Stable isotope study of a new chondrichthyan fauna (Kimmeridgian, Porrentruy, Swiss Jura): an unusual freshwater-influenced isotopic composition for the hybodont shark Asteracanthus

L. Leuzinger, L. Kocsis, J.-P. Billon-Bruyat, S. Spezzaferri, and T. Vennemann

1 Département des Géosciences, Université de Fribourg, Chemin du Musée 6, 1700 Fribourg, Switzerland
2 Section d’archéologie et paléontologie, Office de la culture, République et Canton du Jura, Hôtel des Halles, 2900 Porrentruy, Switzerland
3 Faculté des géosciences et de l’environnement, Université de Lausanne, Quartier UNIL-Mouline, Bâtiment Géopolis, 1015 Lausanne, Switzerland
4 Universiti Brunei Darussalam, Faculty of Science, Geology Group, Jalan Tungku Link, BE 1410, Brunei Darussalam
Freshwater-influenced δ^{18}O$_p$ for the shark Asteracanthus

L. Leuzinger et al.
Abstract

Chondrichthyan teeth (sharks, rays and chimaeras) are mineralised in isotopic equilibrium with the surrounding water, and parameters such as water temperature and salinity can be inferred from the oxygen isotopic composition ($\delta^{18}O_p$) of their bioapatite. We analysed a new chondrichthyan assemblage, as well as teeth from bony fish (Pycnodontiformes). All specimens are from Kimmeridgian coastal marine deposits of the Swiss Jura (vicinity of Porrentruy, Ajoie district, NW Switzerland). While the overall faunal composition and the isotopic composition of bony fish are consistent with marine conditions, unusually low $\delta^{18}O_p$ values were measured for the hybodont shark Asteracanthus. These values are also lower compared to previously published data from older European Jurassic localities. Additional analyses on material from Solothurn (Kimmeridgian, NW Switzerland) also have comparable, low-^{18}O isotopic compositions for Asteracanthus. The data are hence interpreted to represent a so far unique, freshwater-influenced isotopic composition for this shark that is classically considered as a marine genus. While reproduction in freshwater or brackish realms is established for other hybodonts, a similar behaviour for Asteracanthus is proposed here. Regular excursions into lower salinity waters can be linked to the age of the deposits and correspond to an ecological adaptation, most likely driven by the Kimmeridgian transgression and by the competition of the primitive shark Asteracanthus with the rapidly diversifying neoselachians (modern sharks).

1 Introduction

Chondrichthyan remains are common in the Mesozoic fossil record of Western Europe, and in many different paleoenvironmental settings (e.g. lagoonal, open marine, reduced salinity) (Duffin and Thies, 1997; Müller, 2011; Underwood, 2002). Their teeth are predominantly composed of fluor-apatite, the most resistant variety of apatite (Vennemann et al., 2001) and are continuously shed and replaced, except in chimaeras (Cappetta,
In addition to their abundance, their mechanical and chemical resistance make them an ideal material for stable isotope analyses. They mineralise in isotopic equilibrium with the surrounding water, hence their primary oxygen isotopic composition ($\delta^{18}O_p$) reflects that of the ambient water at a given temperature when they formed (Kolodny et al., 1983; Longinelli and Nuti, 1973). This makes them a valuable paleoenvironmental proxy, used in numerous studies (e.g. Kocsis et al., 2007; Lécuyer et al., 2003; Vennemann et al., 2001).

This research is based on fossil material – mainly chondrichthyans – found between 2000 and 2011 during controlled palaeontological excavations conducted by the Paléontologie A16 team (PAL A16, canton of Jura, NW Switzerland). All fossiliferous sites are located in the vicinity of Porrentruy (Ajoie district) and are related to the building of the Transjurane highway (A16). The Ajoie region is part of the Tabular Jura (Marty et al., 2007), mainly consisting of subhorizontal Mesozoic (Oxfordian and Kimmeridgian) strata.

During the Kimmeridgian, the Ajoie region was a shallow-marine carbonate platform at a palaeolatitude of about 30$^\circ$N (Marty, 2008) and surrounded by the Central and London–Brabant massifs, the Tethys and the Paris Basin (Fig. 1). The paleoclimate was semi-arid with high seasonality (Philippe et al., 2010; Waite et al., 2013). The platform had a very complex morphology due to the basement structure and sea-level changes occurred during its depositional history. These processes induced several episodes of emersion suggested by numerous dinosaur footprints (Marty, 2008; Marty et al., 2007) and hardgrounds, followed by erosion and reworking. Lateral changes in water depth potentially occurred at a very local scale (Jank et al., 2006; Waite et al., 2013). The record of ammonites typical of the boreal and tethyan domains show that the study area was influenced by water masses from both the Tethys and Paris Basin (Colombié and Rameil, 2007; Comment et al., 2011).

Based on phosphate oxygen isotope analyses obtained from this Late Jurassic chondrichthyan fauna, this study proposes answers to the following questions: (1) Is there any unexpected isotopic composition for the associated marine fauna recorded in Por-
rentruy? (2) Are the Porrentruy isotopic data unique so far, or comparable to other European localities? (3) What do we learn about the paleoecology of the hybodont shark *Asteracanthus* based on the isotopic composition?

2 Material and methods

The chondrichthyan dental material of the PAL A16 collection is rich and diverse, comprising more than 2000 fossils. Sharks and rays (subclass Elasmobranchii) are represented by the so-called “primitive sharks” or hybodonts (order Hybodontiformes), modern sharks (superorder Selachimorpha) and rays (suborder Rhinobatoidei). Chimaeras (superorder Holocephali, order Chimaeriformes) are also present. The investigated material comes from the Kimmeridgian Reuchenette Formation and more precisely from the latest Early Kimmeridgian (*Cymodoce* ammonite zone, Banné Marls) and up to the Late Kimmeridgian (*Eudoxus* ammonite zone, lower Virgula Marls) (Fig. 2). Except for *Asteracanthus* and *Ischyodus* remains that are of a considerable size and were collected directly on the field, the material consists predominantly of microfossils resulting from sediment sieving.

The oxygen isotopic composition of phosphate from biogenic apatite was measured on rays, the chimaeroid *Ischyodus* and the hybodonts *Asteracanthus* and *Hybodus*. Bioapatite of bony fish Pycnodontiformes was also analysed for comparison. Stratigraphically, samples were selected from different beds in order to cover all units of the studied section (Fig. 2). Additionally, Kimmeridgian material from the neighbouring Natural History Museum of Solothurn was analysed for comparison.

The best mineralised part (enamel s.l., i.e. enamel and enameloid) was isolated from Pycnodontiformes and *Asteracanthus* teeth (Fig. 3). From eleven of the *Asteracanthus* teeth, dentine was analysed in parallel to examine any isotopic differences between the tissues. In the case of chimaeroid dental plates the densest parts were selected. For the very small material (1–5 mm) – as in rays and *Hybodus* – several isolated
teeth were analysed together as bulk samples of enamel and dentine. The visibly most unaltered and dentine-free teeth were selected.

From the Porrentruy material, 38 samples of Asteracanthus teeth (27 enamel and 11 dentine), 7 of Ischyodus dental plates and 13 of Pycnodontiformes teeth were analysed; in addition, 4 bulk samples for Hybodus and 3 for rays were investigated. From the Solothurn material, enamel of 9 Asteracanthus and 3 Pycnodontiformes teeth were added for comparison. Altogether, a total of 77 analyses were made.

The sample powders were pre-treated following the procedure of Koch et al. (1997), and the PO$_4^{3-}$ ion of the apatite was separated and precipitated as silver-phosphate (e.g. Kocsis, 2011; O’Neil et al., 1994). NBS–120c phosphorite reference material was processed in parallel with the samples. Generally, triplicates of each sample were analysed together with two in-house phosphate standards (LK–2L: 12.1 ‰ and LK–3L: 17.9 ‰) to correct the results. The samples were analysed in a high-temperature conversion elemental analyser (TC/EA) coupled to a Finningan MAT Delta Plus XL mass spectrometer at the University of Lausanne after the method described in Vennemann et al. (2002). The data are expressed in permil and reported as δ^{18}O$_{p}$ on the VSMOW scale. The overall analytical error is 0.3 ‰, however individual samples often reproduced better. For the NBS–120c an average value of 21.3 ± 0.3 ‰ ($n = 6$) was obtained.

The oxygen isotopic composition of unaltered fish teeth is function of both, water temperature and isotopic composition of ambient water during tooth growth (Kolodny et al., 1983; Lécuyer et al., 2013; Longinelli and Nuti, 1973). Here below is the phosphate fractionation equation of Lécuyer et al. (2013) used for calculating the temperature of sea water:

$$T(\degree C) = 117.4(\pm 9.5) - 4.50(\pm 0.43) \times \left(\delta^{18}O_{PO}_4 - \delta^{18}O_{H_2O}\right). \quad (1)$$

For marine fauna, the global, average seawater isotopic composition can be used as an approximation that is assumed to be equal to -1% for Late Jurassic seawater (e.g. Shackleton and Kennet, 1975).
3 Results

For the Porrentruy samples, the bioapatite oxygen isotope compositions have a range between 17.0 and 21.9 ‰, with an overall average value of 18.8 ± 0.9 ‰ ($n = 65$). These values can be grouped into three ranges: (1) values of bulk samples (*Hybodus* and rays) and *Ischyodus* that are between 18.5 and 19.8 ‰ (average 19.2 ± 0.4 ‰, $n = 14$); (2) enamel values of *Asteracanthus*, averaging 18.1 ± 0.6 ‰ (17.0–19.7 ‰, $n = 27$) and (3) those of Pycnodontiformes with an average of 19.8 ± 1.0 ‰ (18.2–21.9 ‰, $n = 13$). Dentine values of *Asteracanthus* average 18.9 ± 0.8 ‰ (17.7–20.0 ‰, $n = 11$), indicating a statistically significant difference to the equivalent enamel samples collected on the same teeth (student t test: $t_{(20)} = 2.98$, $p < 0.01$).

For the Solothurn comparison material, an average of 18.7 ± 0.9 ‰ ($n = 9$) and 19.4 ± 0.7 ‰ ($n = 3$) was obtained for *Asteracanthus* and Pycnodontiformes teeth respectively. All the data are available and detailed in the Supplement.

4 Associated fauna and palaeoecology

The associated fauna of the Porrentruy material is characteristic of a coastal marine environment, with notably a rich marine bivalve assemblage, sea urchins and over 600 ammonites (Comment et al., 2011; Marty and Billon-Bruyat, 2009). Among vertebrates, coastal marine turtles (Plesiochelyidae) (Anquetin et al., 2014; Püntener et al., 2014) and crocodilians (Thalattosuchia) are common (Schaefer, 2012).

During the Late Jurassic, modern sharks were expanding and diversifying, while hybodonts were declining and restricted more to environments of reduced salinity, or even freshwater, where modern sharks were less represented (Kriwet and Klug, 2008; Rees and Underwood, 2008; Underwood, 2002). In our assemblage however, hybodonts and rays clearly dominate (86 % of the dental material). This suggests conditions still favourable to hybodonts in Porrentruy, unlike in neighbouring localities from southern Germany (Nusplingen, Solnhofen) or France (Cerin), where hybodonts are
scarce or absent. However, our chondrichthyan assemblage is similar to that in northern Germany (e.g. in Oker) (Duffin and Thies, 1997; Thies, 1995), also dominated by hybodonts and rays and associated to conditions of reduced salinity (Underwood and Rees, 2002; Underwood and Ward, 2004; Underwood, 2002, 2004). The chimaeroid \textit{Ischyodus} must also be regarded as one of the most abundant chondrichthyan s, even if representing only 3\% of the remains. Indeed, its non-renewable and less resistant dentition and the relatively low amount of dental elements per individual (six dental plates against hundreds to thousands of teeth for sharks and rays) (Stahl, 1999) easily lead to an underestimate of its abundance. Interestingly, the few modern sharks of our assemblage (Heterodontiformes, Squatiniformes and Scyliorhinidae) are all thought to have had a benthic lifestyle, supporting a well-oxygenated bottom water, which is also indicated by the invertebrate fauna.

5 Discussion

5.1 $\delta^{18}O_{p}$ values from the Porrentruy material: palaeoecological indications

Values of bulk samples (\textit{Hybodus} and rays) and \textit{Ischyodus} have a similar range and could reflect either a similar habitat for these groups, or a similar diagenetic alteration. Since they correspond to dentine-bearing samples – i.e. tissues that are more easily altered than enamel – and regarding that the dentine samples of \textit{Asteracanthus} tend to similar values, all these specimens could have been affected by alteration during diagenesis.

In contrast, the isotopic compositions of Pycnodontiformes and \textit{Asteracanthus} enamel samples are considered not to have been altered, because of their distinct range in values, their original histological structure when examined with a microscope and the generally good preservation potential for enamel/enameloid when not recrystallised (e.g. Kohn and Cerling, 2002). The significant differences in $\delta^{18}O_{p}$ val-
ues of *Asteracanthus* and Pycnodontiformes enamel from Porrentruy (Student t test, $t_{(38)} = 6.36$, $p < 0.01$) hence indicate different living environments (Fig. 4).

Water temperatures calculated with Eq. (1) from enamel $\delta^{18}O_p$ of Pycnodontiformes and *Asteracanthus* differ by 7.4°C (1.6‰). The two taxa are found in the same deposits and such a temperature difference is not plausible neither laterally, nor vertically, given that the water depth did not exceed a few tens of meters in the study area (Waite et al., 2013). Most of the Pycnodontiformes $\delta^{18}O_p$ values are compatible with the marine conditions indicated by the associated fauna and the resulting average sea surface temperature is also consistent ($23.9 \pm 4.4 ^\circ C$, $n = 13$). The good state of preservation of Pycnodontiformes remains and the presence of several mandibles and tooth palates suggest that the material was not transported over long distances. For the lowest Pycnodontiformes values however, an influence of reduced salinity cannot be excluded since some of those bony fish are known to be euryhaline (Kocsis et al., 2009; Poyato-Ariza, 2005).

The preservation of the fine ornamentation of *Asteracanthus* teeth also suggests that they lived in the vicinity, even if the isotopic composition of *Asteracanthus* is significantly different from that of Pycnodontiformes. Moreover, the record of *Asteracanthus* fin spines and several teeth still preserved with their root (see Fig. 3) – an indication of post-mortem embedding rather than tooth loss in hybodonts (Underwood and Cum-baa, 2010) – also precludes transport. Yet, temperatures obtained with *Asteracanthus* enamel samples using the Eq. (1) are higher (average $31.3 \pm 2.9 ^\circ C$, $n = 27$). This could imply a habitat closer to the sea surface but would then also suggest a possible influence of more evaporative conditions on the oxygen isotope composition of the water with $\delta^{18}O_w$ values higher than the global average used above (i.e. -1‰). For example, 0‰ as proposed by Lécuyer et al. (2003) for low latitude marginal seas with high evaporation rates. However, such a change towards higher $\delta^{18}O$ values of water would also raise the temperature calculated to an unrealistic average of 35.8°C, with a maximum reaching 41.0°C. A more consistent explanation is to consider *Asteracanthus* as living
in a freshwater-influenced environment, i.e. an environment with a lower $\delta^{18}O_w$ value (Fig. 4).

5.2 Shark nurseries in reduced salinity environments for Asteracanthus?

Assessing the tooth replacement rate of an extinct shark is impossible. However, *Asteracanthus* possesses a crushing dentition composed of a rather small amount of large teeth (see Rees and Underwood, 2008); hence, a relatively slow replacement rate is likely, compared to other sharks with numerous slender, cuspidated teeth adapted to clutch and tear their prey. This implies that the $\delta^{18}O_p$ values of *Asteracanthus* potentially reflect an average of the surrounding water parameters over a relatively longer period. The isotopically lower signature of *Asteracanthus*, compared to a classical marine signal, corresponds either to a constant brackish living environment or to a marine environment with regular excursions into fresh- or brackish waters (or vice-versa). As *Asteracanthus* remains were not re-sedimented nor transported over long distances, it can be proposed that they partly inhabited the marine realm, as indicated by the associated fauna, but not continuously. Lateral salinity changes are readily caused by rainy winters coupled with an irregular morphology of the platform, creating marked depth differences and lagoons (Waite et al., 2013) where the proportion of meteoric water could have been important. However, excursions into more distant brackish/freshwater realms can also be considered.

While more than 130 middle-sized to large *Asteracanthus* teeth were found in the Porrentruy excavation sites, only 4 very small-scaled (< 1 cm) and badly preserved teeth were discovered among hundreds of kilograms of sediment sieved and picked, which suggests a different living environment during the juvenile stage, and excursions of adult individuals for reproduction purposes. The record of hundreds of submillimetric fish remains such as dermal denticles exclude a taphonomic bias linked to the size of the teeth. *Asteracanthus* juveniles could have spent the first period of their life in estuaries, rivers or lagoons, sheltered from predators such as crocodilians or the bony fish
Caturus. Extant euryhaline bull shark females (*Carcharhinus leucas*) and their juveniles are known to have a similar behaviour (Jenson, 1976; Pillans et al., 2005), as is the case for some small hybodont sharks (Fischer et al., 2011; Klug et al., 2010). Middle-sized teeth potentially represent young individuals that had already colonised the marine realm. *Asteracanthus* individuals that have reached a considerable size were then a less easy prey and also able to feed on the large ammonites and bivalves living in the marine realm of the platform. The location of this environment with reduced salinity remains open, especially since some sharks are known to migrate across very long distances, e.g. the blacktip shark (Castro, 1996). Several chondrichthyan taxa recorded in Porrentruy are potential indicators of reduced salinity: the chimaeroid genus *Ischyodus* was reported in Jurassic freshwater deposits of Russia (Popov and Shapovalov, 2007) and can therefore not be considered as strictly marine. The modern shark *Palaeoscyllium*, relatively scarce but present in our fossil assemblage, is the oldest modern shark known to tolerate freshwater, so far only in the Cretaceous though (Sweetman and Underwood, 2006).

In Fig. 5, the oxygen isotopic compositions of Pycnodontiformes and *Asteracanthus* enamel samples measured in this study are shown for the Porrentruy and Solothurn localities and compared to previously published data from others – mostly older – Swiss, French, and British Jurassic localities (Billon-Bruyat et al., 2005; Dromart et al., 2003; Lécuyer et al., 2003). All data given in this Figure are available in the Supplement. Generally, the Porrentruy *Asteracanthus* $\delta^{18}O_p$ values – especially in the Late Kimmeridgian – are lower than in other studies, while Pycnodontiformes values are comparable. The material from Solothurn (Kimmeridgian) – a locality with similar palaeoenvironment but under Tethyan influence only – shows some affinities with the Porrentruy material, for instance with unusually low values for several *Asteracanthus*. The Porrentruy *Asteracanthus* $\delta^{18}O_p$ values tend to get lower in the Upper Kimmeridgian but this trend must be considered cautiously due to the relatively small amount of Lower Kimmeridgian samples.
This global comparison suggests that the especially low $\delta^{18}O_p$ values measured for *Asteracanthus* here are likely linked to the age of the deposits. Interestingly, a tolerance of *Asteracanthus* to salinity variations has briefly been mentioned by Kriwet (2000), based on its presence in the younger deposits of the Purbeck and Wealden group in southern England (Woodward, 1895). *Asteracanthus* remains from freshwater deposits are also recorded in the Upper Cretaceous of Sudan (Buffetaut et al., 1990). The present data indicate an adaptation to a wider salinity range through time and in the Kimmeridgian already, maybe in response to the spectacular diversification of modern sharks in the marine realms of Western Europe at the end of the Jurassic (Cuny and Benton, 1999). Also, the shallow-water platform of NW Switzerland may have somehow represented a shelter for the hybodonts, still dominating the shark fauna around Porrentruy. The high sea-level in the Kimmeridgian (Hardenbol et al., 1998) could have opened new niches in shallow-water environments that was influenced by freshwater run-offs. These new living places could have provided shelter and nursery ground for *Asteracanthus*.

This is the first isotopic evidence of a euryhaline ecology for the large, durophagous shark *Asteracanthus*, classically considered as marine for more than 150 years (Agassiz, 1843; Rees and Underwood, 2006, 2008).

6 Concluding remarks

1. The $\delta^{18}O_p$ values of enamel measured in the hybodont shark *Asteracanthus* are too low to reflect fully marine conditions.

2. Comparisons with geochemical data of older European Jurassic localities confirm the unusual character of the *Asteracanthus* isotopic compositions measured in the material from this study. This new freshwater-influenced isotopic composition of *Asteracanthus* is likely linked to a change in its ecology through geologic time, as suggested by similar results obtained with Kimmeridgian material from...
Solothurn. The Kimmeridgian transgression (i.e. opening of new shallow-water niches) and probably competing stress from quickly diversifying neoselachians could have played an important role in the adaptation to brackish and freshwater realms.

3. A predominantly marine ecology is proposed for Asteracanthus, combined with regular excursions into freshwater/brackish environments for reproduction purposes, and a brackish to freshwater habitat during early ontogenetic life stages.

The Supplement related to this article is available online at doi:10.5194/bgd-12-12899-2015-supplement.

Acknowledgements. We thank the PAL A16 team for making available the fossil material, as well as precious field details, geological data and figures, and also for inspiring discussions. The photographs of the material were kindly taken by Bernard Migy and Olivier Noaillon. We really appreciate the help of S. Thüring from the Natural History Museum of Solothurn for providing additional fossil material for comparative purposes and the assistance of scientists and technicians at the University of Fribourg (B. Grobéty, A. Foubert, P. Dietsche) for preparing tooth thin-sections and making available microscopes. We want to thank C. Meier for details on the stratigraphy of Solothurn. Thank you to M. Hechenleitner for his help in finalising this paper. This study was funded by the Section d’archéologie et paléontologie (Canton Jura) and the Federal Road Office from Switzerland. L. K. received support from the Swiss National Science Foundation (SNF PZ00P2_126407) while this research was conducted.

References

Marty, D.: Sedimentology, taphonomy, and ichnology of Late Jurassic dinosaur tracks from the Jura carbonate platform (Chevenez-Combe Ronde tracksite, NW Switzerland): insights into the tidal-flat palaeoenvironment and dinosaur diversity, locomotion, and palaeoecology, Geofocus, 21, 278 pp., 2008.

Underwood, C. J.: Sharks, rays and a chimaeroid from the Kimmeridgian (Late Jurassic) of Ringstead, Palaeontology, 45, 297–325, 2002.

12915

Figure 1. Geographical position of Porrentruy (☆) and other European sites (●) of previously published studies and providing geochemical data compared in Fig. 5. Paleogeographical map of the shaded square area (Late Kimmeridgian, modified from Comment et al., 2011). CH = Switzerland, paleolatitude of Porrentruy = ~30° N. Emerged land is outlined, darker grey corresponds to deeper water.
Figure 2. Simplified stratigraphic profile of the Porrentruy area with third order orbital cycle and section yielding the studied chondrichthyan material. Numbers indicate geological age in millions of years. SB = sequence boundary, ts = transgressive surface, mfs = maximum flooding surface.
Figure 3. Fossil material from the study site. (a) Tooth of *Asteracanthus* in occlusal (top) and lateral view, with root preserved (specimen SCR010-303). (b) Left prearticular bone of Pycnodontiformes with teeth (specimen SCR010-1204). Photographs by PAL A16.
Figure 4. $\delta^{18}O_p$ values of Porrentruy fish samples and related water temperature (T) resulting from Eq. (1). Hybodus, rays, Ischyodus as well as most Asteracanthus dentine samples are considered diagenetically altered. Arrows show effect of varying $\delta^{18}O_w$ in Eq. (1) from classical seawater value (-1%). Realistic and consistent temperatures for Asteracanthus and Pycnodontiformes imply the influence of respectively distinct paleoenvironments.
Figure 5. Comparison of $\delta^{18}O_p$ values (average, standard deviation, end members) of Pycnodontiformes and Asteracanthus enamel samples from Porrentruy, Solothurn and other European localities through time. The approximate geographical position of previously studied localities (Dromart et al., 2003; Lécuyer et al., 2003; Billon-Bruyat et al., 2005) is shown in Fig. 1. Detailed localities are available in the Supplement.