Interactive comment on “Stable isotope paleoclimatology of the earliest Eocene using kimberlite-hosted mummified wood from the Canadian Subarctic” by B. A. Hook et al.

Anonymous Referee #1

Received and published: 14 June 2015

The author devoted the oldest tree ring width and dual-isotope (δ¹⁸O & δ¹³C) analysis at annual and subannual resolution from cellulose from mummified wood in early Eocene when the global temperature was high. That is quite interesting for the paleoclimate study in the Subartic and climate forecast in future. Here are some comments on this paper: 1. The author introduced the sample location at present. It is at (64°42'49" N, 110°37'10" W). However, as we known, the earth is composed by seven moving Plates. At the early Eocene, 53.3Ma ago, the geographic location would not be same as present. When the author discus the paleoclimate in Subartic area, it would be more reasonable if the geography transition is considered. 2. In the hot early Eocene, the concentration of greenhouse gas CO₂ was believed to be 680–3300 ppmv. Which role did the high pCO₂ play on the relation between atmospheric ¹³CO₂ and that in plant cellulose remains question. The value of Ci/Ca in Eq.(4), ΔΔR₁₃ in Eq.(5) are determined in the lower atmospheric pCO₂. A discussion on the influence from higher atmospheric pCO₂ on the relationship between δ¹³Catm and δ¹³Ccellulose, such as the results from FACE experiment maybe helpful to make the calculation more valuable. 3. Generally, δ¹⁸O in cellulose from tree rings varies within a little range of 4‰. Figure 1 shows a great increase of δ¹⁸O in the tree ring from TR42 (?) in subannual resolution, very different from that of former ones, please explain why. 4. The font size in figure 1, figure 2 should be larger. It would be better for the author to add words, such as “a, b, c, d” to denote the diagrams in figure 1. Please make clear TR39-42 in figure 1.