinner layer
in winter (Bourgault et al., 2012). Terrigenous humic substance is the dominant
component (over 50% in terms of DOC) of dissolved organic matter in the surface
water of the fjord (Tremblay and Gagné, 2009) and CDOM behaves conservatively in
the entire water column (Xie et al., 2012).

Surface water was taken at Chicoutimi (48.4°N, 71.1°W) at ebb tide on 20
November 2013 using a clean high-density polyethylene bucket, transferred into 20-L
acid-washed, collapsible polyethylene bags (Cole-Parmer), and immediately brought
back to the laboratory in Rimouski. The water was gravity-filtered through Whatman®
Polycap 75 AS filtration capsules sequentially containing 0.2 µm glass microfiber and
Nylon membrane filters. The capsules were extensively flushed with Nanopure water
and then sample water before they were used to avoid contamination. This procedure
removed more than 99% of bacteria as confirmed by flow cytometry with an Epics
Altra flow cytometer (Beckman Coulter) following the procedure reported by Xie et
al. (2009). Salinity was measured to be 0.1 using an YSI model 30 handheld salinity,
conductivity and temperature system. All samples were kept at 4°C in the dark until
further processing.

2.2. Irradiation
Immediately before irradiation, water samples were re-filtered through 0.2 µm nylon filters (Millipore) to minimize bacterial contamination. To assess the effect of dissolved O₂ on the photoprocesses of interest, samples were bubbled with medical-grade air, pure O₂, and pure N₂ (Air Liquide) for at least 1.5 h to obtain three widely different levels of O₂. Dissolved O₂ concentrations ([O₂]ₚ) were measured to be 271.2 µmol L⁻¹, 1023.0 µmol L⁻¹ and 53.1 µmol L⁻¹ in the air-, O₂-, and N₂-purged water, respectively. The [O₂] in the N₂-purged water was slightly higher than expected from equilibrium with pure N₂ while vice versa for the O₂-purged water due mainly to exchange with the atmosphere during sample transfer. Herein the air-, O₂-, and N₂-bubbling are referred to as air-, O₂-, and N₂-treatment, respectively. After bubbling, water was transferred into cylindrical quartz cells (length: 25.0 cm; i.d.: 2.2 cm). The cells were sealed without headspace with ground glass stoppers following sufficient overflowing. The value of pH remained constant (7.22) under air-purging but increased significantly under O₂- and N₂-purging. In the latter case, the pH was adjusted to the initial value with 0.1 N HCl (ACS grade, BDH) to minimize potential effects of pH variation on CDOM photochemistry (Anesio and Granéli, 2003; Molot et al., 2005; Hong et al., 2014).

Irradiations were performed using a Suntest XLS+ solar simulator equipped with a 1500 W xenon lamp. The sample-filled quartz cells were horizontally immersed (~2 mm below water surface) in a temperature-controlled water bath (20 ± 1°C) located immediately beneath the exposure chamber of the solar simulator. Samples were irradiated under full spectrum in time series up to 181.8 h, duplicate samples being sacrificed at each time point for analysis. Photon fluxes reaching the irradiation surface were determined at intervals of 1 nm using an OL-754 spectroradiometer fitted with a 2-inch OL IS-270 integrating sphere calibrated with an OL 752-10E.
irradiance standard (Optronics Laboratories). The solar simulator’s photon fluxes in the UVB (280–320 nm), UVA (320–400 nm), and VIS (400–600 nm) were, respectively, 1.54, 0.85, and 1.25 times those of the noontime clear-sky sunlight measured in May at Rimouski (45.5°N), Canada (Fig. 2). One hundred and eighty-one point eight hours of solar-simulated irradiation thus corresponded to 19.7-d UVB, 35.7-d UVA and 24.2-d VIS irradiations with clear-sky sunlight at the latitude of 45.5°N, assuming 1-d clear-sky irradiation to be equivalent to 6-h noontime irradiation (Miller and Zepp, 1995).

Additional irradiations of N₂- and air-purged samples (in triplicate) were conducted using Mylar-D films (50% transmittance cutoff at 324 nm) and UF-4 Plexiglas sheets (50% transmittance cutoff at 408 nm) as light filters to evaluate the relative importance of UVB (full spectrum minus Mylar-D), UVA (Mylar-D minus UF-4), and VIS (UF-4) radiation in the photoprocesses examined. Irradiations underwent in a start-end mode and lasted from 48 h to 75 h, being shorter for N₂-purged samples than for air-purged samples.

To evaluate if DMS can produce CH₄ through CDOM-mediated photochemistry, the re-filtered water was amended with 20.0 µmol L⁻¹ DMS (≥99.0% purity, Sigma-Aldrich) and irradiated under full spectrum in time series up to 166.3 h (in duplicate). In addition, a start-end type of irradiation (44.3 h) was carried out with samples forming a DMS concentration series of 10.0, 20.0, 50.0, and 100.0 µmol L⁻¹. The DMS tests used air- and N₂-purged samples only. All irradiated samples were accompanied with parallel dark controls which showed no significant changes in the variables measured in this study.
2.3. Analysis

CH$_4$ was measured using a static headspace method similar to that reported by Xie et al. (2002) for dissolved carbon monoxide measurement. Briefly, water samples were transferred to a 50 mL glass syringe, into which 5 mL CH$_4$-free N$_2$ was introduced to obtain a 1:6 gas:water ratio. The syringe was vigorously shaken for 4 min and the equilibrated headspace gas was injected into a Peak Performer 1 FID gas chromatograph (2 mL sample loop; Peak Laboratories, USA) for CH$_4$ quantification. The analyzer was standardized by frequent injections of a gaseous CH$_4$ standard of 4.8 parts per million by volume (ppmv) (balance: N$_2$; Air Liquide) traceable to the National Institute of Standards and Technology (NIST). Such a single-point calibration protocol was adopted since pre-study tests confirmed that the analyzer consistently responded linearly up to 10.5 ppmv. In keeping with the samples’ 100% relative humidity, the dry CH$_4$ standard was moisturized with water before injection.

To estimate the analytical blank, a water sample was repeatedly extracted with pure N$_2$ until its CH$_4$ signal diminished to a stable level. Nine times of subsequent analyses of the extracted sample arrived at a mean blank of 0.034 nmol L$^{-1}$ with a standard deviation of 0.015 nmol L$^{-1}$. The lower detection limit, defined as three times the blank, was thus 0.045 nmol L$^{-1}$. The analytical reproducibility was determined to be ± 4% (n = 7) at a CH$_4$ concentration ([CH$_4$]) of ~5 nmol L$^{-1}$. The amount of photochemically produced CH$_4$ was calculated as the difference in [CH$_4$] between the irradiated sample and the parallel dark control.

Absorbance spectra were recorded at room temperature from 600 to 280 nm at 1 nm intervals using a Perkin-Elmer lambda-35 dual beam UV-visible spectrometer fitted with 1 cm quartz cells and referenced to Nanopure water. The sample cell was rinsed with methanol, pure water, and sample water between individual scans. A
baseline correction was applied by subtracting the absorbance value averaged over
683–687 nm from all spectral values (Babin et al., 2003). The Napierian absorption
coefficient of CDOM at wavelength λ, $a_{CDOM}(\lambda)$ (m$^{-1}$), was calculated as 2.303 times
the absorbance divided by the cell’s light path length in meters. The lower detection
limit of the absorption coefficient measurement, defined as three times the standard
deviation of five replicate analyses of pure water was 0.02 ± 0.01 m$^{-1}$ over 280–600
nm. DOC samples were acidified to pH ~2 with 2N HCl to remove the dissolved
inorganic carbon and analyzed in triplicate using a Shimadzu TOC-Vcpn carbon
analyzer calibrated with potassium biphthalate. The system was checked, at intervals
of seven consecutive sample analyses, against Hansell’s low-carbon and deep Florida
Strait (700 m) reference waters with DOC concentrations ([DOC]s) of 1 µmol L$^{-1}$ and
41–44 µmol L$^{-1}$, respectively. The coefficient of variation on five replicate injections
was < 1.5%. $[O_2]$ was measured with a WTW Oxi 340 meter equipped with a CellOX
325 oxygen sensor (analytical accuracy: ± 0.5%). A Thermo Orion pH meter (model
420A) fitted with a Ross Orion combination electrode was used to determine pH; the
system was standardized with three NIST buffers at pH 4.01, 7.00, and 10.01.

2.4. Calculations of absorbed photons and AQYs

The photon flux absorbed by CDOM, $Q_{CDOM}(\lambda)$ (mol photons s$^{-1}$ nm$^{-1}$), was
calculated according to Hu et al. (2002):

$$Q_{CDOM}(\lambda) = Q_0(\lambda) \times \left(a_{CDOM}(\lambda) / a_t(\lambda) \right) \times S \times [1 - \exp(-a_t(\lambda) \times L)] \quad (1)$$

$Q_0(\lambda)$ is the photon flux reaching the water surface inside the quartz cell (mol photons
m$^{-2}$ s$^{-1}$ nm$^{-1}$). The attenuation of light by the thin water layer above the cell (~2 mm)
was negligible (< 0.05 % from 280–600 nm). Here $a_t(\lambda)$ (m$^{-1}$) is the sum of $a_{CDOM}(\lambda)$
and the absorption coefficient of pure water obtained from Pope and Fry (1997) and Buiteveld et al. (1994). S is the longitudinal cross section of the irradiation cell (0.0055 m2) and L is the light pathlength of the cell, calculated as the squared root of the latitudinal cross section of the cell (0.0193 m), according to Osburn et al. (2001). Here $a_{CDOM}(\lambda)$ is the exponential-based average of two adjacent irradiation time points, since photobleaching approximately follows first-order kinetics (Del Vecchio and Blough, 2002; also see Section 3.1). AQYs of photomineralization (AQY_{DOC} in mol DOC (mol photons)$^{-1}$) and photomethanification (AQY_{CH4} in mol CH$_4$ (mol photons)$^{-1}$) were calculated as the rates of DOC loss and CH$_4$ production divided by the rate of photons absorbed by CDOM (i.e. $Q_{CDOM}(\lambda)$ in eq. 1) integrated over the wavelength ranges of interest. Broadband AQYs were computed over 280–600 nm for full-spectrum time-series irradiations and over UVB (280-320 nm), UVA (320-400 nm), and VIS (400-600 nm) for irradiations evaluating the spectral quality effect.

3. Results and Discussion

3.1. Photochemical O$_2$ consumption, bleaching and acidification

Figure 3 shows the time-course variations of [O$_2$], pH, the absorption coefficient at 330 nm ($a_{CDOM}(330)$), and the spectral slope ratio (S_R) defined as the ratio of the spectral slope coefficient between 275 nm and 295 nm to that between 350 nm and 400 nm. S_R has been used to characterize the source, molecular size, and photoprocessing of CDOM (Helms et al., 2008). Consistent with the results of previous studies (Gao and Zepp, 1998; Xie et al., 2004; Lou and Xie, 2006), irradiation led to photochemical O$_2$ consumption, absorbance bleaching, and acidification (i.e. decrease in pH). The temporal trends of these variables can be well
described by 3-parameter exponential decay equations (Table 1). At the end of
irradiations, [O$_2$] decreased to 153.2 µmol L$^{-1}$, 890.6 µmol L$^{-1}$, and 42.2 µmol L$^{-1}$ in
the air-, O$_2$-, and N$_2$-treatments, respectively. The drop of [O$_2$] in the N$_2$-treatment
occurred entirely within the first 48 h (Fig. 3A). These final O$_2$ concentrations
indicate that oxic conditions were maintained in the air- and O$_2$-treatments throughout
the irradiations while suboxic conditions persisted in the N$_2$-treatment. CDOM
absorbance decreased throughout the UV and VIS regimes (Fig. 4), fastest in the
O$_2$-treatment followed sequentially by the air- and N$_2$-treatment (Fig. 3B, Fig. 4),
corroborating earlier findings (Gao and Zepp, 1998; Lou and Xie, 2006). The a_{CDOM}
(330) declined by 75%, 56%, and 28% over the entire exposure period in the O$_2$-, air-, and N$_2$-treatment, respectively. S_R continuously increased over the entire irradiation
period in the air- and O$_2$-treatments; S_R in the N$_2$-treatment increased with irradiation
time up to ~120 h and became stable thereafter (Fig. 3C), suggesting a complete
exhaustion of O$_2$. Notably, the changes in S_R for the three different O$_2$ levels nearly
lined up together during the first 24-h irradiation but started diverging at ~48 h when
[O$_2$] in the N$_2$-treatment dropped to a constant level (Fig. 3A). The pH in the
air-treatment remained constantly below that in the O$_2$-treatment except near the end
of irradiation where the two converged at a similar pH value of ~0.8 unit below the
initial level (Fig. 3D). The ~0.5 unit drop of pH in the N$_2$-treatment took place largely
within the initial 48 h, echoing the behavior of [O$_2$]. The tests utilizing different light
filters indicate that photochemical O$_2$ consumption, bleaching and acidification
decreased successively with the spectral composition of the incident light changing
from UVB to UVA to VIS (Table 2), which conforms to the results of Lou and Xie
3.2. Photomineralization

Note that photochemical DOC loss leads to production of CO$_2$ (in the form of dissolved inorganic carbon, DIC) and carbon monoxide (CO), with DIC being the main product (Miller and Zepp, 1995). As photomineralization rates reported in this study were equated to DOC loss rates, the former also included the CO component. Based on our unpublished AQY spectrum for CO photoproduction from CDOM in Saguenay River surface water (AQY$_{CO}$(λ) = 3.07×10^{-10} exp(5661/(149.1 + λ)), where λ is wavelength in nanometers), we estimated that the ratio of DIC to CO photoproduction was 30.8. Photomineralization was thus overwhelmingly dominated by DIC production in our study.

3.2.1. Effect of [O$_2$]

[DOC] decreased exponentially with irradiation time as well (Fig. 5A and Table 1). The differences among the three O$_2$-treatments were rather small during the first 48 h and thereafter [DOC] in the N$_2$-treatment rapidly stabilized while [DOC] in the air- and O$_2$-treatments continued to decline. Hence, [O$_2$] in the N$_2$-treatment was a limiting factor of photomineralization until [O$_2$] decreased to a stable level (Fig. 5A).

Notably, the difference in the rate of [DOC] drawdown between the air- and O$_2$-treatment was much smaller than that for $a_{CDOM}(330)$ (Fig. 3B), demonstrating that photobleaching was far more sensitive to [O$_2$] than photomineralization. While the temporal trends of [DOC] were exponential, [DOC] decreased linearly with absorbance photobleaching, with the slope becoming progressively steeper towards deceeding initial [O$_2$] (Fig. 5B). A closer examination of the data indicates that the ratio of the fractional DOC loss to the fractional $a_{CDOM}(330)$ loss decreased from 0.82 in the N$_2$-treatment to 0.64 in the air-treatment to 0.54 in the O$_2$-treatment (Fig. 5C).
Similar results were obtained at the wavelengths of 254 nm, 300 nm, and 400 nm (data not shown). Therefore, photochemical DOC loss proceeded more efficiently under O$_2$-deficiency than under oxic conditions on a per-a_{CDOM}-loss basis, opposite to the trend of the time-based DOC loss rate. In other words, higher fractions of CDOM were mineralized under O$_2$-depletion than under oxygenation.

3.2.2. Apparent quantum yields

AQY$_{DOC}$ decreased exponentially ($R^2 = 0.969$) in the N$_2$-treatment and remained nearly constant ($1.50 \times 10^{-4} \pm 0.05 \times 10^{-4}$) in the air-treatment with respect to photobleaching (Fig. 5D). In the O$_2$-treatment, AQY$_{DOC}$ was invariable initially (up to 23% loss of $a_{CDOM}(330)$) and then increased linearly ($R^2 = 0.965$) with further photobleaching. The decrease of AQY$_{DOC}$ with photobleaching in the N$_2$-treatment suggests that the removal of DIC precursors was faster than the bleaching of CDOM under O$_2$ deficiency. Conversely, the results from the O$_2$- and air-treatments imply that under oxic conditions the removal of DIC precursors was slower than or similar to the bleaching of CDOM or that DIC precursors were regenerated during irradiation. Although the mechanism of photoproduction of DIC is not well understood, photodecarboxylation is considered to be involved (Miles and Brezonik, 1981). However, Xie et al. (2004) found that neither the initial content nor the apparent loss of carboxylic groups on DOM could account for the amount of DIC produced during an extensive photobleaching of a Satilla River water sample. These authors thus proposed that carboxylic groups are photochemically regenerated if photodecarboxylation is the predominant pathway for DIC production. The trends of AQY$_{DOC}$ versus photobleaching observed under oxic conditions in the present study
are thus consistent with the supposition of Xie et al. (2004). Furthermore, the decrease in pH (see section 3.1) indicates the formation of acidic photoproducts during irradiation. Although the production of CO$_2$ (in the form of DIC) could have contributed a large part to the pH decline, carboxylic acids are also known photoproducts of CDOM (Moran and Zepp, 1997).

Data of AQY$_{DOC}$ or AQY$_{DIC}$ versus photobleaching (or absorbed doses) are scarce. Previous studies on AQY$_{DOC}$ or AQY$_{DIC}$ often employed short-term irradiations that led to minor losses of a_{CDOM} (e.g. Johannessen and Miller, 2001; Reader and Miller, 2012). Results from the present study are pertinent to medium-term exposures (up to 56% loss of $a_{CDOM}(330)$ in the air treatment). The relatively invariable AQY$_{DOC}$ across this photobleaching regime suggests that AQY$_{DOC}$ data obtained from short-term irradiations are applicable to modeling photomineralization fluxes in the Saguenay River over medium-term exposures. Over long-term exposures approaching a complete loss of a_{CDOM}, Vähätalo and Wetzel (2004) observed a decrease in AQY$_{DOC}$ with photobleaching for water collected from Lake Tuscaloosa in Alabama. It remains to be elucidated if the same is true for the Saguenay River.

The irradiations employing light filters allowed us to evaluate the effect of light quality on AQY$_{DOC}$. As shown in Table 2, AQY$_{DOC}$ obtained from the air-treatment decreased by ~12 times from UVB to UVA and further by 7 times from UVA to VIS. The spectral dependence of AQY$_{DOC}$ was lower for the N$_2$-treatment; AQY$_{DOC}$ in UVB was ~7 times that in UVA, which in turn was ~5 times that in VIS. The flatter spectral dependence under the N$_2$- relative to air-treatment could be related to different prevailing mechanisms for photomineralization, e.g. direct photodecarboxylation under the N$_2$-treatment versus secondary photoprocesses
initiated by reactive oxygen species produced in the presence of molecular oxygen (Frimmel, 1994).

Full spectrum-based AQY_{DOC} obtained from the air-treatment in our study match closely those in Valkea-Kotinen lake (1.37×10^{-4}, derived from 300 nm to 700 nm, Vähältalo et al., 2000) and Pääjärvi lake (1.21×10^{-4}, derived from 190 nm to 800 nm, Aarnos et al., 2012) but an order lower than that in the Mackenzie river freshwater (1.0×10^{-3}–3.0×10^{-3}, derived from 280 nm to 500 nm, Osburn et al., 2009) and ~3 times higher than that in the Northern shelf in the Gulf of Mexico (5.6×10^{-6}, derived from 290 to 490 nm, Fichot and Benner, 2014). The difference may be attributed to the variation of photoreactivity of CDOM in different water bodies or different wavelength range for obtaining the AQY or both.

3.3.3. Implication for DOC cycling in the Saguenay River

Assuming negligible backscattering of light from the water column to the atmosphere, the depth-integrated photochemical DOC loss rate (P_{DOC}, mol C m$^{-2}$ d$^{-1}$) in the euphotic zone of the Saguenay River can be calculated as:

$$P_{DOC} = Q \times \alpha_r \times R_a \times AQY_{DOC}$$

(2)

where Q (mol photons m$^{-2}$ d$^{-1}$) is the global solar photon flux (280–600 nm) under clear-sky conditions at latitude 48.4 °N and is generated from the SMARTS2 model (Gueymard, 1995, 2001), α_r is the combination of two correction factors for reflection of light by cloud (0.8) and at the air-water interface (0.93) (Stubbins et al., 2006), and R_a is the fraction of light absorbed by CDOM in the photic zone, which is assumed to be 0.80 and vertically constant (Xie et al., 2012). AQY_{DOC} is the broadband (280–600 nm)
nm) photomineralization quantum yield determined during this study under the air
treatment (1.50 × 10^{-4} ± 0.15 × 10^{-4}) and is assumed to be seasonally constant. P_{DOC}
was estimated to be (2.97 ± 0.30) × 10^{-3} mol C m^{-2} d^{-1} in spring, (3.67 ± 0.37) × 10^{-3}
mol C m^{-2} d^{-1} in summer, (1.71 ± 0.17) × 10^{-3} mol C m^{-2} d^{-1} in autumn, (1.11 ± 0.11) ×
10^{-3} mol C m^{-2} d^{-1} in winter. These values yield an annual rate of 0.77 mol C m^{-2},
excluding ice-covered areas in spring (ice coverage: 0.11) and winter (ice coverage:
0.65) calculated from the 1971–2000 Canadian Ice Service database (CIS, 2001).
Combining the estimates of P_{DOC} with the area of the Saguenay River (300 km^2, 100
km long × 3 km wide) gives an annual rate of DOC photomineralization of 2.31 × 10^8
mol C. Based on the [DOC] near Chicoutimi (~583.3 µmol L^{-1}, this study and
Tremblay and Gagné, 2009) and a yearly averaged freshwater discharge of 1194 m^3
s^{-1} (Bélanger, 2003), the annual DOC input to the Saguenay River was calculated as
2.20 × 10^{10} mol C. DOC photomineralization thus accounts for 1% of the annual DOC
input. The majority of photomineralization of CDOM from the Saguenay River is
expected to take place after the CDOM is transported to the lower St. Lawrence
estuary and the Gulf of St. Lawrence, where it will be strongly diluted and thus
experience more efficient photooxidation.

The spectral dependence data of AQY_{DOC} (Table 2), combined with eq. 2,
allowed us to evaluate the relative contributions of UVB, UVA, and VIS to the
full-spectrum, depth-integrated photomineralization rate, arriving at 15, 41, and 44%,
respectively, for the air-treatment. Hence, VIS and UVA are the dominant
contributors while UVB is the least important.
3.3. Photomethanification

3.3.1. Effect of $[O_2]$

$[\text{CH}_4]$ increased linearly with irradiation time (Fig. 6A), absorbance photobleaching (Fig. 6B), and DOC loss (Fig. 6C) under the air- and O_2-treatments. While the time-based rate of CH$_4$ photoproduction under the air-treatment (4.3 pmol L$^{-1}$ h$^{-1}$) was only 10% higher than under the O_2-treatment (3.9 pmol L$^{-1}$ h$^{-1}$), the $a_{\text{CDOM}(330)}$- and [DOC]-based rates differed by 57% (88 vs. 56 pmol L$^{-1}$ m) and 30% (5.7 vs. 4.4 pmol CH$_4$ (µmol DOC)$^{-1}$), respectively. $[\text{CH}_4]$ in the N$_2$-treatment increased sharply after an initial slow increment (Fig. 6A-C) that corresponded to a major reduction of the residual [O$_2$] (Fig. 3A). The time-based production rate of CH$_4$ in the N$_2$-treatment decreased when approaching the end of irradiation (Fig. 6A), whereas the $a_{\text{CDOM}(330)}$- and [DOC]-based rates continuously grew over the entire exposure period (Fig. 6B, C). The time-course mean CH$_4$ production rate in the N$_2$-treatment (32 pmol L$^{-1}$ h$^{-1}$) was 7.4 times that in the air-treatment and 8.2 times that in the O_2-treatment. The corresponding ratios increased to 56 and 88 on a per-$a_{\text{CDOM}(330)}$ basis and 17 and 23 on a per-[DOC] basis.

Our results demonstrate that photomethanification is strongly favored under O_2-deficiency but also occurs under oxygenated conditions. This observation somewhat differs from that of Bange and Uher (2005) showing undetectable CH$_4$ photoproduction under oxic conditions but significant production under anoxia in the presence of millimolar levels of acetone, a methyl (CH$_3$) radical precursor. Bange and Uher (2005) proposed that photomethanification involves the formation of CH$_3$ radicals from CDOM-mediated photosensitized processes, followed by H-abstraction.
by CH₃ radicals from a variety of potential substrates. These authors further reasoned
that because of the reaction of dissolved O₂ with the CH₃ radical (Neta et al., 1996),
the H-abstraction by CH₃ radicals, hence CH₄ production, is greatly suppressed by
high dissolved O₂ concentrations. The different results between the two studies could
thus have resulted from our sample containing more reactive CH₃ radical precursors,
substrates for H-abstraction, and/or photosensitizing CDOM. It is also plausible that
the CH₄ production rates reported by Bange and Uher (2005) are underestimates due
to residual microbial activity in their filtered samples.

3.3.2. Apparent quantum yields

AQY(CH₄) in the air-treatment (8.5 × 10⁻¹⁰ ± 0.4 × 10⁻¹⁰) changed little with
photobleaching but increased exponentially (R² = 0.963) in the N₂-treatment (range:
1.7–5.6 × 10⁻⁹; mean: 3.5 × 10⁻⁹) (Fig. 6D). AQY(CH₄) in the O₂-treatment varied
between 3.2 × 10⁻¹⁰ and 8.6 × 10⁻¹⁰ (mean: 5.6 × 10⁻¹⁰ ± 2.2 × 10⁻¹⁰) with the later
irradiation stage giving relatively higher values than the earlier stage. On average,
AQY(CH₄) was 4 times higher in the N₂-treatment than in the air-treatment, which in
turn was 53% higher than in the O₂-treatment. At the end of irradiation, AQY(CH₄)
in the N₂-treatment was 6.6 times that in the air-treatment. The rapid increases in CH₄
production (Fig. 6B) and AQY(CH₄) (Fig. 6D) with photobleaching in the N₂-treatment
likely resulted from a continuing depletion of the residual O₂ in that sample. It should
be noted that the stabilization of [O₂] at 42.2 µmol L⁻¹ towards the end of irradiation
in the N₂-treatment (Section 3.1) could be ascribed to an ingress of O₂ from ambient
air during sample transfer for [O₂] determination, as alluded in Section 2.2. This
artifact could have masked the decline of [O₂].
Similar to the spectral dependence of AQY_{DOC}, AQY_{CH4} also decreased sequentially from UVB to UVA to VIS for both the air- and N_2-treatments (Table 2). However, AQY_{CH4} was strongly skewed towards UVB under the N_2 treatment.

3.3.3. DMS as a precursor of CH_4

An addition of 20 μmol L$^{-1}$ DMS increased the rate of CH_4 photoproduction by 27–45% in the air-treatment (Fig. 7A) and by 14%–6400% in the N_2-treatment (Fig. 7B) over a time-series irradiation of up to 166.3 h. The difference between the DMS-amended and the original sample increased with irradiation time. Irradiation of samples containing varying DMS concentrations revealed an first-order kinetics of CH_4 production with respect to [DMS] in the air-treatment but an Michaelis-Menten type of kinetics in the N_2-treatment, with the production rate in the N_2-treatment two orders of magnitude higher than in the air-treatment at [DMS] > 20 μmol L$^{-1}$ (Fig. 8).

The similar patterns of the O_2 effect with and without the addition of DMS suggest that CH_4 photoproduction from DMS may also proceed through the formation of CH_3 radicals. DMS does not undergo direct photolysis, since it is transparent within the spectrum of solar radiation reaching the earth’s surface (McDiarmid, 1974). However, DMS can be degraded by photosensitizing reactions, including those initiated by CDOM (Brimblecombe and Shooter, 1986). The saturation of CH_4 production at elevated DMS concentrations in the N_2-treatment (Fig. 8) could be interpreted as a limitation of the photosensitizing capacity of CDOM and/or the availability of substrates for H-abstraction. Although the exact mechanism responsible for DMS photodegradation in natural waters is not well established, the OH radical is likely implicated (Bouillon and Miller, 2005; Williams et al., 2009). OH radicals in
natural waters are produced from CDOM photochemistry (Mopper and Zhou, 1990) and photolysis of nitrate (Zafiriou and True, 1979) in the absence of O$_2$, with an additional contribution from the (photo) Fenton reaction (Esplugas et al., 2002) in the presence of O$_2$. As has been observed in gas-phase studies (Arsene et al., 2001), the reaction of the OH radical with DMS may produce the CH$_3$ radical, though the dominant product of this reaction is DMSO in the presence of O$_2$. The CH$_3$ radical then abstracts a hydrogen atom from DMS itself (Arthur and Lee, 1976) or other compounds such as thios (Neta et al., 1996) to produce CH$_4$. In brackish or saline waters, the formation of CH$_3$ radicals may result from the reactions of DMS with the Br$_2$ and CO$_3^-$ radicals which are preferentially produced via the reaction of the HO radical with the bromide and carbonate/bicarbonate ions (True and Zafiriou, 1985). The involvement of the CO$_3^-$ in DMS oxidation has been confirmed by Bouillon and Miller (2005), though the individual steps of this process are unclear.

Given that dissolved DMS concentrations in sunlit, oxic surface waters are normally at nanomolar levels, it is unlikely that photodegradation of DMS can serve as a significant source of CH$_4$ in the water column. However, cellular DMS concentrations have been observed to reach up to 1.5–30 mmol (liter of cell volume)$^{-1}$ (Sunda et al., 2007), translating to a CH$_4$ production rate of 0.13–2.39 nmol (liter of cell volume)$^{-1}$ h$^{-1}$ under otherwise identical conditions. Photooxidation of cellular DMS could thus provide a potentially significant source of CH$_4$ to waters that abound with prolific DMS producers (e.g. *Phaeocystis*). In addition, cellular dimethylsulfoniopropionate (DMSP) is often more abundant than cellular DMS (Keller et al., 1989; Bucciarelli and Sunda, 2003) and therefore could also be a potentially important precursor of photoproduced CH$_4$.

3.3.4. Implication for CH₄ cycling on regional and global scales

The depth-integrated photomethanification rate \(P_{\text{CH}_4} \) in the Saguenay River can be estimated using eq. 2 by substituting \(AQY_{\text{CH}_4} \) for \(AQY_{\text{DOC}} \). Alternatively, it can be assessed by multiplying \(P_{\text{DOC}} \) by the slope of the fitted line for the air-treatment in Fig. 6C (i.e. 0.00057%). The former approach is adopted, arriving at \((1.69 \pm 0.08) \times 10^{-8}\) mol m\(^{-2}\) d\(^{-1}\) in spring, \((2.08 \pm 0.10) \times 10^{-8}\) mol m\(^{-2}\) d\(^{-1}\) in summer, \((9.70 \pm 0.48) \times 10^{-9}\) mol m\(^{-2}\) d\(^{-1}\) in fall, and \((6.33 \pm 0.31) \times 10^{-9}\) mol m\(^{-2}\) d\(^{-1}\) in winter. The annual total is calculated to be \(4.36 \times 10^{-6}\) mol m\(^{-2}\) with CH₄ photoproduction in ice-covered seasons ignored. It is not possible to compare the photoproduction rates with other CH₄ cycling terms in the Saguenay River such as microbial production and consumption rates and air-sea exchange fluxes, since the latter are unknown. The annual CH₄ photoproduction rate obtained for the Saguenay River is, however, about 12% of the aerobic microbial CH₄ consumption rate in the surface Black Sea (Schmale et al., 2011) but is generally many orders of magnitude lower than sea-air fluxes in various estuarine and coastal environments, which frequently reach tens to hundreds of \(\mu\)mol m\(^{-2}\) d\(^{-1}\) (Bange et al., 1994).

As was the case for DOC (Section 3.3.3), the percent contributions of the three major wavelength ranges to the full-spectrum, depth-integrated CH₄ photoproduction were estimated using eq. 2 along with the spectral dependence data of \(AQY_{\text{CH}_4} \) (Table 2). For the air-treatment, the contributions from UVA (39%) and VIS (35%) are similar while UVB only contributes 16%. As the attenuation of UVA and VIS is much slower than UVB in the water column, CH₄ photoproduction is expected to penetrate into relatively deep depths under oxic conditions. For the N₂-treatment, the percent contribution follows a descending order of UVA (43%) > UVB (40%) > VIS (17%), indicating that UVB is far more important than VIS under O₂-depleted
Because the photomethanification efficiency of CDOM may change geographically, extrapolation of our results to other regions is speculative by nature. The current estimate of photodegradation of DOC in global open oceans ranges from 400–1700 Tg C yr\(^{-1}\) (Mopper et al., 2015), which exceeds the total riverine DOC input of \(~\)260 Tg C yr\(^{-1}\) to global oceans (Raymond and Spencer, 2015). This DOC loss translates to a CH\(_4\) photoproduction rate of \((1.9–8.1) \times 10^8\) mol yr\(^{-1}\), assuming that the ratio of CH\(_4\) photoproduction to DOC loss (0.00057%) observed for the air-treatment in the present study is applicable to both riverine and marine DOC on global scales. These rates only account for 0.09–0.4% of the open-ocean CH\(_4\) efflux of \(2.3 \times 10^{11}\) mol yr\(^{-1}\) (Bange et al., 1994) and 0.07–0.3% of the net CH\(_4\) production of 2.3 \(\mu\)mol m\(^{-2}\) d\(^{-1}\) (2.6 \(\times\) \(10^{11}\) mol yr\(^{-1}\)) that is required to sustain the CH\(_4\) supersaturation and outgassing loss in the upper 100 m of global open oceans (Reeburgh, 2007). However, our estimates of the CH\(_4\) photoproduction rates are significant compared to microbial CH\(_4\) oxidation rates in oxic open oceans that have been shown to be 0.15 nmol L\(^{-1}\) yr\(^{-1}\) in waters of <10 years old (equivalent to 5.4 \(\times\) \(10^9\) mol yr\(^{-1}\) if scaled to the upper 100 m layer) and \(10^{-4}\) nmol L\(^{-1}\) yr\(^{-1}\) in aged waters (equivalent to 1.3 \(\times\) \(10^8\) mol yr\(^{-1}\) if scaled to waters deeper than 100 m) (Reeburgh, 2007). Notably, our estimates do not take into account CH\(_4\) that could be produced photochemically from anoxic and low-oxygen microenvironments present in decaying organic particles such as planktonic detritus and fecal pellets (Alldredge and Cohen, 1987). Since AQY\(_{\text{CH}_4}\) under anoxic conditions is up to 7 times that at air-saturation (Section 3.3.2) and since organic particles are likely more photoreactive than CDOM (Zafiriou, 2002), particularly at VIS wavelengths (Song et al., 2013), it is plausible that the particle-based CH\(_4\) photoproduction could be more important than the CDOM
counterpart.

The present study demonstrates that CH$_4$ photoproduction is favored by UVB under O$_2$-deficiency. Given that the surface ocean in the Archean was anoxic before O$_2$ accumulation in the atmosphere 2.32 billion years ago (Bekker et al., 2004) and that UVB in the Archean was ~3 times the present-day level (Cockell, 1998), the CH$_4$ photoproduction rate in the Archean ocean can be approximately inferred from our results for the N$_2$ treatment by summing 3 times the production under UVB, 1 time the production under UVA, and 1 time the production under VIS, giving 9.78×10^{-8} mol CH$_4$ m$^{-2}$ d$^{-1}$. This value corresponds to only 0.7% of the CH$_4$ flux density in the Archean (1.47×10^{-5} mol m$^{-2}$ d$^{-1}$) that was required to maintain a CH$_4$ mixing ratio of 100 ppm in the Archean atmosphere (Bange and Uher, 2005). Note that this estimate is based on the assumption that AQY$_{CH_4}$ and the fraction of solar radiation absorbed by CDOM in the Archean ocean were similar to those adopted in this study. It should also be pointed out that N$_2$-purging must have depleted the volatile precursors of the methyl radical in our samples and that the Archean ocean likely contained higher concentrations of CH$_4$ precursors such as acetone (Bange and Uher, 2005) than does the present ocean, thereby leading to an underestimate of CH$_4$ photoproduction in the Archean ocean.

Summary and Future Work

Rates of photomineralization and photomethanification of CDOM from the Saguenay River were determined at three widely different [O$_2$]s (suboxic, air-saturated, and oxygenated) over medium-term exposure to simulated solar radiation. Photomineralization increased linearly with absorbance photobleaching.
While the photochemical DOC loss rate increased with increasing $[O_2]$, the ratio of the fractional DOC loss to the fractional $a\text{CDOM}$ loss trended oppositely. Photochemical breakdown of CDOM led to a higher degree of mineralization (i.e. DIC production) under suboxic conditions than under oxic conditions. AQY$_{\text{DOC}}$ increased, decreased, and remained fairly constant with photobleaching under oxygenated, suboxic, and air-saturated conditions, respectively. AQY$_{\text{DOC}}$ (or AQY$_{\text{DIC}}$) determined under air-saturation with short-term irradiations can be applied to medium-term exposures for the Saguenay River. The spectral dependence of AQY$_{\text{DOC}}$ revealed by this study, in conjunction with the solar irradiance spectrum, points to VIS and UVA being the primary drivers for photomineralization in the water column of the Saguenay River. The photomineralization rate in the Saguenay River was estimated to be 2.31×10^8 mol C yr$^{-1}$, accounting for only 1% of the annual DOC input into this system.

Photomethanification occurred under both suboxic and oxic conditions and increased with decreasing $[O_2]$, with the rate under suboxic conditions ~7–8 times that under oxic conditions. Photoproduction of CH$_4$ under oxic conditions increased linearly with photochemical losses of DOC and absorbance, rendering photomineralization and photobleaching to be proxies for photomethanification. Under air-saturation, 0.00057% of photochemical DOC loss in the Saguenay River surface water went to CH$_4$, giving a photochemical CH$_4$ production rate of 4.36×10^6 mol m$^{-2}$ yr$^{-1}$ in the Saguenay River and, by extrapolation, of $(1.9–8.1) \times 10^8$ mol yr$^{-1}$ in the global ocean. AQY$_{\text{CH4}}$ changed little with photobleaching under air-saturation but increased exponentially under suboxic conditions. On a depth-integrated basis, VIS prevailed over UVB in controlling CH$_4$ photoproduction under air-saturation while the opposite held true under O_2-deficiency. Spiking with dissolved DMS...
increased CH$_4$ photoproduction, particularly under O$_2$-deficiency; DMS at nanomolar ambient concentrations in surface oceans is, however, unlikely a significant CH$_4$ precursor. Although CDOM-based CH$_4$ photoproduction is estimated to be only a marginal contributor to both the modern and Archean atmospheric CH$_4$ budgets, its magnitude can be comparable to those of microbial CH$_4$ oxidation in modern oxic oceans.

Future work should extend sampling coverage, quantify CH$_4$ photoproduction from particulate organic matter, and elucidate the mechanisms of photomethanification of organic matter in natural waters, including tests on other precursors of CH$_3$ radicals such as DMSP, dimethyl sulfoxide (DMSO), acetonitrile, methionine, methylamine and methyl ester that are naturally present in aquatic environments. For river and riverine-impacted coastal waters, particular attention should be paid to methoxy-substituted phenols in dissolved lignin, since these compounds are highly susceptible to photodegradation (Benner and Kaiser, 2011) and since the methoxy groups in certain lignin model phenols have been demonstrated to be efficient precursors of CH$_4$ under anaerobic conditions (Weir et al., 1995). Anoxic microniches in particulate organic matter and phytoplankton cells containing elevated concentrations of methylated compounds, such as DMS, DMSP, and DMSO, may provide potential hotspots for CH$_4$ photoproduction.

Acknowledgements

This work was supported by HX’s NSERC Discovery Grant and by the National Natural Science Foundation of China (NSFC) (Grant# 41006040). YZ was supported by a postdoctoral fellowship awarded by the Shandong International Exchange Association. Claude Belzile measured bacterial populations and DOC concentrations.

Fichot, C. G. and Benner, R.: The fate of terrigenous dissolved organic carbon in a

Hong, J., Xie, H., Guo, L. D., and Song, G. S.: Carbon monoxide photoproduction:

Miller, W. L., Moran, M. A., Sheldon, W. M., Zepp, R. G., and Opsahl, S.: Determination of apparent quantum yield spectra for the formation of

Tilbrook, B. D. and Karl, D. M.: Methane sources, distributions, and sinks from California coastal waters to the oligotrophic North Pacific gyre, Mar. Chem., 49,

and theoretical studies of the reaction of the OH radical with alkyl sulfides: 3.
kinetics and mechanism of the OH initiated oxidation of dimethyl, dipropyl, and
dibutyl sulfides: Reactivity trends in the alkyl sulfides and development of a
predictive expression for the reaction of OH with DMS, J. Phys. Chem., A 113,
Zafiriou, O. C.: Validated methods for sampling and headspace analysis of
effects on the carboxyl content of dissolved organic matter in two coastal rivers
Xie, H., Zhang, Y., Lemarchand, K., and Poulin, P.: Microbial carbon monoxide
uptake in the St. Lawrence estuarine system, Mar. Ecol. Prog. Ser., 389, 17–29,
coefficients of CDOM and particles in the St. Lawrence estuarine system:
Zafiriou, O. C.: Sunburnt organic matter: Biogeochemistry of light-altered substrates,
Zindler, C., Bracher, A., Marandino, C. A., Taylor, B., Torrecilla, E., Kock, A., and
Table 1. Fitted parameters for function $y = a + b \exp (-c \cdot x)$, where x is irradiation time in hours. F_{O_2} stands for fraction of dissolved $[\text{O}_2]$. [DOC] and $[\text{O}_2]$ are in mmol L$^{-1}$, and $a_{\text{CDOM}(330)}$ is in m$^{-1}$.

<table>
<thead>
<tr>
<th></th>
<th>O$_2$-treatment</th>
<th>Air-treatment</th>
<th>N$_2$-treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>DOC</td>
<td>315.4</td>
<td>269.8</td>
<td>0.0051</td>
</tr>
<tr>
<td>$a_{\text{CDOM}(330)}$</td>
<td>2.69</td>
<td>21.63</td>
<td>0.011</td>
</tr>
<tr>
<td>pH</td>
<td>6.17</td>
<td>1.10</td>
<td>0.0097</td>
</tr>
<tr>
<td>F_{O_2}</td>
<td>0.834</td>
<td>0.170</td>
<td>0.0095</td>
</tr>
<tr>
<td>Initial $[\text{O}_2]$</td>
<td>1023.0</td>
<td>271.2</td>
<td>53.1</td>
</tr>
</tbody>
</table>
Table 2. AQYs of DOC and CH\textsubscript{4} and rates of \textit{a}_{\text{CDOM}}(330) loss, O\textsubscript{2} consumption and pH decrease under three light regimes (UVB, UVA, and VIS) in air- and N\textsubscript{2}-treatments. Values are in mean ± SD.

<table>
<thead>
<tr>
<th></th>
<th>AQY\textsubscript{DOC} (×10-4)</th>
<th>AQY\textsubscript{CH\textsubscript{4}} (×10-9)</th>
<th>\textit{a}_{\text{CDOM}}(330) loss (m-1 h-1)</th>
<th>O\textsubscript{2} loss (µmol L-1 h-1)</th>
<th>pH decrease (×10-3 h-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UVB</td>
<td>72.1±4.74</td>
<td>38.9±2.01</td>
<td>0.13±0.005</td>
<td>1.67±0.11</td>
<td>2.76±0.35</td>
</tr>
<tr>
<td>UVA</td>
<td>6.24±0.36</td>
<td>3.55±0.24</td>
<td>0.06±0.004</td>
<td>0.45±0.10</td>
<td>1.61±0.23</td>
</tr>
<tr>
<td>VIS</td>
<td>0.93±0.06</td>
<td>0.42±0.02</td>
<td>0.03±0.003</td>
<td>0.02±0.01</td>
<td>0.69±0.08</td>
</tr>
<tr>
<td>N\textsubscript{2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UVB</td>
<td>28.2±1.50</td>
<td>372.7±8.9</td>
<td>0.14±0.005</td>
<td>1.12±0.04</td>
<td>1.47±0.82</td>
</tr>
<tr>
<td>UVA</td>
<td>4.19±0.90</td>
<td>12.76±1.24</td>
<td>0.09±0.002</td>
<td>0.25±0.05</td>
<td>1.23±0.18</td>
</tr>
<tr>
<td>VIS</td>
<td>0.77±0.03</td>
<td>0.67±0.05</td>
<td>0.05±0.004</td>
<td>0.15±0.03</td>
<td>0.51±0.27</td>
</tr>
</tbody>
</table>
Figure Captions

Fig. 1. Map of the Saguenay River. Water samples were taken at the riverside of Chicoutimi.

Fig. 2. UV and VIS spectra of the solar-simulated radiation and noontime clear-sky solar radiation recorded at Rimouski (48.453° N, 68.511° W), Québec, on 24 May 2014.

Fig. 3. Fraction of dissolved O₂ (A), a_{CDOM}(330) (B), S_R (C), and pH (D) versus irradiation time.

Fig. 4. Comparison of absorption spectra before and after full-spectrum irradiations.

Fig. 5. [DOC] versus irradiation time (A) and a_{CDOM}(330) (B), fractional loss of DOC versus fractional loss of a_{CDOM}(330) (C), and AQY_{DOC} versus fraction of initial a_{CDOM}(330) (D). Lines in panels A and B are best fits of the data. Fitted equations for panel A are presented in Table 1.

Fig. 6. [CH₄] versus irradiation time (A), a_{CDOM}(330) (B) and [DOC] (C), and AQY_{CH₄} versus fraction of initial a_{CDOM}(330) (D). Lines in panels A, B and C are best fits of the data.

Fig. 7. Effect of DMS spiking (20 μmol L⁻¹) on CH₄ photoproduction in a time-series irradiation under air- and N₂-treatments (A & B).

Fig. 8. Photoproduction rate of CH₄ as a function of added [DMS].
Fig. 1. Map of the Saguenay River. Water samples were taken at the riverside of Chicoutimi.
Fig. 2. UV and VIS spectra of the solar-simulated radiation and noontime clear-sky solar radiation recorded at Rimouski (48.453° N, 68.511° W), Québec, on 24 May 2014.
Fig. 3. Fraction of dissolved O_2 (A), $a_{CDOM}(330)$ (B), S_R (C), and pH (D) versus irradiation time.
Fig. 4. Comparison of absorption spectra before and after full-spectrum irradiations.
Fig. 5. [DOC] versus irradiation time (A) and $\alpha_{\text{CDOM}(330)}$ (B), fractional loss of DOC versus fractional loss of $\alpha_{\text{CDOM}(330)}$ (C), and AQY$_{\text{DOC}}$ versus fraction of initial $\alpha_{\text{CDOM}(330)}$ (D). Lines in panels A and B are best fits of the data. Fitted equations for panel A are presented in Table 1.
Fig. 6. $[\text{CH}_4]$ versus irradiation time (A), $a_{\text{CDOM}(330)}$ (B) and [DOC] (C), and AQY$_{\text{CH}_4}$ versus fraction of initial $a_{\text{CDOM}(330)}$ (D). Lines in panels A, B and C are best fits of the data.
Fig. 7. Effect of DMS spiking (20 µmol L⁻¹) on CH₄ photoproduction in a time-series irradiation under air- and N₂-treatments (A & B).
Fig. 8. Photoproduction rate of CH$_4$ as a function of added [DMS].