Reconstruction of super-resolution fields of ocean ρCO$_2$ and air–sea fluxes of CO$_2$ from satellite imagery in the Southeastern Atlantic

I. Hernández-Carrasco1, J. Sudre1, V. Garçon1, H. Yahia2, C. Garbe3, A. Paulmier1, B. Dewitte1, S. Illig1, and I. Dadou1

1LEGOS, Laboratoire d’Études en Géophysique et Océanographie Spatiales (CNES-CNRS-IRD-UPS), 31401 Toulouse, France
2INRIA, Institut National de Recherche en Informatique et en Automatique, Bordeaux, France
3IWR, Interdisciplinary Center for Scientific Computing, University of Heidelberg, Heidelberg, Germany

Received: 26 October 2014 – Accepted: 1 January 2015 – Published: 21 January 2015

Correspondence to: I. Hernández-Carrasco (ismael.hernandez@legos.obs-imp.fr)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

The knowledge of Green House Gases GHGs fluxes at the air–sea interface at high resolution is crucial to accurately quantify the role of the ocean in the absorption and emission of GHGs. In this paper we present a novel method to reconstruct maps of surface ocean partial pressure of CO$_2$, pCO$_2$, and air–sea CO$_2$ fluxes at super resolution (4 km) using Sea Surface Temperature (SST) and Ocean Colour (OC) data at this resolution, and CarbonTracker CO$_2$ fluxes data at low resolution (110 km). Inference of super-resolution of pCO$_2$, and air–sea CO$_2$ fluxes is performed using novel nonlinear signal processing methodologies that prove efficient in the context of oceanography. The theoretical background comes from the Microcanonical Multifractal Formalism which unlocks the geometrical determination of cascading properties of physical intensive variables. As a consequence, a multiresolution analysis performed on the signal of the so-called singularity exponents allows the correct and near optimal cross-scale inference of GHGs fluxes, as the inference suits the geometric realization of the cascade. We apply such a methodology to the study offshore of the Benguela area. The inferred representation of oceanic partial pressure of CO$_2$ improves and enhances the description provided by CarbonTracker, capturing the small scale variability. We examine different combinations of Ocean Colour and Sea Surface Temperature products in order to increase the number of valid points and the quality of the inferred pCO$_2$ field. The methodology is validated using in-situ measurements by means of statistical errors. We obtain that mean absolute and relative errors in the inferred values of pCO$_2$ with respect to in-situ measurements are smaller than for CarbonTracker.

1 Introduction

The ocean can be thought of as a complex system in which a large number of different processes (e.g. physical, chemical, biological, atmosphere–ocean interactions) interacts with each other at different spatial and temporal scales (Rind, 1999). These
scales extend from millimeters to thousands of kilometers and from seconds to centuries (Dickey, 2003). In particular, recently there is a growing body of evidence that the upper few hundred meters of the oceans are dominated by submesoscale activity, covering the range 1–10 km, and that this activity is important to understand global ocean properties (Klein and Lapeyre, 2009). Accurately estimating the sources and sinks of GHGs at the air–sea interface requires to solve these small scales (Mahadevan et al., 2004). However, the scarcity of oceanographic cruises and the lack of available satellite products for GHG concentrations at high resolution prevent from obtaining a global assessment of their spatial variability at small scales. For example, from the in-situ ocean measurements the uncertainty of the net global ocean–atmosphere CO$_2$ fluxes is between 20 and 30% (IOCCP, 2007), and could be higher in the Oxygen Minimum Zones (OMZ) of the Eastern Boundary Upwelling Systems (EBUS) due to the extreme regional variability in these areas (Paulmier et al., 2008; Franco et al., 2014). This indeed suggests the design of proper methodologies to infer the fluxes at high resolution from presently available satellite images data, in order to improve current estimates of gas exchanges between the ocean and the atmosphere.

The most commonly used methods to estimate air–sea CO$_2$ fluxes are based either on statistical methods, inverse modeling with atmospheric transport models or global coupled physical-biogeochemical models. Let’s cite here the work from Takahashi et al. (2002, 2009) where they interpolate sea surface pCO$_2$ measurements with advanced statistical methods to provide climatological monthly maps of air–sea fluxes of CO$_2$ in the global surface waters at a spatial resolution of 4° × 5°. Beside the Takahashi’s works an international effort to compile global surface CO$_2$ fugacity (fCO$_2$) measurements has been recently performed and reported in Pfeil et al. (2013); Bakker et al. (2014), and later interpolated by Sabine et al. (2013) generating a monthly gridded product with fCO$_2$ values in a 1° × 1° grid cell. Gruber et al. (2009) used an inverse modeling of sources and sinks from the network of atmospheric CO$_2$ concentrations jointly with transport models. The third type of methods is based on the direct computations of the air–sea CO$_2$ fluxes in coupled physical-biogeochemical models incorporating the
biogeochemical processes of the carbon dioxide system. In the latter, simulated surface ocean $p\text{CO}_2$ can be constrained with available ship observations as shown by Valsala and Maksyutov (2010).

Another new avenue to infer air–sea GHG fluxes is through inverse modeling applied to vertical column densities (VCD) extracted from satellite spectrometers, i.e. Greenhouse gases Observing SATellite (GOSAT) and SCIAMACHY, at low spatial resolution (Garbe and Vihharev, 2012). A global estimation of CO$_2$ fluxes in the ocean has been derived at $1^\circ \times 1^\circ$ of spatial resolution from global atmosphere observations used into a data assimilation system for CO$_2$ called CarbonTracker (Peters et al., 2007). In all these datasets the rather coarse spatial resolution leads to uncertainties in the actual estimate of the sources and sinks of GHGs, calling for an improvement of the resolution of CO$_2$ flux estimates.

In this regard, the last few years have seen the appearance of interesting new developments on multiscale processing techniques for complex signals coming from Earth Observations (Yahia et al., 2010). These methods make use of phenomenological descriptions of Fully Developed Turbulence (FDT) in nonlinear physics, motivated by the values taken on by Reynolds number in ocean dynamics. As predicted from the theory and also observed in the ocean, in a turbulent flow the coherent vortices (eddies) interact with each other stretching and folding the flow generating smaller eddies or small scale filaments and transition fronts characterized by strong tracer gradients (Frisch, 1995). This results in a cascade of energy from large to smaller scales. Therefore the inherent cascade of tracer variance under the turbulent flow dominates the variability of the geometrical distribution of tracers such as temperature or dissolved inorganic carbon, as shown by Abraham et al. (2000); Abraham and Bowen (2002); Turiel et al. (2005). Geometrical organization of the flow linked to the energy cascade allows to study its properties from the geometrical properties of any tracer for which the advection is the dominant process. The relationships between the cascade and the multifractal organization of FDT has been set up either in a canonical (Arneodo et al., 1995; Frisch, 1995) or microcanonical (Turiel et al., 2005; Bouchet and Venaille, 2012)
descriptions. Within the microcanonical framework (MMF) the singularity exponents unlock the geometrical realization of the multifractal hierarchy. Setting up a multiresolution analysis on the singularity exponents computed in the microcanonical framework allows near optimal cross scale inference of physical variables (Sudre et al., 2015).

These advances open a wide field of theoretical and experimental research and their use in the analysis of complex data coming from satellite imagery has been proved to be innovative and efficient, showing a particular ability to perform fusion of satellite data acquired at different spatial resolutions (Pottier et al., 2008) or to reconstruct from satellite data currents maps at submesoscale resolution (Sudre et al., 2015). In this paper we apply these novel techniques emerging from non-linear physics and non-linear signal processing for inferring submesoscale resolution maps of the air–sea GHGs fluxes and associated sinks and sources from available remotely sensed data. We use this methodology to derive cross scale inference according to the effective cascade description of an intensive variable, through a fusion process between appropriate physical variables which account for the fluxes exchanges between the ocean and the atmosphere. This approach is not only very novel in signal processing, it also relates closely the statistical description of acquired data to their physical content.

Unlike the Lagrangian approach to reconstruct tracer maps at high resolution (Berti and Lapeyre, 2014), our methodology works in the Eulerian framework and we do not need to know the trajectories of oceanic tracer particles but only high resolution instantaneous maps of tracers which can be directly obtained from remote sensing.

The Eastern Boundary Upwelling Systems (EBUS) and Oxygen Minimum Zones (OMZs) are likely to contribute significantly to the gas exchange between the ocean and the atmosphere (Hales et al., 2005; Waldron et al., 2009; Paulmier et al., 2011). The Benguela upwelling system, the region of interest in this study, is one of the highest productivity areas in the world ocean and may contribute significantly to the global air–sea CO$_2$ flux. More precisely, some studies using data from in-situ samples have found the region of Benguela to be an annual sink of CO$_2$ with -1.70 (in 1995 and 1996) and -2.02 Mt C year$^{-1}$ in 2005 (Santana-Casiano et al., 2009; Monteiro, 2010),
with a strong variability between 2005 and 2006 from \(-1.17\) to \(-3.24\) mol C m\(^{-2}\) year\(^{-1}\), respectively (González-Dávila et al., 2009).

The paper is organized as follows: Sect. 2 describes the datasets used as input in our algorithm. Section 3 is devoted to describe the methodology used through the study. Statistical description of the input datasets is presented in Sect. 4. Results of the inference method are given in Sect. 5 by providing outputs of our algorithm, then evaluating the various satellite products and assessing the performance of the method using in situ measurements.

2 Data

The input data combines air–sea CO\(_2\) fluxes at low resolution and satellite ocean data at high resolution. To validate the method we use in-situ measurements of oceanic \(pCO_2\).

2.1 Input data: air–sea CO\(_2\) fluxes at low resolution

It is known that the evolution of a concentration, \(c\), in the atmosphere is given by the advection-reaction-diffusion equation:

\[
\frac{\partial c}{\partial t} = -u \nabla c + \frac{1}{\rho} \nabla (\rho T_d \nabla c) + \frac{1}{\rho} g + F,
\]

with the wind field \(u\), the density of the air \(\rho\), the turbulent diffusivity tensor \(T_d\), the chemical reaction rate \(g\) and the net flux at the air–sea interface \(F\) (Garbe et al., 2007, 2014). Using optimal control and inverse problem modeling, a map of \(F\) can be derived using Earth Observation data (Garbe and Vihharev, 2012). It would be ideal if we could use data of atmospheric CO\(_2\) concentrations from space measured by satellite sensors such as SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) aboard ENVISAT, in orbit since 2002, and GOSAT.
(Greenhouse gases Observing SATellite), in orbit since January 2009, to derive the air–sea flux. However SCIAMACHY and GOSAT sampling is not dense enough with very suboptimal sampling of the Benguela upwelling system. This led us to use data of \(\text{CO}_2 \) fluxes from CarbonTracker (http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/) at spatial resolution of \(1^\circ \times 1^\circ \) \((\sim 110 \text{ km} \times \sim 110 \text{ km}) \) (Peters et al., 2007). CarbonTracker system assimilates and integrates a diversity of atmospheric \(\text{CO}_2 \) data into a computation of surface \(\text{CO}_2 \) fluxes, using a state-of-the-art atmospheric transport model and an ensemble Kalman filter.

We obtain the partial pressure of ocean \(\text{CO}_2 \) by using the equation of the net flux in the air–sea interface:

\[
F = \alpha K \left(p_{\text{air}}^{\text{CO}_2} - p_{\text{ocean}}^{\text{CO}_2} \right),
\]

where \(\alpha \) is the gas solubility, which depends on SST and Sea Surface Salinity SSS, and \(K \), the gas transfer velocity, is a function of wind, salinity, temperature, sea state, which can be obtained from satellite data. To estimate the gas transfer velocity we use the well accepted relationships for the transfer velocity in air–sea gas exchange from wind speed, the parametrization developed by Sweeney et al. (2007). The \(\text{CO}_2 \) gas solubility is derived according to Weiss (1974). Input data for SST are derived from OSTIA product, SSS are derived from LEGOS product compiled by Delcroix et al. (2011) and winds from Cross Calibrated Multi-Platform Ocean surface winds from JPL PO.DAAC (http://podaac.jpl.nasa.gov/). We assume a \(p_{\text{air}}^{\text{CO}_2} \) to be constant in the domain of study and it is derived from the Globalview-CO\(_2 \) product of the Cooperative Atmospheric Data Integration Project coordinated by Carbon Cycle Greenhouse Gases Group (www.esrl.noaa.gov/gmd/ccgg/globalview/). We use values taken at the closest station off Benguela, located at Ascension Island (7.97° S and 14.40° W).

The raw data of CarbonTracker fluxes of \(\text{CO}_2 \) in the area of interest are strongly binned and exhibit strong gradients across those bins. This turns out to be suboptimal for our super-resolution approach. For this reason, an approach similar to Garbe and
Vihharev (2012) has been developed and applied to the CarbonTracker data set. However, the estimations are expensive and computing results for all the time frames of interest was infeasible. Therefore, an anisotropic diffusion-based approach has been applied to the raw fluxes of the CarbonTracker data set. The diffusion is steered by the direction of the low-altitude wind field. The results thus retain very well the structure of the CarbonTracker fluxes while suppressing artifacts. Results are comparable to the physically more accurate approach of Garbe and Vihharev (2012). Examples of this process are shown in Fig. 1.

2.2 Input data: satellite ocean data at high resolution

Oceanic pCO_2 is a complex signal depending, at any spatial resolution, on sea surface temperature, salinity, chlorophyll concentration, dissolved inorganic carbon, alkalinity and nutrients concentrations. Both the biological pump, with chlorophyll a as a proxy, and the physical pump, driven by the temperature and salinity (e.g. solubility, water mass), govern the evolution of pCO_2, when dealing with CO$_2$ for instance, in the surface ocean.

We use here the high resolution satellite ocean data for chlorophyll a, as a proxy for the biological carbon pump and for Sea Surface Temperature (SST), as a proxy for the thermodynamical pump, (see Sect. 3.2 for more details on the connection of these oceanic variables).

2.2.1 Chlorophyll a (Chl a) from Ocean Colour (OC)

In this study we use Chl a concentrations from two different Ocean Colour products: MERIS and GLOBCOLOUR. MERIS (MEdium Resolution Imaging Spectrometer Instrument) is on board the ENVISAT satellite and provides daily maps of ocean colour at $1/32^\circ$ (~ 4 km). Ocean colour from GLOBCOLOUR product is obtained by merging data provided by MODIS, MERIS and SeaWiFS instruments. The Chl a concentration is provided daily and at the spatial resolution equal to $1/32^\circ$ (~ 4 km). GLOB-
COLOUR products are generated using different merging methods (see the GLOB-COLOUR Product User Guide document in http://www.globcolour.info/CDR_Docs/GlobCOLOUR_PUG.pdf):

- **Averaging from single-instrument chl a concentration.** In this case CHL1 daily level 3 (L3) products are generated for each instrument using the corresponding L2 data. At the beginning of the averaging process, an inter-calibration correction is applied to the MODIS and SeaWiFS CHL1 daily L3 products in order to get compatible concentrations with respect to the MERIS sensor. The merged CHL1 concentration is then computed as the average of the MERIS, MODIS and SeaWiFS quantities, both as: an *arithmetic mean* or a *weighted average value (AVW)*. In the AVW method, values of CHL1 are weighted by the relative error for each sensor on the results of the simple averaging.

- **Garver–Siegel–Maritorena model (GSM).** In this method single-instrument daily L3 fully normalized water leaving radiances (individually computed for each band) and their associated error bars are used by the GSM model. These radiances are not inter-calibrated before incorporation in the model (see Maritorena and Siegel, 2005, for more details).

Snapshots of both Chl a fields derived from MERIS and GSM GLOBCOLOUR corresponding to 21 September 2006 are displayed in Fig. 2a and b, respectively. This example shows the clear difference in the remote sensing coverage between the two products. The merged GLOBCOLOUR product yields a more covered Chl field than the one obtained from MERIS. The merging algorithm in GLOBCOLOUR product tends to decrease the missing points induced by clouds for each individual instrument.

2.2.2 Sea Surface Temperature (SST)

We use SST derived from OSTIA and MODIS products. OSTIA (Operational SST and Sea Ice Analysis system) is a new analysis of SST that uses satellite data provided
by the GHRSSST (Group for High Resolution SST) project, together with in situ observations to determine the SST with a global coverage and without missing data. The datasets are produced daily and at spatial resolution of $1/20^\circ$ ($\sim 6 \text{ km}$) performing a multi-scale optimal interpolation using correlation length scales from 10 to 100 km (more details in Donlon et al., 2012). The other SST product used in this study is derived from MODIS (MODerate Resolution Imaging Spectroradiometer) sensors carried on board the Aqua satellite since December 2002. This SST product is derived from the MODIS mid-infrared (IR) and thermal IR channels and is available in various spatial and temporal resolutions. We use Level-3 daily maps of SST at the spatial resolution of $1/32^\circ$ ($\sim 4 \text{ km}$) (Savtchenko et al., 2004). In Fig. 3a and b, we show one snapshot of SST from OSTIA and MODIS respectively corresponding to the same day on 21 September 2006. In the case of OSTIA products, the SST field is fully covered of points while for MODIS products there are gaps due to cloudiness. On other hand, MODIS product offers a more detailed visualization of the small structures.

2.3 Validation data: in-situ measurements

Among the available data in SOCAT (Surface Ocean CO$_2$ Atlas, http://www.socat.info) over the 2000–2010 period in our region of interest we find the following cruises with pCO$_2$ measurements:

- 2000, one cruise: ANT-18-1
- 2004, one cruise: 0404SFC-PRT
The small number of cruises found in one decade (24 cruises) shows that the scarcity of cruises in the Benguela region is a fact. This indeed demonstrates the crucial need of developing a robust method to infer high resolution pCO_2 from space. Moreover for some of these cruises, for instance, the track of GALATHEA cruise is too close to the coast and is out of the original CarbonTracker domain. Due to this restriction we only document the offshore conditions of this upwelling system. Owing to the relatively large number of cruises during 2005, 2006 and 2008 (a total of 20 cruises, representing 83% of all available cruise data from 2000 through 2010), in this validation, we focus the analysis on the set of QUIMA-cruises during 2005 (QUIMA2005), 2006 (QUIMA2006) and 2008 (QUIMA2008) and we present the global analysis using all available cruises during these three years. Santana-Casiano et al. (2009) analyzed this data to study the sea surface pCO_2, fCO_2 and CO_2 air–sea fluxes offshore of the Benguela upwelling system between 2005 and 2006 (for each month from July 2005 up to November 2006) and González-Dávila et al. (2009) extended the study including cruises data from 2007 to 2008. The QUIMA line crosses the region between 5 and 35° S, with all the cruises following the same track.

3 Method

The idea hinges on the fundamental discovery of a simple functional dependency between the transitions – those being measured by the dimensionless values of the singularity exponents computed within the framework of the Microcanonical Multifractal Formalism – of the respective physical variables under study: SST, Ocean colour and oceanic partial pressure pCO_2. That functional dependency being adequately fitted
into a linear regression model with good characteristics, it becomes possible to com-
pute, at any given time, a precise evaluation of pCO_2 singularity exponents using SST,
Ocean colour and low resolution acquired pCO_2. Once these singularity exponents are
computed, they generate a multiresolution analysis from which low resolution pCO_2
can be cross-scale inferred to generate a high resolution pCO_2 product.

3.1 Singularity exponents and the multifractal hierarchy of turbulence

In the ocean, the turbulence causes the formation of unsteady eddies on many scales
which interact with each other (Frisch, 1995). Most of the kinetic energy of the turbu-
lent motion is contained in the large scale structures. The energy cascades from the
large scale structures to smaller scale structures by an inertial and essentially inviscid mechanism. This process continues, creating smaller and smaller structures which
produces a hierarchy of eddies. Moreover, the ocean is a system displaying scale in-
variant behavior, that is, the correlations of variables do not change when we zoom in
or we zoom out the system, and can be represented by power-laws in particular, with
the scaling exponents h.

It can be shown that the scaling exponents are the values taken on by localized sin-
gularity exponents, which can be computed at high precision in the acquired data using
the Microcanonical Multifractal Formalism. Hence, within that framework, the multi-
fractal hierarchy of turbulence, defined by a continuum of sets \mathcal{F}_h indexed by scaling
exponents h, is obtained as the level sets of the geometrically localized singularity
exponents.

We will not review here the details in the computation of the singularity exponents
$h(x)$, leaving the reader to consult references (Turiel et al., 2005, 2008; Pont et al.,
2011b; Maji and Yahia, 2014; Sudre et al., 2015) for an e-
ff
d
e
e
fective description of an
algorithm able to compute the $h(x)$ at every point x in a signal’s domain.

Some examples of the singularity exponents of Chl and SST images for the different
products described in Sect. 2.2 are shown in Figs. 2c and d and 3c and d, respectively.
As compared to the corresponding images of Chl and SST showed in Figs. 2a and b
and 3a and b, one can see the ability of the singularity exponents to unveil the cascade structures arisen by tracer-gradient variances hidden in satellite images.

3.2 Functional dependencies between the singularity exponents of intensive physical variables

Another important idea implemented in the methodology is the coupling of the physical information contained in SST and OC images with the ocean \(p\text{CO}_2 \). For instance, it is known, that marine primary production is a key process in the oceanic carbon cycling, and variations in the concentration of phytoplankton biomass can be related to variations in the carbon concentrations. Surface temperature is also related with the gas solubility in the ocean, and areas with high temperatures are more suitable for releasing \(\text{CO}_2 \) to the atmosphere. We have studied the relationship of SST and Chl \(a \) variables with \(p\text{CO}_2 \) using the outputs of a coupled Regional Ocean Modeling System (ROMS) with the BIOgeochemical model of the Eastern Boundary Upwelling System (BIOEBUS) (Gutknecht et al., 2013). The ROMS includes several levels of nesting and composed grids, which makes it an ideal model for the basis of our methodology in working in two spatial resolutions. BIOEBUS has been developed for the Benguela to simulate the first trophic levels of the Benguela ecosystem functioning and also to include a more detailed description of the complete nitrogen cycle, including denitrification and anammox processes as well as the oxygen cycle and the carbonates system. This model coupled to ROMS has been also shown to be skillful in simulating many aspects of the biogeochemical environment in the Peru upwelling system (Montes et al., 2015). When one compares SST and Chl with \(p\text{CO}_2 \) one finds undetermined functional dependency. However, when comparing their corresponding singularity exponents one obtains a clear simpler dependency. This is due to the fact that SST, Chl and \(p\text{CO}_2 \) are variables of different simpler dimensions while singularity exponents are dimensionless quantities.

These results show that there is a good correlation between the turbulent transitions given by the singularity exponents and that singularity exponents are good candidates...
for a multiresolution analysis performed on the three signals SST, Chl and \(pCO_2 \). Furthermore, they studied the log-histograms and singularity spectrum to show that singularity exponents of \(pCO_2 \) images possess a multifractal character. Therefore, such signals are expected to feature cascading, multiscale and other characteristic properties found in turbulent signals as described in Turiel et al. (2008) and Arneodo et al. (1995). Consequently the use of non-linear and multiscale signal processing techniques is justified to assess the properties of the \(pCO_2 \) signal along the scales.

Therefore, in our methodology, the local connection between different tracer concentrations, i.e., SST, Chl \(a \) with \(pCO_2 \), in order to obtain a proxy for \(pCO_2 \) at high resolution, is performed by using the following linear combination of multiple linear regressions:

\[
S(pCO_2)(x) = a(x)S(SST)(x) + b(x)S(Chl \ a)(x) + c(x)S(pCO_2^{LR})(x) + d(x),
\]

where \(S(pCO_2)(x) \) refers to the singularity exponent of \(pCO_2 \) at \(x \), \(S(SST)(x) \) to singularity exponent of SST at \(x \), \(S(Chl \ a)(x) \) to singularity exponent of Chl \(a \) signal at \(x \), and where in order to propagate the \(pCO_2 \) signal itself along the scales in the multiresolution analysis we introduce \(S(pCO_2^{LR}) \) to refer to the singularity exponent from \(pCO_2 \) at low resolution interpolated on the high resolution grid. \(a(x) \), \(b(x) \) and \(c(x) \) are the regression coefficients associated to singularity exponents, and \(d(x) \) is the error associated to the multiple-linear regression. These regression coefficients are estimated using simulated data from the ROMS-BIOEBUS model developed for the Benguela upwelling system and described above.

Once we have introduced these coefficients in the linear combination on satellite data, we obtain a proxy for singularity exponents of \(pCO_2 \) at high resolution and we can perform the multiresolution analysis to infer the information across the scales.

3.3 Cross-scale inference of \(pCO_2 \) data

Among the functional that are most commonly used to analyze the scaling properties of multifractal systems, wavelets occupy a prominent position. Wavelets projections
are integral transforms that separate the relevant details of a signal at different scale levels, and since they are scale-tunable, they are appropriate to analyze the multiscale behavior of cascade processes and to represent them. However, as shown in Pottier et al. (2008); Yahia et al. (2010) and Pont et al. (2011a) not all multiresolution analyses are equivalent but the most interesting are those which are optimal with respect to inferring information along scales, in particular, in a context where information is to be propagated along the scales from low resolution to high resolution.

The effective determination of an optimal wavelet for a given category of turbulent signals is, in general, a very difficult open problem. This difficulty can be contoured by considering multiresolution analysis performed on the signal of the singularity exponents $h(x)$ themselves. Indeed, since the most singular manifold (the set F_h associated to the lowest singularity exponents) is associated with the highest frequencies in a turbulent signal, and since the multifractal hierarchy F_h converges to this set, it is physically evident that the multifractal hierarchy corresponds to a description of the detail spaces of a multiresolution analysis performed on a turbulent signal. Consequently, designing by V_j and W_j respectively the approximation and detail spaces computed on $S(pCO_2)(x)$ signal, and by A_j and P_j their corresponding orthogonal projections from space $L^2(\mathbb{R}^2)$, the following reconstruction formula:

$$A_{j-1}pCO_2 = A_j pCO_2 + P_j h$$

(4)

consists in reconstructing a signal across the scales using the detail spaces of the singularity exponents, hence re-generating a physical variable according to its cascade decomposition. From these ideas, which are described more fully in the paper by Sudre et al. (2015), we can deduce the following algorithm for reconstructing a super-resolution pCO_2 signal from available high-resolution SST, Chl a, and low-resolution pCO_2:

- Estimate linear regression coefficients $a(x), b(x), c(x)$ and $d(x)$ of Eq. (3) using a training set as described in Sect. 3.2.
– Given a time \(t \) and a low resolution signal \(p\text{CO}_2 \) at time \(t \), compute the singularity exponents \(S(p\text{CO}_2^{LR}) \) at time \(t \).

– Using Eq. (3), from available SST, Chl \(a \) data at time \(t \), and \(S(p\text{CO}_2^{LR}) \) at time \(t \), compute \(S(p\text{CO}_2) \).

– Using Eq. (4) derive from the multiresolution analysis computed on signal \(S(p\text{CO}_2) \) and cross-scale inference on physical variable \(p\text{CO}_2 \) at low-resolution, the physical variable \(p\text{CO}_2 \) at the high-resolution of SST and Chl \(a \).

The methodology has been successfully applied to dual ROMS simulation data at two resolutions, obtaining a mean absolute error of \(p\text{CO}_2 \) reconstructed values with respect to ROMS simulated high-resolution \(p\text{CO}_2 \) equal to 2.4 µatm (0.6 % of relative error) (V. Garçon, personal communication, 2014).

4 Preliminary analysis of Sea Surface Temperature (SST) and chlorophyll images

Since the key element for the application of our inferring algorithm relies on the ability in obtaining the singularity exponents and their quality, the success of our methodology applied to satellite data depends on the quality and the properties of the input data. In order to assess such properties we perform a statistical analysis of the different datasets. First, we analyze the Chl and SST Probability Distribution Functions (PDFs). In Fig. 4a we present the PDFs for Chl from MERIS, GLOBCOLOUR-GSM and GLOBCOLOUR-AVW; the required histograms are built using daily Chl values over 2006 and 2008 at each point of the spatial grid in the area of Benguela. Each one of these PDFs is broad and asymmetric, with a small mode (i.e. the value of Chl at which the probability reaches its maximum) between 0.1 and 0.2 mgm\(^{-3}\) and a heavy tail. The heavy tail (i.e. non-gaussianity) means that the extreme values can not be
neglected. In this case Chl values are mostly low (small mode) but there is a significant number of isolated and dispersed patches with very high Chl values producing intermittency (long tails in the PDF). Intermittency in the context of turbulence is the tendency of the probability distributions of some quantities to develop long tails, i.e. the occurrence of very extreme events.

Further information can be obtained by computing statistical quantities such as SD, skewness and kurtosis. Table 1 shows that SD is rather the same for the three OC products while skewness and kurtosis values hugely differ. The degree of intermittency is measured by the kurtosis, the higher the kurtosis, the higher the intermittency. We found that kurtosis is almost ten times higher in GLOBCOLOUR products than in MERIS.

We have repeated the same analysis for SST datasets. The PDFs of the SST values for OSTIA and MODIS products are shown in Fig. 4b. In this case both PDFs possess similar shape, broad with the mode around 18°C with a much less deviation from gaussianity as compared to Chl values. This is confirmed with the computation of the statistical moments showed in Table 1. We obtain small values of the SD and kurtosis in both cases, although slightly higher in the case of MODIS. The kurtosis is less than 3, meaning that there is not an important number of atypical values of SST and therefore weak and short tails in the PDFs.

If turbulence is dominated by coherent structures localized in space and time, then PDFs are not Gaussian, and the kurtosis will be higher than 3. To analyze this feature we turn to the statistical analysis of the singularity exponents, which, as explained before, have the ability to unveil the cascade structures given by the tracer gradients. In Fig. 4c, it can be seen that the PDFs of the singularity exponents of the Chl for the three products are rather similar with almost the same SD and with a slightly higher value of the kurtosis in the GLOBCOLOUR-GSM product, 4.3, than for MERIS, 3.1, and GLOBCOLOUR-AVW, 3.1, (see Table 2). This shows that Chl from GLOBCOLOUR-GSM product contains more extreme values which produce intermittency likely given by the strongest structures. The PDFs of the singularity exponents of the SST for OSTIA
is narrower and with a highest peak than for MODIS SST. However, surprisingly the kurtosis is larger for singularity exponents of OSTIA SST, 5.1, than for MODIS SST, 3.2.

Finally, we obtain the singularity spectra from the empirical distributions of singularity exponents shown in Fig. 4c and d. One can see in Fig. 4e that for the two GLOBCOLOUR products the shape of the spectrum is closer to binomial cascade of multiplicative processes than for MERIS (we will come back to this discussion in more depth in next sections).

5 Results

5.1 Inference of super-resolution pCO$_2$ and air–sea fluxes of CO$_2$ offshore of the Benguela upwelling system

We now apply the methodology to infer ocean pCO$_2$ maps at super-resolution from pCO$_2$ at low resolution derived from CarbonTracker data (see Sect. 2) in the offshore area of the Benguela region. For the inference we use the following three combinations of Chl and SST products described in Sect. 2.1: MERIS-OSTIA, GLOBCOLOUR-OSTIA, GLOBCOLOUR-MODIS. We do not include the MERIS-MODIS combination in the analysis due to the fact that the use of such satellite data results in a too drastic reduction of the coverage of the resulting inferred pCO$_2$ field, but using merged products offers wider coverage instead. The inferred pCO$_2$ obtained from two merged products for Chl a, GLOBCOLOUR GSM and GLOBCOLOUR AVW is rather the same, with a slightly improvement when GSM is used. Thus for the sake of clarity, we only show figures for GLOBCOLOUR-GSM and some statistical results making comparisons with AVW. Therefore from now on we refer GLOBCOLOUR to the Chl a obtained by the GSM merged method.

Figure 5d shows one example of inferred pCO$_2$ field corresponding to 22 March 2006 when we use SST data from OSTIA (Fig. 5a), Ocean Colour from GLOBCOLOUR
(Fig. 5b) at high resolution and \(p_{\text{CO}_2} \) at low resolution (Fig. 5c) derived from CarbonTracker air–sea flux of \(\text{CO}_2 \) (Fig. 5e) and using the Eq. (2). The air–sea flux of \(\text{CO}_2 \) at super-resolution (Fig. 5f) is obtained from the inferred \(p_{\text{CO}_2} \) field and a constant value of atmospheric \(p_{\text{CO}_2} \) equal to 385.6 µatm. On this day the images of the inferred \(p_{\text{CO}_2} \) and fluxes of \(\text{CO}_2 \) combine a good coverage and a clear identification of small scale structures and gradients, as described below. Note that the air–sea \(\text{CO}_2 \) flux from CarbonTracker presents a large land mask close to the coast and consequently, we will rather study the offshore area of the Benguela upwelling. Comparing the figures one can see that values of \(p_{\text{CO}_2} \) and \(\text{CO}_2 \) flux over the domain (from 4.5° E to coast, taking out the mask of the CarbonTracker domain, and from 20.5 to 35° S) vary between 360 and 380 µatm and between \(-4 \times 10^{-8}\) and \(0.5 \times 10^{-8}\) mol C m\(^{-2}\) s\(^{-1}\), respectively. The resultant flux of \(\text{CO}_2 \) is positive (towards the atmosphere) in the region 25–28° S and from 7° E eastward to the coast and is negative (into the ocean) south of 30° S and east of 6° E. Thus, we see that in the southern part of the Benguela area there is a strong \(\text{CO}_2 \) sink and the northern part behaves as a weak \(\text{CO}_2 \) source.

What is new in the reconstructed \(p_{\text{CO}_2} \) is, for instance, that the cascade of information across the scales enhances gradients in the field of \(p_{\text{CO}_2} \). It is striking that the high-resolution map provides the position of the North–South dipole “front” located at 30° S (i.e. \(-1.5 \times 10^{-8}\) isoline in green) which could not be inferred accurately from the low resolution map. The low resolution map would provide an estimate of the location of the “front” that is \(\sim 1.5°\) northern of the location inferred from the high-resolution map. Moreover one can see small structures in the inferred \(p_{\text{CO}_2} \) field between 33–35° S and 9–12° E in the inferred \(p_{\text{CO}_2} \) field (Fig. 5d). The small spatial scale variability is captured in the super-resolution \(p_{\text{CO}_2} \) field and not in CarbonTracker \(p_{\text{CO}_2} \) as shown in the longitudinal profile of the images plotted in Fig. 5 at latitude 33.5° S (see Fig. 6). The same high spatial variability given by the small scale structures of the SST and OC images can be appreciated in their corresponding longitudinal profiles displayed in the panel a and b of Fig. 6. It is worthy to note the change in the shape of the profiles between the inferred and CarbonTracker \(p_{\text{CO}_2} \) and fluxes of \(\text{CO}_2 \) at large scale, from
5.5 to 10.5° E, showing that the method not only introduces small scale features but also modifies the large scale spatial variability.

5.2 Evaluation of using different satellite products

Since the underlying aim of this work is to develop a methodology to infer super-resolution pCO$_2$ from space using remote observations, we perform a validation study of the different data used in the inferring computations. This provides us an evaluation of which satellite products are more suitable for our methodology and thus a gain in confidence in our method as well as a better understanding of its limitations. The evaluation analysis is addressed taking into account two main concerns: one related to the number of valid points yielded in the inferred pCO$_2$ field, and another with regard to the degradation of the information contained in the transition fronts. A valid point is a pixel where we have simultaneously Chl, SST and pCO$_2$ values from CarbonTracker, from which we can obtain a value of inferred pCO$_2$, in other words without missing information. One example comparing the reconstructed pCO$_2$ field obtained from the mentioned above three products combinations is plotted in Fig. 7. The general pattern is quite similar in all of them with some differences in the details of the small scales and in the missing points due to cloudiness (white patches). This example clearly shows how different can be the coverage of the pCO$_2$ field depending on the products combination.

Similar results are found when one compares the spatial distribution of time average over 2006 and 2008 of the reconstructed pCO$_2$ values for the three product combinations (Fig. 8). The same pattern with an area of higher pCO$_2$ between 24 and 30° S and lower pCO$_2$ values outside this region is produced with the three combinations. The most noticeable differences are located in the most northern region and in the south-eastern region off Benguela. This can be quantified by computing the SD of the reconstructed pCO$_2$ values among the different combination of datasets. Figure 8d shows the spatial distribution of the time average over 2006 and 2008 of the SD computed in each pixel among the inferred pCO$_2$ values obtained from the three products
combinations. The larger values of the dispersion (not greater than 5 µatm) are found in the northern region from 23° S to the north and in the southern region, in particular, in the area from 31.5° S to the south and from 11° E to the east. The low value of the dispersion indicates that the method is robust when different datasets are used in the inference.

First, we compute the number of valid points in the inferred pCO$_2$ field for each product combination. Table 3 summarizes the total number of valid points for each products combination for both years 2006 and 2008. As expected, the number of valid points is found to be the highest for the combination of merged products OSTIA SST and GLOBCOLOUR-GSM with $N_{GO} = 27,313,043$ points, followed by the combination MODIS SST and GLOBCOLOUR Chl with $N_{MG} = 20,397,047$ points and finally by the OSTIA SST and MERIS Chl combination with $N_{OM} = 9,800,776$ points. Looking at the different proportions, we find that the number of valid points is 2.78 times larger when using the merged products OSTIA and GLOBCOLOUR-GSM than using OSTIA and MERIS, 1.33 times larger than using MODIS and GLOBCOLOUR-GSM than using OSTIA and MERIS, 1.08 times larger using OSTIA SST and GSM Chl a than using MODIS SST and GSM Chl a. Further, if we know that the total number of pixels in the domain taking out the points of the CarbonTracker mask and for the two years is $N_p = 55,711,378$, one can estimate the loss of valid points for each combination, LP_x. LP_x is computed by dividing the relative difference between the number of total available pixels in the domain N_p and the number of points in the inferred pCO$_2$ field obtained for each product combination, N_x, with respect to the total number of pixels N_p, $LP_x = \frac{N_p - N_x}{N_p} \times 100\%$. Here the subscript x refers to the product combination (e.g. $LP_x = LP_{OM}$, LP_{OG} and LP_{MG} for the loss of valid points with the OSTIA-MERIS, OSTIA-GLOBCOLOUR and MODIS-GLOBCOLOUR products combination, respectively). The loss of valid points due to cloudiness in the ocean colour and SST images is less severe for the OSTIA-GLOBCOLOUR combination with a loss of 51% and being the more affected by the cloudiness the OSTIA-MERIS combination with a loss of 82%.

1425
Next we explore the quality of the information contained in the transition fronts, in particular, in the non-merged products such as MERIS OC and MODIS SST as compared to the merged products: GLOBCOLOUR OC and OSTIA SST. The PDFs of pCO_2 values from CarbonTracker and inferred pCO_2 values for the three combinations of OC and SST products, i.e. MERIS-OSTIA, GLOBCOLOUR-OSTIA, MODIS-GLOBCOLOUR (see Fig. 9) show that there is a good correspondence of all inferred pCO_2 values with those from CarbonTracker. Indeed the histograms show also a better agreement between merged products and CarbonTracker: the peak of the PDF for inferred pCO_2 is closer to CarbonTracker peak in the case of OSTIA and GLOBCOLOUR than when using MERIS and MODIS products.

Furthermore, to analyze the realism of the transitions fronts for the different products we compute the singularity spectra for the three product combinations (see Fig. 10). One can see that at low values of h (singularity exponent), related to the most singular manifolds, the shape of singularity spectrum for inferred data from merged products better matches a binomial cascade, with an improved description of the dimension of the sharpest transition fronts. We know from the theory, that tracers advected by the flow in the turbulent regime, as it happens in the ocean, shows a multifractal behavior with a characteristic singularity spectrum $D(h)$ similar, for some types of turbulence, to $D(h)$ for the binomial multiplicative process.

5.3 Validation with in-situ measurements

Next, we perform a validation analysis of the results of our algorithm to infer pCO_2 at super-resolution with field observations of oceanic pCO_2. In particular we perform the validation using pCO_2 ocean data from in-situ measurements taken in the Benguela region (see Sect. 2.3). We decided to carry out directly the validation on pCO_2 rather than on the air–sea CO_2 flux since the field measurements do provide oceanic pCO_2 data.

From now on we are going to use the following notation for the three different sources of pCO_2: we refer to the values of ocean pCO_2 derived from CarbonTracker
as $p_{\text{CO}_2}^{\text{Ctrack}}$, values of inferred p_{CO_2} at higher resolution from p_{CO_2} at low resolution together with computation of the cascade onto SST and chlorophyll a concentration as $p_{\text{CO}_2}^{\text{infer}}$, and finally $p_{\text{CO}_2}^{\text{insitu}}$ refers to the values of the in-situ measurements of p_{CO_2}.

An example of the qualitative comparison of values of $p_{\text{CO}_2}^{\text{Ctrack}}$, $p_{\text{CO}_2}^{\text{infer}}$ for all the products combinations and $p_{\text{CO}_2}^{\text{insitu}}$ at the intersections of the QUIMA cruise during 4–7 July 2008, as a function of the longitudinal coordinate of the intersections, is shown in Fig. 11. While there are visible differences between various p_{CO_2} values, the values of $p_{\text{CO}_2}^{\text{infer}}$ approximate better $p_{\text{CO}_2}^{\text{insitu}}$ values than those of $p_{\text{CO}_2}^{\text{Ctrack}}$. The small scale patterns are well reproduced in the inferred p_{CO_2} field. Values of $p_{\text{CO}_2}^{\text{infer}}$ exhibit gradients and small scale fluctuations, likely induced by the presence of fronts, which can be also detected on the profile of the in situ measurements of p_{CO_2}. Most of days $p_{\text{CO}_2}^{\text{infer}}$ and $p_{\text{CO}_2}^{\text{Ctrack}}$ values overestimate $p_{\text{CO}_2}^{\text{insitu}}$ values. In some days, $p_{\text{CO}_2}^{\text{infer}}$ values follow the same trend, with the same small scale fluctuations than $p_{\text{CO}_2}^{\text{insitu}}$.

First, we analyze the number of valid intersections for each product combination. A valid intersection is a placement in space and time common to the inferred, CarbonTracker and in-situ p_{CO_2}, without missing values. On one hand, among the 20 available cruises in the Benguela through 2005, 2006 and 2008 we find that the total number of in-situ measurements in the Benguela region under study is $N_{\text{insitu}} = 17,355$ and within the CarbonTracker domain this number is reduced to $N_{\text{Ctrack}} = 8,377$ measurements. To estimate the loss of valid intersections due to the land mask of the CarbonTracker we compute the relative difference of the number of intersections between the cruise trajectories and the CarbonTracker domain with respect to the number of the in-situ measurements, $L_{\text{Ctrack}} = \frac{N_{\text{insitu}} - N_{\text{Ctrack}}}{N_{\text{insitu}}} 100\% = 52\%$, showing that half of the measurements is geographically in the coastal region of Benguela, outside the CarbonTracker domain.

The number of valid intersections is the largest with the OSTIA-GLOBCOLOUR combination (Table 4). To quantify the loss of valid intersections between the in-situ measurements and points in the $p_{\text{CO}_2}^{\text{infer}}$ field, likely due to the cloudiness, we...
compute the relative difference between the number of measurements into the CarbonTracker domain and the valid points in the inferred $p\text{CO}_2$ field with respect to the number of intersections measurements of each cruise and the $p\text{CO}_2^{\text{Ctrack}}$ field, $L_{\text{infer}} = \frac{N_{\text{Ctrack}} - N_{\text{infer}}}{N_{\text{Ctrack}}} \times 100\%$. We repeat such a computation for the three product combinations. The percentage of losses of intersections in inferred field L_{infer} becomes twice as large than in the case of the OSTIA-SST and MERIS-Chl combination, and even higher than with the CarbonTracker domain mask.

In order to study quantitatively the difference between values of $p\text{CO}_2^{\text{Ctrack}}$ and $p\text{CO}_2^{\text{infer}}$ with respect to $p\text{CO}_2^{\text{insitu}}$ measurements we compute the following statistical quantities:

- **Mean Error (ME):** average over all the intersections of the difference between $p\text{CO}_2^{\text{Ctrack}}$, $p\text{CO}_2^{\text{infer}}$ and $p\text{CO}_2^{\text{insitu}}$ at the same intersection, i,

$$\text{ME}_{\text{Ctrack}} = \frac{1}{N} \sum_{i=1}^{N} \left(p\text{CO}_2^{\text{Ctrack}}(i) - p\text{CO}_2^{\text{insitu}}(i) \right)$$

$$\text{ME}_{\text{infer}} = \frac{1}{N} \sum_{i=1}^{N} \left(p\text{CO}_2^{\text{infer}}(i) - p\text{CO}_2^{\text{insitu}}(i) \right),$$

where N is the number of intersections.

- **Mean Absolute Error (AE):** average over all the intersections of the absolute values of the difference between $p\text{CO}_2^{\text{Ctrack}}$ or $p\text{CO}_2^{\text{infer}}$ and $p\text{CO}_2^{\text{insitu}}$ at the same
intersection,

\[AE_{\text{Ctrack}} = \frac{1}{N} \sum_{i=1}^{N} \left| pCO_2^{\text{Ctrack}}(i) - pCO_2^{\text{insitu}}(i) \right| \]

\[AE_{\text{infer}} = \frac{1}{N} \sum_{i=1}^{N} \left| pCO_2^{\text{infer}}(i) - pCO_2^{\text{insitu}}(i) \right| \]

– *Mean Relative Error (RE)*: average over all the intersections of the errors of the estimated values of \(pCO_2 \) (CarbonTracker or inferred) with respect to the reference \(pCO_2 \) values (in-situ) at the same intersection,

\[RE_{\text{Ctrack}} = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{pCO_2^{\text{Ctrack}}(i) - pCO_2^{\text{insitu}}(i)}{pCO_2^{\text{insitu}}(i)} \right| \]

\[RE_{\text{infer}} = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{pCO_2^{\text{infer}}(i) - pCO_2^{\text{insitu}}(i)}{pCO_2^{\text{insitu}}(i)} \right| \]

We started the statistical validation by analyzing each QUIMA cruise separately (not shown) and we found that in most of the cruises, the absolute error for inferred \(pCO_2 \) is relatively small (less than 15 µatm) except on 21 August 2006 and 17 May 2008 with an error of 44 and 30 µatm, respectively. Then we address the global validation using all available cruises during these years.

We summarize in Table 4 the results of the computations of the errors given by Eqs. (7)–(10) by making averages over all valid intersections found during 2005, 2006 and 2008. The absolute error, AE is smaller in the three cases of \(pCO_2^{\text{infer}} \) (17.77, 16.47 and 16.62 µatm for OSTIA-MERIS, OSTIA-GLOBCOLOUR and MODIS-GLOBCOLOUR combinations, respectively) than for \(pCO_2^{\text{Ctrack}} \) (21.34, 22.08 and
22.07 µatm, respectively), showing the fact that the estimated pCO$_2$ field at super-resolution using our algorithm is improving the pCO$_2$ field obtained from Carbon-Tracker. The smallest AE is for the combination of SST and Chl provided by merged products. The values of pCO$_2^\text{Ctrack}$ are, in average, larger than pCO$_2^\text{insitu}$ (ME$_\text{Ctrack} =$ 2.97, 8.83 and 14.93 µatm) while the differences between pCO$_2^\text{infer}$ and pCO$_2^\text{insitu}$ values compensate each other (ME$_\text{infer} =$ 0.15, 3.42 and 8.42 µatm). In all cases the ME$_\text{Ctrack}$ and ME$_\text{infer}$ are positive, meaning that the pCO$_2$ values are overestimated. Finally, comparing the relative error of pCO$_2^\text{Ctrack}$ and pCO$_2^\text{infer}$ with respect to pCO$_2^\text{insitu}$, we found that the relative error is low in all cases, being smaller for pCO$_2^\text{infer}$ than for pCO$_2^\text{Ctrack}$.

Finally, if we only compare the statistics errors at the common valid intersections between the pCO$_2^\text{infer}$ using the three product combinations with pCO$_2^\text{Ctrack}$ and with the in-situ measurements (see Table 5), we obtain 458 mutual intersections. We obtain similar results that when taking into account all the intersections. The absolute error is smaller in the case of pCO$_2^\text{infer}$, 17.65 µatm, than with pCO$_2^\text{Ctrack}$, 20.24 µatm, indicating that our algorithm is improving the estimation of ocean pCO$_2$. The smallest AE is again for the combination with merged products. ME is positive showing that the most of the time pCO$_2^\text{infer}$ and pCO$_2^\text{Ctrack}$ values are overestimated (It can be appreciated in Fig. 11). Again the relative error is small, less than 0.06, for all the product combinations.

6 Conclusions

In this work we have presented a method to infer high resolution CO$_2$ fluxes by propagating the small scales information given in satellite images across the scales of a multi-resolution analysis determined on the critical transitions giving by singularity exponents. More specifically, we have reconstructed maps of CO$_2$ fluxes at high resolution (4 km) offshore of the Benguela region using SST and ocean colour data at this resolution, and CarbonTracker CO$_2$ fluxes data at low resolution (110 km). The inferred representation of ocean surface pCO$_2$ improves the description provided by Carbon-
Tracker, enhancing the small scale variability. Spatial fluctuations observed in latitudinal profiles of in-situ pCO_2 have been also obtained in the inferred pCO_2, showing that the inferring algorithm is catching the small scales features of the pCO_2 field. The examination of different combinations of Ocean Colour and Sea Surface Temperature (SST) products reveals that using merged products, i.e. GLOBCOLOUR, the quality and the number of valid points in the pCO_2 field are increased. We have obtained that mean absolute errors of the inferred values of pCO_2 with respect to in-situ measurements are smaller than for CarbonTracker.

We are aware that further investigations can be performed in order to improve the algorithm. On one hand the multiple linear regression coefficients could be derived differentiating the seasons (i.e. coefficients would vary as a function of calendar month) considering the marked seasonal cycle in the Benguela upwelling system. Additionally, future works will be focused in the extension of the computations towards larger areas until being able to infer global high resolution CO$_2$ fluxes. This will allow us to perform an even more comprehensive and robust validation from in situ measurements since more in-situ measurements will be used to make the comparison.

Acknowledgements. This work is a contribution to ESA Support To Science Element Grant No 400014715/11/I-NB OceanFlux-Upwelling Theme.

References

Abraham, E. and Bowen, M.: Chaotic stirring by a mesoscale surface-ocean flow, Chaos, 12, 373–381, 2002. 1408

Valsala, V. and Maksyutov, S.: Simulation and assimilation of global ocean pCO$_2$ and air–sea CO$_2$ fluxes using ship observations of surface ocean pCO$_2$ in a simplified biogeochemical offline model, Tellus B, 62, 821–840, 2010. 1408

Yahia, H., Sudre, J., Pottier, C., and Garçon, V.: Motion analysis in oceanographic satellite images using multiscale methods and the energy cascade, Pattern Recogn., 43, 3591–3604, 2010. 1408, 1419
Table 1. Values of the SD, skewness and kurtosis for the different products.

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>SD</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>MERIS</td>
<td>0.116 mg m^{-3}</td>
<td>2.6</td>
<td>21.9</td>
</tr>
<tr>
<td>GLOBCOLOUR-AVW</td>
<td>0.122 mg m^{-3}</td>
<td>4.7</td>
<td>204.6</td>
</tr>
<tr>
<td>GLOBCOLOUR-GSM</td>
<td>0.123 mg m^{-3}</td>
<td>5.3</td>
<td>215.4</td>
</tr>
<tr>
<td>OSTIA</td>
<td>1.97 °C</td>
<td>-0.05</td>
<td>1.9</td>
</tr>
<tr>
<td>MODIS</td>
<td>2.11 °C</td>
<td>-0.17</td>
<td>2.6</td>
</tr>
</tbody>
</table>
Table 2. Values of the SD, skewness and kurtosis of the singularity exponents for the different products.

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>SD</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>MERIS</td>
<td>0.32 mg m⁻³</td>
<td>0.59</td>
<td>3.1</td>
</tr>
<tr>
<td>GLOBCOLOUR-AVW</td>
<td>0.36 mg m⁻³</td>
<td>0.40</td>
<td>3.1</td>
</tr>
<tr>
<td>GLOBCOLOUR-GSM</td>
<td>0.35 mg m⁻³</td>
<td>0.63</td>
<td>4.3</td>
</tr>
<tr>
<td>OSTIA</td>
<td>0.29 °C</td>
<td>1.0</td>
<td>5.1</td>
</tr>
<tr>
<td>MODIS</td>
<td>0.32 °C</td>
<td>0.5</td>
<td>3.2</td>
</tr>
</tbody>
</table>
Table 3. Number of valid points in the $p\text{CO}_2$ fields and their difference between the three combinations of MERIS or GLOBCOLOUR CHL with OSTIA or MODIS SST in the area of Benguela.

<table>
<thead>
<tr>
<th>Description</th>
<th>No total pixels domain</th>
<th>No Points OSTIA-MERIS</th>
<th>No Points OSTIA-GLOBCOLOUR(AVW)</th>
<th>No Points OSTIA-GLOBCOLOUR(GSM)</th>
<th>No Points MODIS-GLOBCOLOUR(GSM)</th>
<th>Proportion OSTIA-GSM/OSTIA-MERIS</th>
<th>Proportion OSTIA-GSM/MODIS-GSM</th>
<th>Proportion MODIS-GSM-/OSTIA-MERIS</th>
<th>LP_{OM}</th>
<th>LP_{OG} (AVW)</th>
<th>LP_{OG} (GSM)</th>
<th>LP_{MG}</th>
</tr>
</thead>
<tbody>
<tr>
<td>No total pixels domain</td>
<td>55 711 378</td>
<td>9 800 776</td>
<td>26 382 072</td>
<td>27 313 043</td>
<td>20 397 047</td>
<td>2.78</td>
<td>1.33</td>
<td>1.08</td>
<td>82 %</td>
<td>53 %</td>
<td>51 %</td>
<td>63 %</td>
</tr>
</tbody>
</table>
Table 4. Mean error, absolute error and relative error of $p\text{CO}_2$ values obtained from Carbon-Tracker and $p\text{CO}_2$ values inferred at super-resolution with respect to values of $p\text{CO}_2$ measurements during the QUIMA2005/QUIMA2006/QUIMA2008 cruises in the Benguela region.

<table>
<thead>
<tr>
<th></th>
<th>OST-MER</th>
<th>OST-GLOB</th>
<th>MOD-GLOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>No valid intersections</td>
<td>747</td>
<td>1928</td>
<td>1460</td>
</tr>
<tr>
<td>L_{infer} (%)</td>
<td>91</td>
<td>76</td>
<td>82</td>
</tr>
<tr>
<td>$\text{ME}_{\text{Ctrack}}$ (µatm)</td>
<td>2.97</td>
<td>8.83</td>
<td>14.93</td>
</tr>
<tr>
<td>ME_{infer} (µatm)</td>
<td>0.15</td>
<td>3.42</td>
<td>8.42</td>
</tr>
<tr>
<td>$\text{AE}_{\text{Ctrack}}$ (µatm)</td>
<td>21.34</td>
<td>22.08</td>
<td>22.07</td>
</tr>
<tr>
<td>AE_{infer} (µatm)</td>
<td>17.77</td>
<td>16.47</td>
<td>16.62</td>
</tr>
<tr>
<td>$\text{RE}_{\text{Ctrack}}$</td>
<td>0.059</td>
<td>0.060</td>
<td>0.061</td>
</tr>
<tr>
<td>RE_{infer}</td>
<td>0.048</td>
<td>0.045</td>
<td>0.046</td>
</tr>
</tbody>
</table>
Table 5. Mean error, absolute error and relative error of pCO_2 values obtained from Carbon-Tracker and pCO_2 values inferred at super-resolution with respect to values of pCO_2 measurements during the QUIMA2005/QUIMA2006/QUIMA2008 cruises in the Benguela region at the same intersections.

<table>
<thead>
<tr>
<th></th>
<th>OST-MER</th>
<th>OST-GLOB</th>
<th>MOD-GLOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>No valid intersections</td>
<td>458</td>
<td>458</td>
<td>458</td>
</tr>
<tr>
<td>ME$_{\text{Ctrack}}$ (μatm)</td>
<td>8.01</td>
<td>8.01</td>
<td>8.01</td>
</tr>
<tr>
<td>ME$_{\text{infer}}$ (μatm)</td>
<td>4.37</td>
<td>1.62</td>
<td>3.32</td>
</tr>
<tr>
<td>AE$_{\text{Ctrack}}$ (μatm)</td>
<td>23.23</td>
<td>23.23</td>
<td>23.23</td>
</tr>
<tr>
<td>AE$_{\text{infer}}$ (μatm)</td>
<td>19.92</td>
<td>16.31</td>
<td>18.85</td>
</tr>
<tr>
<td>RE$_{\text{Ctrack}}$</td>
<td>0.065</td>
<td>0.065</td>
<td>0.065</td>
</tr>
<tr>
<td>RE$_{\text{infer}}$</td>
<td>0.055</td>
<td>0.045</td>
<td>0.051</td>
</tr>
</tbody>
</table>
Figure 1. Estimated fluxes from CarbonTracker data. Shown are the results on the Benguela upwelling system on 23 March 2006. Left are the CarbonTracker fluxes, right are our results.
Figure 2. Snapshot of Chl a fields corresponding to 21 September 2006 at 1/32° from MERIS (a) and GSM GLOBCOLOUR (b). (c and d) are the spatial distribution of Singularity Exponents of the Chl a plotted in (a and b) respectively.
Figure 3. Snapshot of SST fields corresponding to 21 September 2006 regridded at 1/32° of spatial resolution from OSTIA (a) and MODIS (b). (c and d) are the spatial distribution of Singularity Exponents of the SST plotted in (a and b) respectively.
Figure 4. (a) Probability distribution functions (PDF) of Chl a values derived from the three products: MERIS, GLOBCOLOUR-AVW and GLOBCOLOUR-GSM. (b) PDF of SST values for OSTIA and MODIS products. (c) PDFs for the singularity exponents of Chl for the different Ocean Colour products. (d) PDFs for the singularity exponents of Chl for the different SST products. (e) Singularity spectra corresponding to (c). (f) Singularity spectra corresponding to (d).
Figure 5. Maps of (a) SST from OSTIA at 1/32° of spatial resolution, (b) Chl at 1/32° of spatial resolution from GSM GLOBCOLOUR products, (c) ocean ρCO₂ from CarbonTracker at the spatial resolution of 1°, (d) inferred ρCO₂ at super-resolution (1/32°) derived from OSTIA SST and GLOBCOLOUR-GSM Chl a shown in (a and b) respectively, (e) Air–sea CO₂ flux as derived from CarbonTracker and (f) Air–sea CO₂ flux computed from super-resolution ρCO₂ shown in (d) at 1/32°. All images correspond to 22 March 2006. White color corresponds to invalid pixels due to cloudiness and points inside of the CarbonTracker land mask.
Figure 6. Longitudinal profiles of (a) SST from OSTIA products in units of °C, (b) Chl from GLOBCOLOUR-GSM ocean in mg m⁻³, (c) pCO$_2$ from CarbonTracker air–sea fluxes (black line) and inferred pCO$_2$ (red line) in μatm, and (d) air–sea CO$_2$ fluxes from CarbonTracker (black line) and inferred air–sea CO$_2$ fluxes (red line) in mol C m⁻² s⁻¹. All these longitudinal profiles correspond to the fixed latitude equal to 33.5° S of the plots shown in Fig. 5 for 22 March 2006.
Figure 7. (a) Map of pCO$_2$ field at low resolution from CarbonTracker. Reconstructed pCO$_2$ field at super-resolution using: (b) OSTIA SST and MERIS Chl a, (c) OSTIA SST and GSM-GLOBCOLOUR Chl a and (d) MODIS SST and GSM-GLOBCOLOUR Chl a. All maps correspond to 21 September 2006.
Figure 8. Spatial distribution of the time average over both 2006 and 2008 years of the inferred pCO$_2$ values using: (a) OSTIA SST and MERIS Chl a, (b) OSTIA SST and GSM-GLOBCOLOUR Chl a and (c) MODIS SST and GSM-GLOBCOLOUR Chl a. (d) Map with spatial distribution of the SD for the inferred pCO$_2$ among the different combination of the datasets.
Figure 9. Comparison of the Probability Distribution Functions of CarbonTracker and inferred pCO$_2$ values over the Benguela area for the three different SST and OC product combinations: MERIS Chl and OSTIA SST, GLOBCOLOUR merged Chl and OSTIA SST, and GLOBCOLOUR merged Chl and MODIS SST.
Figure 10. (a) Empirical PDFs for the singularity exponents of pCO_2 fields from CarbonTracker and from the cascade of the three product combinations. (b) Associated singularity spectra. In these computations we use all the pCO_2 values obtained in 2006 and 2008.
Figure 11. Values of pCO_2^{track} (black points), pCO_2^{infer} (MODIS-SST/GLOBCOLOUR-Chl) (red points), pCO_2^{infer} (OSTIA-SST/GLOBCOLOUR-Chl) (blue points) pCO_2^{infer} (OSTIA-SST/MERIS-Chl) (yellow points) and $pCO_2^{\text{in situ}}$ (green points) in the intersections as a function of latitude corresponding to the valid intersections during the QUIMA cruise through 4–6 July 2008.