Effect of sporadic destratification, seasonal overturn and artificial mixing on CH₄ emissions from a subtropical hydroelectric reservoir

F. Guérin¹,²,³,* , C. Deshmukh¹,⁴,⁵,ᵃ, D. Labat¹, S. Pighini⁶,ᵇ , A Vongkhamsaö⁶, P. Guédant⁶, W. Rode⁶, A. Godon⁶,ᶜ, V. Chanudet⁷, S. Descloux⁷, D. Serça⁴

[1]{Université de Toulouse ; UPS GET, 14 Avenue E. Belin, F-31400 Toulouse, France}
[2]{IRD ; UR 234, GET ; 14 Avenue E. Belin, F-31400, Toulouse, France}
[3]{Departamento de Geoquimica, Universidade Federal Fluminense, Niteroi-RJ, Brasil}
[4]{Laboratoire d’Aérologie - Université de Toulouse - CNRS UMR 5560; 14 Av. Edouard Belin, F-31400, Toulouse, France}
[5]{Centre for Regulatory and Policy Research, TERI University, New Delhi, India}
[6]{Nam Theun 2 Power Company Limited (NTPC), Environment & Social Division – Water Quality and Biodiversity Dept.– Gnommalath Office, PO Box 5862, Vientiane, Lao PDR}
[7]{Electricité de France, Hydro Engineering Centre, Sustainable Development Dpt, Savoie Technolac, F-73373 Le Bourget du Lac, France}
[a]{now at: Nam Theun 2 Power Company Limited (NTPC), Environment & Social Division – Water Quality and Biodiversity Dept.– Gnommalath Office, PO Box 5862, Vientiane, Lao PDR}
[b]{now at: Innsbruck University, Institute of Ecology, 15 Sternwartestrasse, A-6020 Innsbruck, Austria and Foundation Edmund Mach, FOXLAB-FEM, Via E. Mach 1, IT-38010 San Michele all’Adige, Italy}
[c]{now at: Arnaud Godon Company, 44 Route de Genas, Nomade Lyon, 69003 Lyon, France}

*Correspondence to: F Guérin (Frederic.guerin@ird.fr)
Abstract

Inland waters in general and specifically freshwater reservoirs are recognized as a source of CH$_4$ to the atmosphere. Although the diffusion at the air-water interface is the most studied pathway, its spatial and temporal variations are poorly documented.

We measured temperature and O$_2$ and CH$_4$ concentrations every two weeks for 3.5 years at nine stations in a subtropical monomictic reservoir which was flooded in 2008 (Nam Theun 2 Reservoir, Lao PDR). Based on these results, we quantified CH$_4$ storage in the water column and diffusive fluxes from June 2009 to December 2012. We compared diffusive emissions with ebullition from Deshmukh et al. (2014) and aerobic methane oxidation and downstream emissions from Deshmukh et al. (2016).

In this monomictic reservoir, the seasonal variations of CH$_4$ concentration and storage were highly dependent on the thermal stratification. Hypolimnic CH$_4$ concentration and CH$_4$ storage reached their maximum in the warm dry season (WD) when the reservoir was stratified. Concentration and storage decreased during the warm wet (WW) season and reached its minimum after the reservoir overturned in the cool dry season (CD). The sharp decreases of CH$_4$ storage were concomitant with extreme diffusive fluxes (up to 200 mmol m$^{-2}$ d$^{-1}$). These sporadic emissions occurred mostly in the inflow region in the WW season and during overturn in the CD season in the area of the reservoir that has the highest CH$_4$ storage. Although they corresponded to less than 10% of the observations, these extreme CH$_4$ emissions (>5 mmol m$^{-2}$ d$^{-1}$) contributed up to 50% of total annual emissions by diffusion.

During the transition between the WD and WW seasons, a new emission hotspot was identified upstream of the water intake where diffusive fluxes peaked at 600 mmol m$^{-2}$ d$^{-1}$ in 2010 down to 200 mmol m$^{-2}$ d$^{-1}$ in 2012. The hotspot was attributed to the mixing induced by the water intakes (artificial mixing). Emissions from this area contributed 15-25% to total annual emissions although they occur on a surface area representative of less than 1% of the total reservoir surface. We highly recommend measurements of diffusive fluxes around water intakes in order to evaluate if such results can be generalized.

1. Introduction

Since the 1990s, hydroelectric reservoirs are known to be a source of methane (CH$_4$) to the atmosphere. Their contribution to total CH$_4$ emissions still needs refinement since the
discrepancies among estimates is large, ranging from 1 to 12% of total CH$_4$ emissions (St Louis et al., 2000;Barros et al., 2011). These two estimates are mostly based on diffusive fluxes at the air-water interface and they overlook emissions from the rivers downstream of the dams (Abril et al., 2005;Guerin et al., 2006;Kemenes et al., 2007;Teodoru et al., 2012;Maeck et al., 2013;Deshmukh et al., 2016), CH$_4$ ebullition (DelSontro et al., 2010;Deshmukh et al., 2014) and emissions from the drawdown area of reservoirs (Chen et al., 2009;Chen et al., 2011) although these pathways could largely dominate diffusion at the surface of the reservoirs.

Even if CH$_4$ diffusion at the surface of reservoir is the best-documented emission pathway, little information is available on spatial and temporal variability of CH$_4$ emissions by diffusive fluxes. In tropical amictic and well-stratified reservoirs with CH$_4$-rich hypolimnion, the highest diffusive fluxes are usually observed during dry periods and when the stratification weaken at the beginning of the rainy season (Guerin and Abril, 2007). A study of CH$_4$ emissions from a dimictic reservoir suggests a potential large outgassing of CH$_4$ during the overturn (Utsumi et al., 1998b) as it is the case in natural monomictic and dimictic lakes (Kankaala et al., 2007;López Bellido et al., 2009;Schubert et al., 2010;Schubert et al., 2012;Fernández et al., 2014). Such hot moments of emissions (McClain et al., 2003) could contribute 45-80% of annual CH$_4$ emissions by diffusion (Schubert et al., 2012;Fernández et al., 2014). They are rarely taken into account in carbon budgets since they can only be captured by high frequency monitoring. Spatial heterogeneity of CH$_4$ emissions at the surface of reservoirs is also very high. It mostly depends on the spatial variations of ebullition that is controlled by sedimentation (DelSontro et al., 2011;Sobek et al., 2012;Maeck et al., 2013). The spatial variability of diffusion in reservoirs is less prominent with a few exceptions of higher emissions (1) in areas where dense forest is flooded (Abril et al., 2005), (2) at shallow sites (<10m) (Zheng et al., 2011;Sturm et al., 2014) and (3) at river inflows (Musenze et al., 2014). However, as it was shown for CO$_2$ emissions from a tropical hydroelectric reservoir, taking into account both spatial and temporal variability of emissions significantly affect positively or negatively carbon budgets and emission factors (Pacheco et al., 2015).

In the framework of a comprehensive project aiming at quantifying greenhouse gas emissions from the Nam Theun 2 Reservoir (NT2R), a recently flooded subtropical reservoir located in Lao People’s Democratic Republic (PDR), we studied (1) the spatial and temporal variability of CH$_4$ ebullitive fluxes (Deshmukh et al., 2014) and (2) the downstream CH$_4$ emissions (Deshmukh et al., 2016). In the present study, the objective is to quantify the CH$_4$ diffusive...
fluxes at the surface of NT2R and evaluate the significance of the diffusive fluxes in total methane emissions in a subtropical monomictic reservoir with a peculiar water intake that artificially mix the water column. The CH₄ emissions were quantified every two weeks during three and a half year (June 2009 to December 2012) based on a monitoring of CH₄ concentrations in the reservoir water column. This was performed at nine stations flooding different types of ecosystems. On the basis of these results, we discuss the spatial and temporal variations of the CH₄ emissions by diffusive fluxes and the significance of hotspots and hot moments in the total emissions from the surface of the reservoir.

2. Material and methods

2.1. Study area

The NT2 hydroelectric reservoir (17° 59’ 49” N, 104° 57’ 08” E) was built on the Nam Theun River located in the subtropical region of Lao PDR on the Nakai Plateau. A detailed description of this trans-basin hydroelectric reservoir located on the Nakai Plateau is given in Descloux et al. (2014). Basically, the Nam Theun River is dammed (Nakai Dam, ND in Figure 1) and the water from the Nam Theun River is diverted to the Xebang Fai watershed after passing through water intake (WI in Fig 1) to the powerhouse (PH in Fig 1). The WI is located in a 130 m-width and 9 to 20 m-deep channel on the southwest side on the reservoir and it is located 5 m above the bottom (Figure S1). The powerhouse is located in the valley 200 m below the plateau. The filling of the reservoir began in April 2008 with full water level reached by October 2009 and the power plant commissioned in April 2010. After that date, turbines were turned on and water was continuously delivered to the turbines and downstream of the reservoir. Annually, the NT2 Reservoir receives around 7527 Mm³ of water from the Nam Theun watershed, which is more than twice the volume of the reservoir (3908 Mm³). A continuous flow of 2 m³ s⁻¹ (and occasionally spillway release) is discharged from the Nakai Dam (ND in Fig 1) to the Nam Theun River. This low water discharge corresponds to the minimum water discharge of the Nam Theun River before the dam was built.

Typical meteorological years are characterized by three seasons: warm wet (WW) (mid June-mid October), cool dry (CD) (mid October-mid February) and warm dry (WD) (mid February-mid June). Daily air temperature varies between 14°C (CD season) to 30°C (WD season). The mean annual rainfall is about 2400 mm and occurs mainly (80%) in the WW season.
During the filling of the reservoir, 489 km2 of soils and different types of vegetation (Descloux et al., 2011) were flooded by the end of October 2008. The water level in the reservoir was nearly constant from October 2009 to April 2010 (Figure 2a). After the commissioning (from April 2010 to December 2012) the reservoir surface varied seasonally by a factor of three and reached its maxima (489 km2) and minima (168 to 176 km2 depending on the years) during the WW and WD seasons, respectively (Figure 2a). The average water volume is 2.65 km3 with the lowest volume by the end of the WD season (0.71 in June 2011) and the highest at the end of the rainy seasons (3.97 km3 in September 2011) (Figure 2b). The seasonal water level variations are about 10 m (Figure 2c), the average depth is 8 m for a maximum depth of 39 m close to the Nakai Dam.

2.2. Sampling strategy

A total of nine stations (RES1-9, Figure 1) located in the reservoir were monitored every two weeks (fortnightly) in order to determine the vertical profiles of temperature and O$_2$ and CH$_4$ concentration in the water column. The type of ecosystems flooded, the depth range and the hydrology of the stations are given in the Table 1. Basically, three stations are located on the thalweg of the former Nam Theun River (RES2, RES4, RES6) whereas four other stations are located in a small embayment in the flooded dense forest (RES3), flooded degraded forest (RES5), flooded swamp area (RES7) and flooded agricultural land (RES8). The RES1 station is located 100 m upstream of the Nakai Dam, and RES9 station is located 800 m upstream of the water intake (WI) delivering the water to the powerhouse (Figure 1 and Figure S1). The station RES9 is under the influence of the water column mixing induced by the water withdrawal at the WI, located at the bottom of the reservoir (5m above the bottom) and under 10 to 20 m of water (see discussion). All samples and in situ measurements were taken in the morning or early afternoon from an anchored boat. Most of the time, the boat was attached to a buoy at the sampling station. When no buoy was present, an anchor was used with care in order not to re-suspend surface sediments. As the sampling started from the surface, the bottom water was sampled almost an hour later and should not be influenced by the perturbation generated by the anchor.
2.3. Experimental methods

2.3.1. Vertical profiles of oxygen and temperature

Vertical profiles of O₂ and temperature were measured in situ at all sampling stations with a multi-parameter probe Quanta® (Hydrolab, Austin, Texas) since June 2009. In the reservoir, the vertical resolution was 0.5 m above the oxic–anoxic limit and 1 to 5 m in the hypolimnion.

2.3.2. Methane concentration in water

The evolution of CH₄ concentrations has been monitored every two weeks from May 2009 to December 2012. Surface samples were taken with a surface custom-built water sampler (Abril et al., 2007). Other samples from the water column were taken with an Uwitec water sampler at 3m-depth, at the oxic-anoxic interface 1m above and below the oxic-anoxic interface and every 3 to 5m down to 0.5 m above the bottom. Water samples were stored without air bubble in serum glass vials, capped with butyl stoppers, sealed with aluminium crimps and preserved with HgCl₂ (Guerin and Abril, 2007). Samples were analysed within 15 days. Before gas chromatography analysis for CH₄ concentration, a N₂ headspace was created and the vials were vigorously shaken to ensure an equilibration between the liquid and gas phases. The concentration in the water was calculated using the solubility coefficient of Yamamoto et al. (1976).

2.3.3. Gas chromatography

Analysis of CH₄ concentrations were performed by gas chromatography (SRI 8610C gas chromatograph, Torrance, CA, USA) equipped with a flame ionization detector. A subsample of 0.5 ml from the headspace of water sample vials was injected. Commercial gas standards (10, 100 and 1010 ppmv, Air Liquid "crystal" standards) were injected after analysis of every 10 samples for calibration. Duplicate injection of samples showed reproducibility better than 5%.

2.4. Water column CH₄ storage

Between sampling depths of the vertical CH₄ profiles, concentrations were assumed to change linearly in order to calculate the concentration in each 1-m layer of water. The volume of water in each layer was calculated using the volume-capacity curve (NTPC, 2005). The CH₄
storage was calculated by multiplying the average CH$_4$ concentrations of each layer by the volume of the layer and summing-up the amount of CH$_4$ for all depth intervals.

2.5. Aerobic CH$_4$ oxidation

The depth-integrated CH$_4$ oxidation rates at each station were calculated on the basis of the specific oxidation rates (d$^{-1}$) determined at NT2R (Deshmukh et al., 2016) and vertical CH$_4$ and O$_2$ profiles in the water column as already described in (Guerin and Abril, 2007). The depth-integrated CH$_4$ oxidation rates at each station were estimated only from January 2010 since the vertical resolution of the vertical profiles of O$_2$ and CH$_4$ was not high enough in 2009.

As the aerobic methane oxidation rates we obtained were potential, CH$_4$-ox were corrected for two limiting factors, the oxygen availability and the light inhibition as described in Guerin and Abril (2007). The final equation to compute in situ oxidation rates (CH$_4$-ox, mmol m$^{-2}$ d$^{-1}$) is:

\[
\text{CH}_4\text{-ox} = C_{\text{CH}_4} \cdot S_{\text{CH}_4\text{-ox}} \cdot C_{\text{O}_2}/ (C_{\text{O}_2} + K_{\text{m(O}_2)}) \cdot d \cdot I(z)
\]

with C_{CH_4}, the CH$_4$ concentration; $S_{\text{CH}_4\text{-ox}}$, the specific CH$_4$-ox from Deshmukh et al. (2016); C_{O_2}, the oxygen concentration; $K_{\text{m(O}_2)}$, the half-saturation constant (Km) of O$_2$ for CH$_4$ oxidation, d, depth of the water layer and I(z), the inhibition of methanotrophic activity by light as defined by Dumestre et al. (1999) at the Petit Saut Reservoir. Finally, the CH$_4$ oxidation rates were integrated in the oxic water column, from the water surface to the limit of oxygen penetration.

2.6. Diffusive fluxes from surface concentrations

The diffusive CH$_4$ fluxes were calculated from the monitoring of surface concentrations with the thin boundary layer (TBL) equation at all stations in the reservoir (RES1-9). The CH$_4$ surface concentrations in water and the average CH$_4$ concentration in air (1.9 ppmv) obtained during eddy covariance deployments (Deshmukh et al., 2014) were applied in equation (1) to calculate diffusive flux:

\[
F = k_T \times \Delta C
\]
where \(F \), the diffusive flux at water-air interface; \(\Delta C = C_w - C_a \), the concentration gradient between the water \((C_w) \) and the concentration at equilibrium with the overlying atmosphere \((C_a) \) and \(k_T \), the gas transfer velocity at a given temperature \((T) \):

\[
k_T = k_{600} \times (600/Sc_T)^n
\]

with \(Sc_T \), the Schmidt number of \(\text{CH}_4 \) at a given temperature \((T) \) (Wanninkhof, 1992); \(n \), a number that is either 2/3 for low wind speed \((< 3.7 \text{ m s}^{-1})\) or 1/2 for higher wind speed and turbulent water (Jahne et al., 1987).

For the determination of \(k_{600} \) at the stations RES1-8, we averaged the formulations from Guerin et al. (2007) which includes the cumulative effect of wind \((U_{10}) \) and rain \((R) \) on \(k_{600} \)

\[
k_{600} = 1.66e^{0.26U_{10}} + 0.66R
\]

and the formulation of MacIntyre et al. (2010) \((k_{600} = 2.25U_{10} + 0.16)\) whatever the buoyancy fluxes. As shown by Deshmukh et al. (2014), the average of the fluxes obtained from these two relationships compared well with fluxes measured by floating chambers at the reservoir surface during three deployments at NT2R. Since the water current velocities were lower than 1 cm s\(^{-1}\) in most of the reservoir (Chanudet et al., 2012), the effect of water current on \(k_{600} \) was not included. The average wind speed (at 10 m height) and rainfall from two meteorological stations located at the Ban Thalang Bridge (close to RES4 station,) and close to the WI (Figure 1) was used for the calculation of fluxes all stations (RES1-8). On average for all stations and all sampling date, the \(k_{600} \) was 5.6±5.3 cm h\(^{-1}\) ranging between 0.91 to 40.4 cm h\(^{-1}\). The lowest \(k_{600} \) were calculated in the CD season \((3.43±1.01 \text{ cm h}^{-1}; 1.65-6.06 \text{ cm h}^{-1})\) while the highest were obtained during the WW season \((6.78±6.33 \text{ cm h}^{-1}; 1.57-40.42 \text{ cm h}^{-1})\) due to high rainfall (up to 113 mm day\(^{-1}\)). In the WD season \(k_{600} \) averaged 5.58±4.81 cm h\(^{-1}\). This average \(k_{600} \) is significantly enhanced by some rainy events in late May-early June in 2010 and 2012 (up to 60 mm d\(^{-1}\)).

At the water intake (RES9) where the hydrology and hydrodynamics is different from the other stations, it was impossible to quantify the \(k_{600} \) since the boat drifted quickly to the shoreline because of water currents in the narrow channel (Figure S1). According to Chanudet et al. (2012), water current velocity in this area of the reservoir is about 0.2 m s\(^{-1}\). After Borges et al. (2004), the contribution of such water currents in a water body with depth ranging from 9 to 20 m is 2.0±0.5 cm h\(^{-1}\) which should be summed up with the contribution of wind and rainfall from Guerin et al. (2007) and MacIntyre et al. (2010). It gives an average of 9 cm h\(^{-1}\). The \(k_{600} \) was determined in the regulating dam located downstream of the turbine where we visually observed vortexes similar to those observed at RES9. In the regulating
dam, the \(k_{600} \) obtained in May 2009 and March 2010 with a drifting floating chamber as described in Deshmukh et al. (2014) was 19 cm h\(^{-1}\) on average for 4 measurements ranging from 9 to 40 cm h\(^{-1}\). In order to be conservative for the estimation of emissions from the water intake, we considered a constant value of \(k_{600} \) (10 cm h\(^{-1}\)) which is in the lower range of (1) the \(k_{600} \) calculated from (Guerin et al., 2007), MacIntyre et al. (2010) and Borges et al. (2004), and (2) \(k_{600} \) values determined in the regulating dam that we consider as an area with comparable hydrology/hydrodynamics.

2.7. Total emissions by diffusive fluxes

Based on physical modelling (Chanudet et al., 2012), it has been shown that the station RES9 located at the water intake is representative of an area of ~3 km\(^2\) (i.e. 0.6% of reservoir water surface), whatever the season. This 3-km\(^2\) area was used to extrapolate specific diffusive fluxes from RES9. The embayment where RES3 is located represents a surface area of 5-6% of the total surface area of the reservoir whatever the season (maximum 28 km\(^2\)), to which were attributed the specific diffusive fluxes from RES3. The diffusive fluxes calculated for RES1, RES2, RES4, RES5, RES6, RES7 and RES8 stations were attributed to the water surface area representative for each station, taking into account the seasonal variation of the reservoir water surface from the surface-capacity curve (NTPC, 2005).

2.8. Statistical and correlation analysis

Statistical tests were performed to assess the spatial and temporal variations in the surface CH\(_4\) concentrations and diffusive fluxes at all stations in the reservoir. Normality of the concentration and diffusive datasets was tested with R software (R Development Core Team, 2008) and the Nortest package (Gross and Ligges, 2015). The data distribution was tested with the Fitdistrplus package (Delignette-Muller et al., 2015).

Since all tests indicated that the distribution of the data were neither normal nor lognormal, Kruskal-Wallis and Mann-Whitney tests were performed with GraphPad Prism (GraphPad Software, Inc., v5.04). No significant differences were found between the seasons and/or the stations. These test results were attributed to the very large range of surface concentrations due to the sporadic occurrence of extreme values (over 4 orders of magnitude). In order to reduce this range, the log of the concentrations was used. For each station, the time series of the log of the CH\(_4\) surface concentrations were linearly interpolated and re-sampled every 15 days in order to compare time series with the same number of observations. The log of the
concentrations was used to determine the frequency distribution, the skewness of the dataset (third order moment), the auto-correlation of each time series and the correlation between the different stations. All analyses were performed using Matlab.

3. Results

3.1. Temperature and O$_2$ dynamics in the reservoir

During the three and half year of monitoring at the stations RES1-8, the NT2R was thermally stratified with a thermocline at 4.5 ± 2.6 m depth in the WD (Feb-Jun) season as revealed by the vertical profiles of temperature (Figure 3). In the WW season, the temperature vertical profiles at the stations RES1-8 either showed a thermocline (RES7 and RES8 in 2010 and 2011, Figure 3) whereas in some occasions, the temperature decreased regularly from the surface to the bottom during sporadic destratification (RES1-3, Figure 3). On average during the WW season, a thermocline was located at 5.8 ± 4.8 m depth. During the CD season, the reservoir overturned as already mentioned by Chanudet et al. (2012) and the temperature was constant from the surface to the bottom (Figure 3) in the different years. In order to illustrate the destratification, a stratification index (ΔT) which corresponds to the difference between the surface and bottom water temperature was defined (Figure 4a). During the periods of stratification in the WD seasons, ΔT was up to 10°C higher than during reservoir overturn in the CD season with ΔT close to zero (Figure 4a). During the WW season, the ΔT decreased gradually which means that the overturn occurred over several months.

During the WD season at the stations RES1-8, an oxycline was most of the time located at a depth concomitant with the depth of the thermocline whereas oxygen penetrated deeper in the WW season (Figure 3). During these two seasons, the epilimnion was always well oxygenated with O$_2$ concentrations higher than 200 µmol L$^{-1}$. In the WD season, the hypolimnion was completely anoxic whereas O$_2$ reached occasionally the hypolimnion during the sporadic destratification events in the WW season (29 ± 54 µmol L$^{-1}$, Figure 3 and 4b). During the CD season (reservoir overturn), the water column was often oxygenated from the top to the bottom of the reservoir (Figure 3). On average over the whole reservoir, the lowest hypolimnic oxygen concentration was observed in 2010 before the reservoir was commissioned (Figure 4b).

After the commissioning of the reservoir and the turbines were powered on in April 2010, the water column located near the intake (RES9) completely mixed as indicated by the
homogeneous temperature and oxygen profiles with depth in every season (Figure 3). The water column at RES9 was always well oxygenated (163 ± 62 µmol L⁻¹, Figure 3).

3.2. Seasonal dynamics of the CH₄ concentration in the reservoir

At the station RES1-8, when the water column is thermically stratified with a steep oxicline in the WD and often in the WW seasons, CH₄ concentrations are on average ~150 times higher in the reservoir hypolimnion (246 ± 234 µmol L⁻¹) than in the epilimnion (1.6 ± 7.7 µmol L⁻¹) (Figure 3). The gradient of CH₄ concentration at the thermocline/oxicline was steeper during the WD season than during the WW season (Figure 3). During the CD season, the average CH₄ concentration in the reservoir bottom water lowered by a factor of three compare to the WD and the WW seasons. However, the reservoir overturn increased the average CH₄ concentrations in the epilimnion by a factor of two (3.4 ± 14.8 µmol L⁻¹) in comparison with the WD and WW seasons. After the commissioning, the CH₄ vertical profiles of concentration before turbine intake (RES9) were homogeneous from the surface to the bottom. The highest average CH₄ concentration from the surface to the bottom peaked up to 215 µmol L⁻¹ in July 2010 at this station. On a seasonal basis, the CH₄ concentration at RES9 averaged 39.8 ± 48.8, 29.9 ± 55.4 and 1.9 ± 4.3 µmol L⁻¹ during the WD, WW and CD seasons, respectively (Figure 3). The concentrations at RES9 were up to 10 times lower than the maximum bottom concentrations at the other stations for a given season. Since the station RES9 behaved differently from the other stations, results from this station will be treated separately.

The overall bottom CH₄ concentration (Figure 4c) and dissolved CH₄ stock in the reservoir (Figure 4d) increased at the beginning of the WD season. The higher bottom CH₄ concentration and storage in the reservoir are concomitant with the establishment of anoxia in the hypolimnion and thermal stratification (Figure 4). Hypolimnic CH₄ concentration and storage reached their maxima (up to 508 ± 254 µmol L⁻¹ and 4.7 ± 0.5 Gg(CH₄), Figure 4c,d) at the end of the WD-beginning of the WW season when the residence time of water in the reservoir was the lowest (40 days, Figure 4d) and when the reservoir volume was the smallest (Figure 2b). Along the WW season, the thermal stratification weakened (Figure 4a) and the CH₄ concentration and dissolved CH₄ stock decreased (Figure 4c,d) while the residence time of water increased (Figure 4d) and the water volume increased (Figure 2b). In the CD season, the reservoir overturns as evidenced by the low ΔT and the penetration of O₂ to the hypolimnion (Figure 4a,b). During CD season, the bottom CH₄ concentration and the storage reached their minima (down to 1.3 ± 4.5 µmol L⁻¹ and 0.01 ± 0.001 Gg(CH₄), Figure 4c,d).
when the residence time of water was the longest (Figure 4d). The sharp decrease of CH$_4$
storage and concentration in the transition from the WW to the CD seasons is concomitant
with a sharp increase of O$_2$ concentration at the bottom (up to 160 ± 89 µmol L$^{-1}$, Figure 4).

During the three and a half years of monitoring, the same seasonal pattern as described above
is observed although the annual CH$_4$ bottom concentration and storage was threefold higher in
2009 and 2010 than in the year 2011 (Figure 4c,d). In the dry year 2012, the reservoir bottom
CH$_4$ concentration and storage was almost twice higher than in wet year 2011.

3.3. Aerobic CH$_4$ oxidation in the reservoir

Between 2010 and 2012, the depth integrated aerobic CH$_4$ oxidation rates ranged between
0.05 and 380 mmol m$^{-2}$ d$^{-1}$ at the stations RES1-RES8 (Figure 5). On average, aerobic
oxidation was higher in the WW season (55±63 mmol m$^{-2}$ d$^{-1}$) than in the CD (30±46 mmol
m$^{-2}$ d$^{-1}$) and WD (36±32 mmol m$^{-2}$ d$^{-1}$) seasons and it was not statistically different for the
three years. In the WD season, aerobic CH$_4$ oxidation was on average twice higher in 2010
than for the two following years. In the CD season of the year 2012, the aerobic oxidation rate
were exceptionally high compare to the same season in the previous years.

3.4. Spatial and seasonal variability of surface CH$_4$ concentration and diffusive fluxes
at the reservoir surface (RES1-RES8)

The surface concentrations at the stations RES1-8 ranged from 0.02 to 150 µmol L$^{-1}$ and were
2.0±10.5 µmol L$^{-1}$ (median = 0.9), 1.5±5.5 µmol L$^{-1}$ (median = 0.4) and 3.4±14.7 µmol L$^{-1}$
(median = 0.2) on average for the CD, WD and WW season, respectively. The surface
concentration followed a loglogistic distribution, which indicates the existence of extremely
high values. This is confirmed by the fact that the skewness of the time series of the log of the
CH$_4$ concentrations for all stations is positive (Figure S2), especially at the stations RES1,
RES3 and RES7 for which the skewness is >1 (Figure S2). Over the course of the three and a
half year of survey, the surface concentrations were not statistically different between all
stations and no statistically significant seasonal variations were observed because of the
occurrence of sporadic events in all season (Figure S3a). The normalized distribution of
concentrations (in log) according to seasons (Figure 6) indicates that these high
concentrations were observed without any clear seasonal trend at the station RES1, RES5 and
RES6 (<1 up to 150 µmol L$^{-1}$). At the stations RES2 and RES3, the concentrations up to 128
\[\text{\[\mu\text{mol L}^{-1}\]} \] were mostly observed in the CD season when the reservoir overturns. At the station RES4 located at the Nam Xot and Nam Theun confluence and at the stations RES7 and RES8 both located in the inflow region of the Nam Theun River, the high surface concentrations (up to 64.60 \[\mu\text{mol L}^{-1}\]) were mostly observed during the WW season when the reservoir undergoes sporadic destratification. The auto-correlation function of the time series of the log of the surface CH\(_4\) concentrations and diffusive fluxes at the stations RES1-8 indicated that all stations (except RES1) have a memory effect of 30 to 40 days (Figure S4). This implies that with a sampling frequency of 15 days, we captured most of the changes in the surface CH\(_4\) concentrations. At station RES1, the changes in CH\(_4\) concentrations are faster than at other stations and would have deserved a monitoring with a frequency higher than 15 days.

During the monitoring at RES1-RES8 stations, the average diffusive flux was 2.8 ± 12.2 mmol m\(^{-2}\) d\(^{-1}\) ranging from 0.01 to 201.86 mmol m\(^{-2}\) d\(^{-1}\) without any clear interannual and seasonal trends (Figure S3b). As for the concentrations, flux data followed a loglogistic distribution. The median flux in the WD season is 40 to 80% higher than the median in the WW and CD season, respectively. During the WW and the CD seasons, more than 60% of the calculated fluxes were lower than 1 mmol m\(^{-2}\) d\(^{-1}\), which corresponds to classical flux in pristine rivers. However, the average fluxes in the WW and CD season are 30% higher than in the WD season (Table 2). This confirms the presence of extremely high values during WD and CD seasons, as expected from the surface concentrations. All seasons together, around 7% of the diffusive fluxes that we observed were higher than 5 mmol m\(^{-2}\) d\(^{-1}\) which corresponds to extremely high diffusive fluxes in comparison with data from the literature for reservoirs and lakes (Bastviken et al., 2008; Barros et al., 2011). The median and average of these extreme fluxes higher than 5 mmol m\(^{-2}\) d\(^{-1}\) were 2 times higher in the WW and CD seasons than in the WD season (Table 2).

At NT2R, diffusive CH\(_4\) fluxes covered the whole range of fluxes reported for tropical reservoirs, depending on the season. Most of the fluxes at the NT2R Reservoir were around one order of magnitude lower than those at Petit Saut Reservoir (French Guiana) just after the impoundment (Galy-Lacaux et al., 1997), and in the same order of magnitude as reported for reservoirs 10 to 18 years older (Abril et al., 2005; Guerin et al., 2006; Kemenes et al., 2007; Chanudet et al., 2011). However, some diffusive fluxes at the stations RES1-8 in the WW and the CD seasons (up to 202 mmol m\(^{-2}\) d\(^{-1}\)) are among the highest ever reported at the
surface of a hydroelectric reservoir or a lake (Bastviken et al., 2011; Barros et al., 2011) and rivers downstream of dams (Abril et al., 2005; Guerin et al., 2006; Deshmukh et al., 2016).

3.5. Surface methane concentrations and diffusive fluxes at the water intake (RES9)

After the commissioning of the reservoir (Julian day 450), the concentrations at the stations RES9 (Figure 7a) located at the water intake were up to 30 times higher than at any other stations Following the commissioning of the reservoir and powering of the turbines, CH₄ concentrations at station RES9, which was located at the water intake, were up to 30 times higher than at the other stations (Figure 7a). On average CH₄ concentrations were 36.6±35.8 µmol L⁻¹ (median = 24.3), 37.6±67.0 µmol L⁻¹ (median = 0.9) and 1.0±1.7 µmol L⁻¹ (median = 0.3) in the WD, WW and CD season, respectively. The surface concentrations at RES9 were significantly higher in the WD and WW seasons than in the CD season (p = 0.0002 and Figure 7a). The highest concentration was observed each year at the end of the WD season-beginning of the WW season in between June and August. These maxima decreased from 215 µmol L⁻¹ in August 2010 to 87 µmol L⁻¹ in June 2012.

The diffusive fluxes ranged between 0.03 and 605.38 mmol m⁻² d⁻¹ (Figure 7b and Table 2). On average, the CH₄ diffusive fluxes at RES9 were two to forty times higher than at the other stations in the CD, WD and WW season. Diffusive fluxes at this station are usually higher than 10 mmol m⁻² d⁻¹ from April to July that corresponds to the WD season and the very beginning of the WW season. In 2010, diffusive fluxes were on average 241 ± 219 and 239 ± 228 mmol m⁻² d⁻¹ respectively for the WD and WW seasons. In 2011 and 2012, the fluxes dropped down by a factor of two in the WD season (112 ± 110 mmol m⁻² d⁻¹) and almost by a factor of forty in the WW season (6.8 ± 14.4 mmol m⁻² d⁻¹). Overall, emissions at RES9 decreased by a factor of two between 2010 and 2012.

4. Discussion

4.1. CH₄ dynamic in the reservoir water column

The gradual decrease of the CH₄ concentration from the anoxic bottom water column to the metalimnion and the sharp decrease around the oxicline in the metalimnion (Figure 3) is typical in reservoirs and lakes where CH₄ is produced in anoxic sediments and flooded soils (Guerin et al., 2008; Sobek et al., 2012; Maeck et al., 2013), and where most of it is oxidized at
CH$_4$ concentrations and storage increase concomitantly with the surface water temperature and the establishment of the thermal stratification during the WD season and peak at the end of the WD season-beginning of the WW season when the surface and the volume of the reservoir was minimum (Figure 2, 3 and 4). The fact that the storage reached its maximum when the reservoir volume is at its minimum shows that the increase of concentration at the bottom of the reservoir is highly significant. During the WW season, CH$_4$ concentrations and storage decrease slowly (Figure 4) while aerobic methane oxidation reaches its maximum (Figure 5). When the reservoir overturns at the beginning of the CD season, the CH$_4$ hypolimnic concentrations and storage reach their minima (Figure 4). The overturn favours the penetration of oxygen down to the bottom (Figure 3 and 4b). The sharp decrease of the CH$_4$ concentrations and CH$_4$ storage during this period is expected to result from sudden outgassing (Section 4.2) together with an enhancement of the aerobic CH$_4$ oxidation as observed in lakes that overturn (Utsumi et al., 1998b;Utsumi et al., 1998a;Kankaala et al., 2007;López Bellido et al., 2009;Schubert et al., 2010;Schubert et al., 2012;Fernández et al., 2014). Significant increase in methane oxidation during overturn in the CD season was not observed except for the year 2012 (Figure 5) when hypolimnetic CH$_4$ concentrations were still quite high (Figure 4c,d). The absence of a clear enhancement of the CH$_4$ oxidation in the water column of NT2R can be attributed to the slow erosion of the thermal stratification before the reservoir really overturns.

As the reservoir overturns during the period over which the water residence time is the longest, the temporal evolution of the concentrations is anti-correlated with the residence time (Figure 4c,d). The seasonal dynamics of the CH$_4$ in the monomictic NT2R differs from permanently stratified reservoirs like Petit Saut Reservoir where CH$_4$ concentration increased with retention time (Abril et al., 2005). However, at the annual scale the water residence time has a strong influence on CH$_4$ concentration and storage in the reservoir. Before the reservoir was commissioned (April 2010), the water residence time was up to 4 years and the CH$_4$ storage was up to four times higher than in 2011 and 2012 (Figure 4d). Although a decrease of concentration and storage with the age of the reservoir was expected (Abril et al., 2005), storage in the dry year of 2012 was twice that of the wet year of 2011, likely due to a 25% increase in residence time between 2011 and 2012 due to a decrease in rainfall and water inputs. In wet years like 2011, the thermal stratification is weaker than in dry years since the...
warming of the epilimnion is less efficient due to (1) lower insulation and cold water inputs from above and (2) the high riverine inputs of water alters the stability of the reservoir thermal stratification as shown by the sharper decrease of the thermal stratification illustrated by the decrease of the stratification index (ΔT) in 2011 than in 2012 (Figure 4a). As a consequence, the oxygen diffusion to the hypolimnion was higher in 2011 than in 2012 (Figure 4b) and it enhanced aerobic methane oxidation by 20% in the water column in the WW season in 2011 as compared to 2012 (Figure 5). Therefore our results suggest that the hydrology affects both the thermal stratification and therefore the diffusion of O_2 in the water column. The enhancement of O_2 penetration in rainy years favours the CH$_4$ oxidation and therefore contributes to the CH$_4$ storage reduction. With less CH$_4$ in the water column, the potentiality for downstream emissions (Deshmukh et al., 2016) and emissions through hotspots and hot moments (see below) is highly reduced.

4.2. Hot moments of emissions during sporadic destratification and reservoir overturn

Figure 8 illustrates the evolution of the diffusive fluxes, the stratification index (ΔT), the CH$_4$ storage and the aerobic CH$_4$ oxidation at the stations RES1, RES3, RES7 and RES8. These four stations were selected for their contrasting skewness (Figure S2) which gives an indication on the occurrence of extreme events and the facts that they are representative for all station characteristics (Table 1). It shows that the large bursts of CH$_4$ (from 5 up to 200 mmol m$^{-2}$ d$^{-1}$) always occurred in both the CD and WW seasons only when ΔT decreased sharply (>4°C, Figure 8a,d,g,j) and were usually followed by a sharp decrease of the CH$_4$ storage in the water column (Figure 8b,e,h,k).

Hot moments of emissions occurred during overturn in the CD at the stations RES1 and RES3 as illustrated in Figure 7. We therefore confirm the occurrence of hot moments of emissions during the reservoir overturn in the CD season as already observed in lakes that overturn in temperate regions (Kankaala et al., 2007;López Bellido et al., 2009;Schubert et al., 2010;Schubert et al., 2012;Fernández et al., 2014). The highest emissions determined at NT2R are one order of magnitude higher than previously reported outgassing during overturn and they occur mostly in the section of the reservoir that has the longest water residence time (RES1-3, Table 1) and the largest CH$_4$ storage (Figure 8b,e,h,k). This suggests that the impact of reservoir overturn can be very critical for the whole-reservoir CH$_4$ budget in tropical hydroelectric reservoirs and especially in young ones where hypolimnic concentration could reach up to 1000 µmol L$^{-1}$.
Hot moments of emissions also occur during sporadic destratifications in the WW season in the inflow region (RES4 and RES6-8) where the inflow of cool water from the watershed might disrupt the thermal stratification in reservoirs (see stations RES7 and 8 in Figure 8). This is contrasting with the observations in reservoir older than NT2R where high emissions from the inflow region were recently attributed to an enhancement of CH$_4$ production fuelled by the sedimentation of organic matter from the watershed (Musenze et al., 2014).

In the WD season, some sporadic emissions occurred but they were always lower than 20 mmol m$^{-2}$ d$^{-1}$ that is up to ten times lower than extreme fluxes in the WW and CD season. Those high fluxes occurred at RES3, RES7 and RES8 (Figure 8d,g,j) and were associated with ΔT variations lower than 2°C. The CH$_4$ storage decreases associated with these fluxes, however, were not as sharp as those observed during other seasons (Figure 8e,h,k). These high emissions were actually associated with early rains and associated high winds that occur sometimes in the last fifteen days of May. This shows that a moderate erosion of the stratification when hypolimnic CH$_4$ concentrations are high could enhance vertical transport of CH$_4$ toward the surface and emissions to the atmosphere.

Basically, this intense monitoring shows that spatial and temporal variations of CH$_4$ emissions are largely controlled by the hydrodynamics of the reservoir with extreme emissions occurring (1) in the inflow region during the wet season and (2) in area away from inflow zone during reservoir overturns in the CD season. Even if less frequent, moderate erosion of the stable and steep thermal stratification during warm seasons, could also lead to high emissions.

The evolution of depth-integrated aerobic CH$_4$ oxidation is not clearly related with the reservoir overturns and the CH$_4$ burst (Figure 8). Significant increases in the aerobic CH$_4$ oxidation occurred mostly during the first half of the WD season when the stratification was unstable and at the very beginning of the destratification in the WW, when ΔT started to decrease. The oxidation could reach high values (up to 380 mmol m$^{-2}$ d$^{-1}$) during these two periods since the yield of CH$_4$ in the water column to sustain the activity of methanotrophs is higher than in the CD season when the reservoir over turns. It shows that in reservoirs or lakes like NT2R that destratify progressively before the over turn, there is no substantial increase of the CH$_4$ oxidation when the water body finally overturns as was observed in lakes that over turn within a few days (Kankaala et al., 2007). In addition, the contribution of CH$_4$ oxidation to the total loss of CH$_4$ (sum of diffusion and oxidation) in the WD and WW
seasons was 90-95% during the entire monitoring whereas it was 85% in the CD season.
Therefore, during overturn in the CD season, a significant amount of CH₄ is oxidized, but the
removal of CH₄ during overturn is not as efficient as during seasons with a well-established
thermal stratification.

During the periods with major loss in the CH₄ storage with concomitant CH₄ burst, we
compared the change in the yield of CH₄ with the sum of emissions and oxidation. Most of
the time, the emissions alone and/or the sum of emissions and oxidation were significantly
higher than the amount of CH₄ that was lost from the water column. At the Pääjärvi Lake in
Finland (López Bellido et al., 2009), the fact that measured or calculated emissions exceed the
loss of CH₄ in the water column was attributed to a probable underestimation of the CH₄
storage in the lake by under-sampling the shallow area of the lake. In this study, emissions,
storage and oxidation were estimated at the same stations, avoiding such sampling artefacts.
Therefore, it suggests that CH₄ is provided by lateral transport or by production in the flooded
soil and biomass (Guerin et al., 2008) at a higher rate than the total loss of CH₄ from the water
column by emissions and oxidation. This hypothesis could only be verified by a full CH₄
mass balance including production and total emissions from the reservoir, which is beyond
the scope of this article.

4.3. Hot spot of emissions at the water intake (RES9)

After the commissioning of the reservoir, the temperature and the oxygen and CH₄
concentrations were constant from the surface to the bottom of the reservoir at the vicinity of
the water intake. On the basis of physical modelling and measurements of water current
velocities (Chanudet et al., 2012), the vertical mixing at this station was attributed to the water
withdrawal at the intake generating turbulence and water currents over a surface area of 3
km². At this station, CH₄-rich water from the reservoir hypolimnion reached the surface and
led to diffusive fluxes up to 600 mmol m⁻² d⁻¹ in the WD-WW seasons (Figure 7b) whereas
fluxes are 3 orders of magnitude lower in the CD season. These high fluxes are the highest
reported at the surface of an aquatic ecosystem (Abril et al., 2005; Guerin et al.,
2006; Bastviken et al., 2011; Barros et al., 2011; Deshmukh et al., 2016). To the best of our
knowledge, this is the first time it is reported that the artificial mixing induced by the water
intakes upstream of a dam or a power station enhance significantly emissions. At NT2R, the
intake is located at the bottom of a narrow (130 m) and shallow channel (depth =9-20 m) on
the side of the reservoir (Figure S1). This design enhances horizontal water current velocities,
the vertical mixing and therefore the emissions. The existence of such a hotspot at other reservoirs might be highly dependant on the design of the water intake (depth among other parameters) and its effect on the hydrodynamics of the reservoir water column.

4.4. Estimation of total diffusive fluxes from the reservoir

Yearly emissions by diffusive fluxes peaked at more than 9 Gg(CH₄) in 2010 when the reservoir was commissioned and they decreased down to ≈ 5 Gg(CH₄) in 2011 and 2012 (Figure 9a and Table 3). Yearly integrated at the whole reservoir surface, these emissions correspond to diffusive fluxes of 1.5 to 4 mmol m⁻² d⁻¹. These emissions are significantly lower than diffusive fluxes measured at the Petit Saut Reservoir during the first two years after flooding but similar to those determined in the following years (Abril et al., 2005) and values reported for diffusive fluxes from tropical reservoirs in Barros et al. (2011). In absence of the extreme emissions (both hotspots and hot moments), diffusive emissions from NT2R would have been one order of magnitude lower than emissions from tropical reservoirs as expected from the lower flooded biomass compare to Amazonian reservoirs (Descloûx et al., 2011). Due to the specific dynamic of diffusive fluxes at NT2R with hotspots and hot moments, diffusion at the reservoir surface contribute 18 to 27% of total emissions (Table 3) that is significantly higher than at other reservoirs tropical reservoirs where it was measured (See also Deshmukh et al., 2016).

Most of the increase of CH₄ emissions by diffusive fluxes from 4 to 9 Gg(CH₄) between 2009 and 2010 is due to very significant emissions of 2-3 Gg(CH₄) at the water intake after the commissioning of the reservoir and resulting artificial mixing (Figure 9a). This increase might be overestimated because we have no measurements between Jan. and April but this overestimation might be reasonable since those months are usually associated with the lowest emissions of the year (Figure 9b). After the commissioning, the outgassing of CH₄ was triggered by the artificial mixing generated by the withdrawal of water from the reservoir to the turbines. Although the area under the influence of the water intake is less than 1% of the total area of the reservoir, emissions at the water intake contributed between 13 and 25% of total diffusive emissions and 4 to 10 % if considering both ebullition and diffusion, disregarding the year 2009 (Table 3). It is worth to note that emissions at this site are only significant within 3-5 month per year at the end of the WD season-beginning of the WW season when the storage of CH₄ reach its maximum in the reservoir (Figure 9b). This new hotspot equals 20 to 40% of downstream emissions and contributes between 3 and 7% of total
emissions from NT2R surface when including ebullition and downstream emissions (Table 3 and Deshmukh et al. (2016)). Localized perturbation of the hydrodynamics, especially in lakes or reservoirs with CH$_4$-rich hypolimnion, can generate hotspots of emissions contributing significantly to the total emissions from a given ecosystem. These hotspots could be found upstream of dams and water intake in reservoirs but also around aeration stations based on air injection or artificial mixing that could be used for improving water quality in water bodies (Wüest et al., 1992).

The contribution of extreme diffusive fluxes (with daily values being > 5 up to 200 mmol m$^{-2}$ d$^{-1}$) to total emission by diffusion range from 30 to 50% on a yearly basis (Figure 9a) and from 40 up to 70% on a monthly basis (Figure 9b) although these hot moments represent less than 10% of the observations during the monitoring. In the literature, the statistical distribution of CH$_4$ emissions dataset always follows heavy-tailed and right skewed distribution like the log-normal, the Generalized Pareto Distribution (Windsor et al., 1992; Czepiel et al., 1993; Ramos et al., 2006; DelSontro et al., 2011) or loglogistic (this study) which indicates that CH$_4$ emissions are always characterized by high episodic fluxes. The quantification of emissions thus requires the highest spatial and temporal resolutions in order to capture as many hot moments as possible. At a single station, there is a possibility that we did not catch the peak of emissions but extreme emission events never lasted more than 2 months (3 consecutive sampling dates) and probably lasted less than 15 days most of the time (Figure 8). The auto-correlation function of the concentration time series indicates that a minimum sampling frequency of 1 month is required in this monomictic reservoirs for an accurate description of the change in the surface concentrations and estimation of the emissions (Figure S4). Although a better temporal resolution than 15 days or monthly would probably improve the estimation of CH$_4$ emissions from this reservoir, a lower temporal resolution could significantly affect (positively or negatively) the emission factor of this reservoir that overturn gradually over several month. Therefore, the monthly frequency defined for this specific reservoir is probably not applicable to every aquatic ecosystem, especially in lakes or reservoirs that overturn within a week or less (Kankaala et al., 2007; López Bellido et al., 2009; Schubert et al., 2012). However, it suggests that quantification of emissions based on 2-4 campaigns in a year might significantly affect emissions factors and carbon budgets of ecosystems under study.
5. Conclusion

The monitoring of CH$_4$ diffusive emissions every two weeks at nine stations revealed complex temporal and spatial variations that could hardly been characterized by seasonal sampling. The highest emissions occur sporadically during hot moments in the rainy season and when the reservoir over-turns. In the rainy season, they mostly occur in the inflow region because the increase of the discharge of cool water from the reservoir tributaries contributes to sporadic thermal destratification. During the reservoir overturn, extreme emissions occur mostly in area far from inflows and outflows that are supposed to have the highest water residence time. It shows that diffusive emissions can be sporadically as high as ebullition and that these hot moments could contribute very significantly to the total emissions from natural aquatic ecosystems and reservoirs. Our results suggest that sporadic emissions cannot be integrated properly in the quantification of emissions and establishments of carbon budgets based only on seasonal sampling (2-4 campaigns).

We also identified a new hotspot of emissions upstream of the water intake resulting from the artificial destratification of the water column due to horizontal and vertical mixing generated by the water withdrawal. In the case of the NT2R, emissions from this site contribute up to 25% of total diffusive emissions over less than 1% of the total reservoir area. We highly recommend measurements of diffusive fluxes around water intakes (immediately upstream of dams, typically) in order to evaluate if such results can be generalized.

Acknowledgements

The authors thank everyone who contributed to the NT2 monitoring programme, especially the Nam Theun 2 Power Company (NTPC) and Electricité de France (EDF) for providing financial, technical and logistic support. We are also grateful to the Aquatic Environment Laboratory of the Nam Theun 2 Power Company whose Shareholders are EDF, Lao Holding State Enterprise and Electricity Generating Public Company Limited of Thailand. CD benefited from a PhD grant by EDF.
References

R Development Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 3-900051-07-0, 2008

Table 1: Characteristics of the nine monitoring stations in the Nam Theun 2 Reservoir

<table>
<thead>
<tr>
<th>Station</th>
<th>Depth (min-max) (m)</th>
<th>Flooded ecosystem</th>
<th>Hydrology</th>
<th>Water residence time index</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES1</td>
<td>25.4-35</td>
<td>Dense forest</td>
<td>100 m upstream of the Nakai Dam</td>
<td>**</td>
</tr>
<tr>
<td>RES2</td>
<td>18.4-28</td>
<td>Dense forest</td>
<td>Thalweg of the Nam Theun River</td>
<td>**</td>
</tr>
<tr>
<td>RES3</td>
<td>6.4-16</td>
<td>Dense forest</td>
<td>Embayment</td>
<td>***</td>
</tr>
<tr>
<td>RES4</td>
<td>17.4-27</td>
<td>Degraded forest</td>
<td>Confluence Nam Theun-Nam Xot Rivers</td>
<td>**</td>
</tr>
<tr>
<td>RES5</td>
<td>8.4-18</td>
<td>Degraded forest</td>
<td>Aside from the main stream</td>
<td>**</td>
</tr>
<tr>
<td>RES6</td>
<td>15.4-25</td>
<td>Degraded forest</td>
<td>Thalweg of the Nam Theun River</td>
<td>*</td>
</tr>
<tr>
<td>RES7</td>
<td>5.4-15</td>
<td>Swamp</td>
<td>Between inflows and water intake</td>
<td>*</td>
</tr>
<tr>
<td>RES8</td>
<td>11.4-21</td>
<td>Agricultural soils</td>
<td>Between inflows and water intake</td>
<td>*</td>
</tr>
<tr>
<td>RES9</td>
<td>9.4-19</td>
<td>Civil construction</td>
<td>Water intake</td>
<td>*</td>
</tr>
</tbody>
</table>

1Descloux et al. (2011)

2Water renewal index in arbitrary units, (***), stands for longer residence time, (**) for average residence times and (*) for shorter residence times than average for the whole reservoir
Table 2: Median, average, ranges and proportion of diffusive fluxes (F_{CH_4}) < 1 and > 5 mmol m$^{-1}$ d$^{-1}$ for three seasons

<table>
<thead>
<tr>
<th>Station</th>
<th>Warm Dry (WD)</th>
<th>Warm Wet (WW)</th>
<th>Cool Dry (CD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES1-RES8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>212</td>
<td>252</td>
<td>217</td>
</tr>
<tr>
<td>range</td>
<td>0.01-102.59</td>
<td>0.01-201.86</td>
<td>0.01-94.64</td>
</tr>
<tr>
<td>median</td>
<td>1.08</td>
<td>0.64</td>
<td>0.20</td>
</tr>
<tr>
<td>Average ± SD</td>
<td>2.23±7.37</td>
<td>3.12±14.58</td>
<td>3.04±12.89</td>
</tr>
<tr>
<td>% F_{CH_4} < 1</td>
<td>48%</td>
<td>63%</td>
<td>86%</td>
</tr>
<tr>
<td>% F_{CH_4} > 5</td>
<td>6.6%</td>
<td>7.5%</td>
<td>7.4%</td>
</tr>
<tr>
<td>Median F > 5</td>
<td>10.67</td>
<td>13.80</td>
<td>23.75</td>
</tr>
<tr>
<td>Average F > 5</td>
<td>16.69±25.04</td>
<td>30.23±45.99</td>
<td>36.45±33.19</td>
</tr>
<tr>
<td>RES9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>39</td>
<td>45</td>
<td>36</td>
</tr>
<tr>
<td>range</td>
<td>0.24-342.00</td>
<td>0.03-605.38</td>
<td>0.07-17.62</td>
</tr>
<tr>
<td>median</td>
<td>40.81</td>
<td>1.23</td>
<td>0.48</td>
</tr>
<tr>
<td>average ± SD</td>
<td>83.33±15.57</td>
<td>78.58±24.73</td>
<td>2.21±0.69</td>
</tr>
</tbody>
</table>
Table 3: Methane emissions from the Nam Theun 2 Reservoir between 2009 and 2012.

<table>
<thead>
<tr>
<th>Emission from reservoir</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusion at RES9 only</td>
<td>0.02±0.01</td>
<td>2.33±0.21</td>
<td>0.86±0.12</td>
<td>0.66±0.11</td>
</tr>
<tr>
<td>Total diffusion</td>
<td>4.45±1.01</td>
<td>9.34±2.32</td>
<td>3.71±0.81</td>
<td>4.95±1.09</td>
</tr>
<tr>
<td>Contribution of RES9 to diffusion (%)</td>
<td>0.4</td>
<td>24.9</td>
<td>23.2</td>
<td>13.3</td>
</tr>
<tr>
<td>Ebullition</td>
<td>11.21±0.16</td>
<td>14.39±0.11</td>
<td>14.68±0.10</td>
<td>12.29±0.09</td>
</tr>
<tr>
<td>Total emissions from reservoir (Ebullition + diffusion at all stations)</td>
<td>15.66±1.02</td>
<td>23.73±2.32</td>
<td>18.39±0.82</td>
<td>17.25±1.09</td>
</tr>
<tr>
<td>Contribution of RES9 to total emissions from reservoir</td>
<td>0.1</td>
<td>9.8</td>
<td>4.7</td>
<td>3.8</td>
</tr>
<tr>
<td>Total downstream emissions</td>
<td>7.79±0.90</td>
<td>10.73±0.83</td>
<td>2.29±0.41</td>
<td>2.00±0.32</td>
</tr>
<tr>
<td>Total emissions (reservoir + downstream)</td>
<td>23.45±1.36</td>
<td>34.46±2.46</td>
<td>20.67±0.92</td>
<td>19.24±1.14</td>
</tr>
<tr>
<td>Contribution of diffusion to total emission</td>
<td>19%</td>
<td>27%</td>
<td>18%</td>
<td>26%</td>
</tr>
<tr>
<td>Contribution of RES9 to total (%)</td>
<td><0.1</td>
<td>6.8</td>
<td>4.2</td>
<td>3.4</td>
</tr>
</tbody>
</table>

1Deshmukh et al. (2014)
2Deshmukh et al. (2016)
Figure captions

Figure 1: Map of the sampling stations and civil structures at the Nam Theun 2 Reservoir (Lao PDR).

Figure 2: Variations of (a) surface of the reservoir (km2), volume of water (km3) and water level (masl) at the Nam Theun 2 Reservoir between January 2009 and December 2012.

Figure 3: Vertical profiles of temperature (°C), oxygen (µmol L$^{-1}$) and methane (µmol L$^{-1}$) at the stations RES1, RES3, RES7, RES8 and RES9 in the Nam Theun 2 Reservoir. Representative profile of the years 2010 (circle), 2011 (square) and 2012 (triangle) are given for each seasons: cool dry in blue, warm dry in red, and warm wet in grey. Note that for the stations RES3 and RES9, the scale is different for the vertical profiles of CH$_4$.

Figure 4: (a) Stratification index (ΔT, see text), (b) O$_2$ concentration in the hypolimnion (µmol L$^{-1}$), (c) CH$_4$ concentration in the hypolimnion (µmol L$^{-1}$) and (d) CH$_4$ storage in the water column (Gg(CH$_4$) month$^{-1}$, bars) and water residence time (days, black line with circles) in the Nam Theun 2 Reservoir (Lao PDR) between 2009 and 2012. The red, grey and blue colours indicate the warm dry (WD), warm wet (WW) and cool dry (CD) seasons, respectively. For the panels (a), (b) and (c), the boxes show the median and the interquartile range, the whiskers denote the full range of values and the plus sign (+) denotes the mean.

Figure 5: Seasonal variations between 2010 and 2012 of the depth-integrated aerobic CH$_4$ oxidation (mmol m$^{-2}$ d$^{-1}$) at the stations RES1-RES8 calculated from the aerobic oxidation rates determined by (Deshmukh et al., 2016). WD stands for warm dry (in red), WW for warm wet (in grey) and CD for cool dry (in blue). The boxes show the median and the interquartile range, the whiskers denote the full range of values and the plus sign (+) denotes the mean.

Figure 6: Frequency distribution of the log of CH$_4$ concentrations (µmol L$^{-1}$) at the nine monitoring stations of the Nam Theun 2 Reservoir. The red, grey and blue colours indicate the warm dry (WD), warm wet (WW) and cool dry (CD) seasons, respectively.
Figure 7: (a) Surface concentrations and (b) diffusive fluxes between June 2009 and December 2012 at the station RES9 located at the water intake. Julian day 0 is 1st of January, 2009. The red, grey and blue colours indicate the warm dry (WD), warm wet (WW) and cool dry (CD) seasons, respectively.

Figure 8: (a, d, g, j) stratification index (ΔT, red line, see text) and diffusive fluxes, (b,e,h,k) CH$_4$ storage and (c,f,i,l) depth-integrated aerobic CH$_4$ oxidation (mmol m$^{-2}$ d$^{-1}$, black line) calculated from the aerobic oxidation rates determined by (Deshmukh et al., 2016) and ΔT (red line) between June 2009 and December 2012 at the stations RES1, RES3, RES7 and RES8 at the Nam Theun 2 Reservoir. Julian day 0 is 1st of January, 2009. The red, grey and blue colour dots indicate the warm dry (WD), warm wet (WW) and cold dry (CD) seasons, respectively.

Figure 9: (a) Total emissions by diffusive fluxes in 2009, 2010, 2011 and 2012, and (b) monthly emissions by diffusive fluxes between May 2009 and December 2012. Emissions from RES9 (water intake) are shown in black, emissions resulting from diffusive fluxes lower than 5 mmol m$^{-2}$ d$^{-1}$ from the stations RES1 to RES8 are shown in white and emissions resulting from diffusive fluxes higher than 5 mmol m$^{-2}$ d$^{-1}$ from the stations RES1-RES8 are shown in grey.
Figure 1
Figure 2

(a) Surface (km2)

(b) Volume (km3)

(c) Water level (masl)

Jan-09 Jul-09 Jan-10 Jul-10 Jan-11 Jul-11 Jan-12 Jul-12
Figure 3

Cold Dry

Warm Dry

Warm Wet

RES1

RES3

RES7

RES8

RES9
Figure 4
Figure 6

- RES1 WD
- RES1 WW
- RES1 CD

- RES2 WD
- RES2 WW
- RES2 CD

- RES3 WD
- RES3 WW
- RES3 CD

- RES4 WD
- RES4 WW
- RES4 CD

- RES5 WD
- RES5 WW
- RES5 CD

- RES6 WD
- RES6 WW
- RES6 CD

- RES7 WD
- RES7 WW
- RES7 CD

- RES8 WD
- RES8 WW
- RES8 CD

- RES9 WD
- RES9 WW
- RES9 CD
Figure 7

(a) CH₄ (µmol L⁻¹)

(b) F₈CH₄ (mmol m⁻² d⁻¹)

Julian days
Figure 8
Figure 9

(a) Gg(CH₄)y⁻¹

- RES1-RES8 (< 5 mmol.m⁻².d⁻¹)
- RES1-RES8 (> 5 mmol.m⁻².d⁻¹)
- Water intake (RES9)

(b) Gg(CH₄) month⁻¹

Jan-09 Apr-09 Jul-09 Oct-09 Jan-10 Apr-10 Jul-10 Oct-10 Jan-11 Apr-11 Jul-11 Oct-11 Jan-12 Apr-12 Jul-12 Oct-12