Diversity and seasonal dynamics of airborne Archaea

J. Fröhlich-Nowoisky¹, C. Ruzene Nespoli¹, D. A. Pickersgill¹, D. A. Pickersgill¹, P. E. Galand², D. A. Pickersgill¹, I. Müller-Germann¹, C. Ruzene Nespoli¹, T. Nunes⁵, J. Gomes Cardoso⁵, S. Marta Almeida⁷, P. E. Galand², D. A. Pickersgill¹, I. Müller-Germann¹, C. Pio⁵, M. O. Andreae¹, R. Conrad⁸, U. Pöschl¹, and V. R. Després⁹

¹Max Planck Institute for Chemistry, P.O. Box 3060, 55020 Mainz, Germany
²UPMC, Univ Paris 06, Observatoire Océanologique, Banyuls-sur-Mer, France
³CNRS, UMR8222, Laboratoire d’écogéochimie des environnements benthiques, Observatoire Océanologique, Banyuls-sur-Mer, France
⁴Geosciences, Johannes Gutenberg University, Joh.-Joachim-Becher-Weg 21, 55128 Mainz, Germany
⁵CESAM & Department of Environment, University of Aveiro, 3810-193 Aveiro, Portugal
⁶University of Cape Verde, 279 CPraia, Santiago, Cabo Verde
⁷ITN/MCTES – 2686-953 Sacavém, Portugal
⁸Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
⁹Institute of General Botany, Johannes Gutenberg University, Johannes-von-Müller-Weg 6, 55128 Mainz, Germany
Received: 25 April 2014 – Accepted: 28 April 2014 – Published: 16 May 2014
Correspondence to: V. R. Després (despres@uni-mainz.de) and J. Fröhlich-Nowoisky (j.frohlich@mpic.de)
Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Archaea are widespread and abundant in many terrestrial and aquatic environments, accounting for up to \(~ 10\%\) of the prokaryotes. Compared to Bacteria and other microorganisms, however, very little is known about the abundance, diversity, and dispersal of Archaea in the atmosphere. By DNA analysis targeting the 16S rRNA and amoA genes in samples of air particulate matter collected over one year at a continental sampling site in Germany, we obtained first insights into the seasonal dynamics of airborne Archaea. The detected Archaea were identified as Thaumarchaeota or Euryarchaeota, with soil Thaumarchaeota (group I.1b) being present in all samples. The normalized species richness of Thaumarchaeota correlated positively with relative humidity and negatively with temperature. This together with an increase of bare agricultural soil surfaces may explain the diversity peaks observed in fall and winter. The detected Euryarchaeota were mainly methanogens with a low relative frequency of occurrence. A slight increase in their frequency during spring may be linked to fertilization processes in the surrounding agricultural fields. Comparison with samples from the Cape Verde islands and from other coastal and continental sites indicates that the proportions of Euryarchaeota are enhanced in coastal air, which is consistent with their suggested abundance in marine surface waters. We conclude that air transport may play an important role for the dispersal of Archaea, including ammonia-oxidizing Thaumarchaeota and methanogens. Also, anthropogenic activities might influence the atmospheric abundance and diversity of Archaea.

1 Introduction

Archaea have long been thought to occur only in restricted, extreme environments. However, since their formal recognition as an independent domain of life about two decades ago (Woese et al., 1990), they have been found in a wide variety of habitats from hydrothermal vents to aquatic and soil environments (Auguet et al., 2010;
Diversity and seasonal dynamics of airborne Archaea

J. Fröhlich-Nowoisky et al.

Archaea are now known to be abundant, diverse, and widespread organisms that act as major players in the nitrogen and carbon cycle (Offre et al., 2013; Pester et al., 2012; Schleper et al., 2005). Despite the recognition of the ubiquitous nature of Archaea, their possible presence in the atmosphere is poorly investigated. While the atmosphere may not be a key habitat of Archaea, it may act as the primary medium for the dispersal of microorganisms among the different ecosystems on the Earth’s surface (Fröhlich-Nowoisky et al., 2012). For other bioaerosols such as Bacteria and Fungi, studies have been conducted that describe the composition, diversity, abundance, seasonal, and even daily variation of these organisms in the atmosphere, and explore their distribution and biogeography (e.g., Després et al., 2012; Fröhlich-Nowoisky et al., 2012 and references therein). These questions are still unanswered for Archaea.

The few published reports on airborne Archaea are from anthropogenic environments such as compost piles or biosolids (e.g., Baertsch et al., 2007; Moletta et al., 2007; Thummes et al., 2007) and a handful of natural and urban environments (Brodie et al., 2007; Cao et al., 2014; Cho and Hwang, 2011; Radosevich et al., 2002; Smith et al., 2013). The extent of these studies remains very limited and the number of Archaea sequences presented in the literature is small. Thus, the first insights into the presence of Archaea in the atmosphere could draw only very preliminary conclusions about the composition from single sites and specific sampling times. In particular, nothing is known about which metabolic groups of Archaea are present in the air.

Archaea have various types of metabolisms, some of which are involved in key biogeochemical processes like the production of methane, the assimilation of amino acids, or the oxidation of ammonia (Cavicchioli, 2011; Pester et al., 2011). Nitrification is a central process of the global nitrogen cycle that can be divided into two steps: the oxidation of ammonia to nitrite and the oxidation of nitrite to nitrate. Ammonia oxidizing Bacteria and Archaea (AOB and AOA, respectively) use the enzyme ammonia monooxygenase (encoded by the amoA gene, Falkowski et al., 2008; Gruber and Gal...
loway, 2008; Kowalchuk and Stephen, 2001) to perform the conversion to nitrite, which is the rate-limiting step. Since the discovery of the importance of the \textit{amoA} gene, it has been widely used to explore the diversity and abundance of AOA, even though the presence of the gene does not necessarily prove the potential for ammonia oxidation (Pester et al., 2011). Thus, \textit{amoA} gene based studies have allowed a better understanding of the ecological and evolutionary factors shaping the community assembly in AOA and the factors that drive community distribution (Auguet et al., 2010; Cao et al., 2011; Cavicchioli, 2011).

The main purpose of this study was first to determine whether airborne \textit{Archaea} are present all year round, and if they display seasonal dynamics. Furthermore, we wanted to test the hypothesis of whether the composition of airborne \textit{Archaea} depends on the type of ecosystem found below the air masses. For the first purpose we gathered samples for one year in continental boundary layer air at one sampling site and identified archaeal communities by sequencing the 16S rRNA and the \textit{amoA} gene. For the second objective, we compared the results of the continental air site with discrete sampling from other geographical regions, including both coastal and continental air, to understand the composition of airborne \textit{Archaea} under both a local and a more global perspective.

2 Material and methods

2.1 Aerosol sampling

As it is well established that decontamination of sampling devices is a necessary prerequisite for reliable molecular genetic analysis (Després et al., 2007), the quartz and glass fiber filters used were baked at high temperatures to eliminate possible biological traces. To secure a continuous quality assurance, we regularly cleaned the samplers with isopropanol to prevent colony growth in the interiors and checked the air flow rates weekly. For some sampling sites (e.g., Germany), we separated the particles into
coarse and fine mode, while for other sites or campaigns (e.g., North America) total suspended particulate matter was analyzed. As within the sampling strategies small variations occur between the different sampling sites, the specific details are given per site. However, for an overall comparison the main sampling information is listed in Tables 1 and S1.

2.1.1 Germany

Over one year, 47 pairs of fine and coarse particle samples were collected in Mainz, Germany (March 2006–April 2007). A self-built high-volume-dichotomous sampler (Solomon et al., 1983) was used, which was operated with a rotary vane pump (Becker VT 4.25) at a total flow rate of $\sim 0.3 \text{ m}^3 \text{ min}^{-1}$, corresponding to a nominal cut-off diameter of $\sim 3 \mu$m. Thus, coarse particles with an aerodynamic diameter larger than $\sim 3 \mu$m were collected on one glass fiber filter ($\sim 0.03 \text{ m}^3 \text{ min}^{-1}$), while the fine particles from the same air sample were collected on a second glass fiber filter ($\sim 0.27 \text{ m}^3 \text{ min}^{-1}$). The sampling period was generally ~ 7 days, corresponding to a sampled air volume of 3000 m^3. A few samples were collected over shorter periods (volumes of ~ 400–2000 m^3). The sampling station was positioned on a mast about 5 m above the flat roof of the three-story high Max Planck Institute for Chemistry building (MPIC) on the campus of the University of Mainz ($49^\circ59'31.36'' \text{ N}, 8^\circ14'15.22'' \text{ E}$). The sampled air masses represent a mix of urban and rural continental boundary layer air in central Europe. All glass fiber filters were baked overnight at 500° C prior to sampling and the loaded filters sealed in decontaminated aluminum foil and stored at -80° C until analysis.

To detect possible contaminants from the sampler and sample handling, blank samples were taken at 4 week intervals. Prebaked filters were mounted in the sampler as for regular sampling, but the pump was either not turned on at all (“mounting blanks”) or only for 5 s (“start-up blank”).
2.1.2 Cape Verde

Filter sampling was part of the Cape Verde Dust project (CV-Dust). The sampling station was positioned ~1500 m from the coast at 69 m elevation, latitude 14°55′33.96″ N, longitude 23°29′40.92″ W. For the 26 Cape Verde samples (Table 1 and Table S1), Whatman Quartz filters were used and sampling was done between February and March 2011 with a PM$_{10}$ High-Volume sampler (Tisch PM$_{10}$, TE-6001) placed 14 m.a.g.l. and with a flow rate of 1 m3 min$^{-1}$. Sampling periods ranged from less than 24 h to 3 days. Prior to sampling, filters were decontaminated by baking for 6 h at 500 °C and after sampling were stored in decontaminated bags and kept frozen at −80°C until DNA extraction. The air at this site is primarily coastal with influence from continental air masses, which may carry particles from Saharan or Sahel dust events.

2.1.3 China

Samples of total suspended particles (TSP) were collected on quartz fiber filters with a high-volume filter sampler (Anderson Instruments, Smyrna, GA; 1.5 m.a.g.l., sample air flow 1 m3 min$^{-1}$; sampling time ~ 24 h) during the Program of Regional Integrated Experiments of the Pearl River Delta Region (PRIDE-PRD) Campaign in July 2006 in Backgarden (21 m elevation, 23°54′80.56″ N, 113°06′63.89″ E, South China). Prior to sampling the 14 filters were decontaminated at 500 °C for at least 12 h. The samples were stored in a freezer at −80°C until DNA extraction. The sampling site was situated in a rural farming environment ~ 60 km northwest of the megacity Guangzhou on the edge of the highly populated PRD region. Due to the prevailing monsoon circulation at the time of sampling, the marine air masses came mainly from the south to southeast, making this site a rural receptor site for the regional pollution resulting from the outflow of the urban cluster around Guangzhou (Garland et al., 2008; Rose et al., 2010).
2.1.4 North America

The sampling site was located in a part of the Manitou Experimental Forest in a semi-arid, montane ponderosa pine zone in the Central Rocky Mountains 35 km northwest of Colorado Springs, CO and 15 km north of Woodland Park, CO (2370 m elevation, latitude 39°6'0” N, longitude 105°5’30” W). Total aerosol samples for DNA analysis were collected during the BEACHON-RoMBAS campaign in July 2011 onto 150 mm diameter glass fiber filters (Machery-Nagel, Type MN 85/90, 406 015) using a free-standing high-volume sampler (Digitel DHA-80) operated at 1 m3 min$^{-1}$, 1 m above the ground and located approximately 50 m from the sampling trailer. Filters were baked at 500°C for 12 h prior to sampling. After sampling, filters were stored in decontaminated aluminum bags at −80°C until DNA extraction. Twenty samples were tested for the presence of Archaea. The sampled air represents rural continental boundary layer air (Huffman et al., 2013).

2.1.5 United Kingdom

Samples on glass fiber filters (Graseby Andersen Hi-Vol six-stage impactor, sample air flow 1.120 m3 min$^{-1}$, sampling time 21–35 h) were provided by the School of Earth, Atmospheric, and Environmental Sciences, University of Manchester, United Kingdom (UK). The 12 samples were collected as part of the Tropospheric ORganic CHemistry (TORCH) field campaign during spring 2004. Prior to use, the glass fiber filters were decontaminated by baking, and the loaded filters were shipped at reduced temperatures and stored in a freezer at −20°C until DNA extraction. The TORCH2 campaign took place at the Weybourne Atmospheric Observatory (WAO, 52°57’02” N, 1°07’19” E), which is located on the North Norfolk coastline near Weybourne, UK. Norfolk is a sparsely populated rural region without large population centers or industrial areas. As detailed by Gysel et al. (2007) the air masses encountered at this station represent aged polluted outflow from London, the West Midlands or the European
continent, or relatively clean air masses transported across the North Sea region by northerly winds.

2.2 DNA extraction and amplification

Filter sample aliquots (about 1–25 % of the filter) were extracted with a commercial soil DNA extraction kit (LysingMatrixE, FastDNA Spin Kit for Soil, MP Biomedicals) according to the supplier’s instructions with the following modifications (depending on the character of the filter): centrifugation (10–15 min) after the lysis, followed by addition of 900 µL buffer and a second round of beating and centrifugation. The supernatants of both extraction steps were combined for the further extraction process. Finally, the DNA was dissolved in 100 µL of elution buffer. Decontaminated filters were included during the extractions as extraction blanks. Extraction blanks without filters were prepared as well.

For the laboratory work, regular quality control and assurance measurements were taken. All PCRs were set up with sterile equipment in a DNA free environment. With the DNA extract from each of the filters up to four polymerase chain reactions (PCR) were performed using normal and nested primer pairs targeting the 16S rRNA gene. The 25–50 µL reaction mixture contained the template DNA (0.5–1 µL sample extract), 1 × PCR buffer, 0.2 mM each dNTP (Roth), 0.33 µM each primer (Sigma Aldrich), 2 mM MgCl₂ and 2.5 units of JumpStartTM REDTaq DNA polymerase. A negative control was included in all PCR runs.

The thermal profile of the 16S PCR reactions was as follows: initial denaturing at 94 °C for 3 min; 34 cycles with 94 °C for 30 s, annealing at 55 °C for 1 min for primer pair A2F/958r (Baker and Cowan, 2004; Wani et al., 2006) or at 52 °C for 20 s for primer pair 109f/934r (Grosskopf et al., 1998), elongation at 72 °C for 1.5 min, and a final extension step at 72 °C for 5 min. Nested PCRs were done with primer pair 109f/934r and primer pair 109f/927r (Baker and Cowan, 2004; Grosskopf et al., 1998), respectively. The thermal profile for both pairs was: initial denaturing at 94 °C for 2 min, 29 cycles with 94 °C for 30 s, annealing at 52 °C for 1 min, elongation at 72 °C for 1 min.
and a final extension at 72°C for 10 min. Within one extraction blank in the samples of Cape Verde a contamination occurred. The PCR product was cloned and sequenced and the sequences grouped into operational taxonomic units (OTUs), which represent artificial species, thus treated as all other PCR products. The OTUs occurring in the extraction blank PCR were completely removed from the analysis thus also when they occurred in any other filter sample.

An amoA analysis was performed for 18 coarse filters from Mainz, Germany (Table S1). For the archaeal amoA gene the primer pair amo19F/amo643R with the nested primer pair amo111F/amo643R was used (Leininger et al., 2006; Treusch et al., 2005). The PCR mix was as described above. The PCR reaction consisted of an initial denaturation at 94°C for 4 min, 9 cycles at 94°C for 45 s, annealing at 55–65°C for 1 min, elongation at 72°C for 1 min and 19 cycles at 94°C for 45 s, 55°C for 1 min and 72°C for 1 min, and a final extension step at 72°C for 10 min.

Amplification products selected for sequencing were cloned using the TOPO TA Cloning Kit (Invitrogen) following the supplier’s instructions. Colonies containing inserts were identified by blue-white selection and lysed in 20 µL water for 10 min at 95°C. The inserts of 12–24 randomly picked colonies were amplified for each PCR product using 1.5–3 µL lysate in a 25–40 µL reaction. When fewer colonies were available all colonies were amplified and sequenced.

2.3 Sequence and phylogenetic analysis

DNA sequences were determined with ABI Prism 377, 3100, and 3730 sequencers (Applied Biosystems) using BigDye-Terminator v3.1 chemistry at the Max Planck Genome Centre, Cologne. To assure quality we studied the individual chromatograms for background noise, and cut the vector sequences. Sequences were screened for possible chimera using the Bellerophon program (Huber et al., 2004). The alignment was conducted using the multiple sequence comparison by log expectation (MUSCLE) package (Edgar, 2004) and thereafter manually checked. The taxonomic identification was only based on sequence data. The sequences from each sampling site were
clustered into OTUs. For the 16S rRNA sequence the similarity of sequences within a species is thought to be at least 97% (Stackebrandt and Goebel, 1994). As during the cloning process the PCR products can be inserted into the vector sequence in both directions and the sequencing was conducted from one direction, the reads sometimes cover different sections of the analyzed sequence or they only have a few base pairs of overlap. Thus, for the identification of OTUs, sequences were grouped together according to their sequence coverage to provide the longest possible length for an automatic analysis with the Mothur software package (Schloss et al., 2009). Sequence blocks were cut to the longest possible length to retain as many sequences as possible. For Germany this was \(\sim 370 \text{ bp} \), for North America \(\sim 470 \text{ bp} \), for China \(\sim 600 \text{ bp} \), and for the UK \(\sim 760 \text{ bp} \). Sequences that were too short for the chosen blocks were compared manually to the other sequences to determine whether they fitted into one of the automatically identified OTUs, or formed a new one. Operational taxonomic units and their reference sequences were determined with the Mothur package. For the sequences from Cape Verde, OTUs were created by using the USEARCH v5.2.3.2 package (Edgar, 2010) on the 97% discrimination level and manual BLAST procedures.

For the phylogenetic identification of the OTUs two approaches were used. Firstly, a broad taxonomic identification by comparing the sequences of interest with the sequences in well-known data bases and, secondly, a more detailed analysis by calculating phylogenetic trees. The results from the comparison against data-bases were used to identify potentially closely related \textit{Archaea} strains. From these strains we then used type species to build a basic tree for the phylogenetic tree analysis. The basic tree sequences are listed in Table S2.

For these comparisons, with known sequences, both the Basic Local Alignment Search Tool (BLAST), via the website of the National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov/), as well as the SINA aligner (Pruesse et al., 2012), which includes several microbial data bases, were used.

For the phylogenetic analysis, a basic tree was constructed that mainly included sequences from cultured, identified type species and a few from uncultured species.
(Table S2). For identification the representative sequences of each OTU were then included. For OTUs where the representative sequences did not overlap the area used for the tree calculation, the best match sequences were used as placeholders, but only when the similarity between the sequence and its best match was higher than 97%. The model of evolution best suitable for the sequence sets was chosen using the “find best DNA/Protein Model-option” in Mega5.2.2 (Tamura et al., 2011). Phylogenetic trees were constructed by the maximum likelihood algorithm using the substitution model Tamura-3-parameter model with gamma distributed rates for the analysis of the 16S sequences and 1000 replicates for the boot strap values. Additionally, we also tested the Neighbor-Joining algorithm which agreed with maximum likelihood results.

The amoA gene DNA sequences were likewise aligned with MUSCLE. Operational taxonomic units were formed when the sequence similarity scores were > 85% according to Pester et al. (2012). Phylogenetic trees were built on the nucleotide level based on the Tamura-3-parameter model as described above and on the amino acid level using the WAG+G+F model (Whelan and Goldman, 2001).

The sequences of the present study have been deposited in the GenBank database under the following accession numbers: for 16S rRNA genes KF683446–KF683516 (Cape Verde), KF558331–KF558337 (China), JQ249390–JQ249751 (Germany), JQ976019–JQ976037 (North America), KF558321–KF558330 (United Kingdom) and for the amoA gene sequences (KF824904–KF824908).

2.4 Quantitative PCR assays

All quantitative PCR (qPCR) reactions were performed on an iCycler thermocycler equipped with a MyiQ detection system (Bio-Rad, Munich, Germany) and the data were analyzed using the iQ3 Optical System software (Bio-Rad). As a standard for Archaea, a pure culture of *Methanosarcina thermophila* was used (Lueders et al., 2004) and for the Bacteria, chromosomal DNA of *Escherichia coli K12* (Stubner, 2002) was used. Both standards were serially diluted and used for the construction of calibration
curves in each reaction. For the standards duplicates and for the filter extracts triplicates were analyzed.

For the actual quantification process the following primer pairs were chosen: for *Archaea* 364f and 934r and for *Bacteria* 519f and 907f/926r as commonly used (Burggraf et al., 1997; Grosskopf et al., 1998; Lane, 1991). The qPCR assays were based on SYBR Green (Ambion). Each reaction had a volume of 25 µL and the following mixture for *Archaea* (conditions for *Bacteria* in brackets): 12.5 µL SYBR Green JumpStart Taq ReadyMix, 1.5 (4) mM MgCl₂, 0.66 (0.5) µM of each primer, and 5 µL of the template DNA and 1 µM FITC. For the assay, the program used was: 94 °C for one cycle for 6 (8) min, followed by 45 (50) cycles at 94 °C for 35 s (20 s), 66 °C (50 °C) for 30 s (20 s), 72 °C for 45 s (50 s) and 85.5 °C (75 °C) for 6 s for signal reading.

2.5 Statistical analysis

To assess whether there were significant correlations between the diversity of sampled *Archaea* and the meteorological factors, the relative species richness per sample *j* (*S*_R,j*) as well as the relative species richness per month *k* (*S*_R,k*) were calculated (see Table S3). The statistical analysis was performed using the R-Package (R-Development-Core-Team, 2005). Pearson’s linear regression coefficients were calculated between the relative species richness and the sampling period or monthly averages for temperature, relative humidity and wind speed and sum of precipitation per sample, to assess the influence of the single factors on the sampled diversity.

To examine if a combination of meteorological factors correlates best with the sampled diversity, the stepwise AIC Method (Akaike Information Criterion) for variable selection (Yamashita et al., 2007) was conducted. A more detailed linear regression analysis (Neter et al., 1996) was then performed on the best results of the Pearson and stepwise AIC test. A more detailed description of the analysis can be found in the Supplement.
3 Results and discussion

3.1 Abundance and diversity of airborne Archaea in continental boundary layer air

From the 47 air filters sampled at Mainz, Germany (Table S1) we retrieved a total of 435 archaeal 16S rRNA gene sequences that grouped into 57 OTUs. The aerosols at this site were sampled using size selection with a cut-point at 3 µm. Archaea sequences could be amplified in all coarse (> 3 µm), but only in 21% of the fine particle filter samples (< 3 µm). To better understand this phenomenon we quantified copies (cp) of Archaea and Bacteria 16S rRNA genes in a subset of six air filter samples. We found the abundance of Archaea in air to be only between ~1 to ~10 gene copies per m³ air, while that of Bacteria was found to be ~10⁴ to ~10⁶ in the same air samples (Table S4). These results are strikingly different from observations in soil and ocean surface water, where Archaea represent about 10% of the total prokaryotic abundance (Bates et al., 2011; Cao et al., 2012; DeLong, 1992; Karner et al., 2001; Kemnitz et al., 2007; Yin et al., 2013). One of the explanations might be that Archaea could be more susceptible to UV light or other damage caused by, e.g., components from the fine aerosol than Bacteria. However, the fact that Archaea were more numerous on coarse filters may indicate that airborne Archaea are mostly not isolated cells, with typical diameters between 1 and 2 µm, but rather cells that cluster together or aggregate with other particles like soil dust and thus deposit faster than Bacteria (for details see Supplement).

This study gives first insights that airborne Archaea were present all year long in air from the continental boundary layer. Bioaerosols in air have a lifetime of about a week (Burrows et al., 2009), implying that the aerosols sampled may have traveled several thousands of kilometers. Therefore, this study’s data represent not only a snapshot of the actual diversity, but also include information about possible sources and distribution patterns.
All archaeal 16S rRNA gene OTUs at the German sampling site belonged either to Euryarchaeota (14%) or Thaumarchaeota (86%, see also Figs. 1a and S1, Table S5). Thaumarchaeota are widespread on Earth (Pester et al., 2011) and are detected in various environments such as freshwater, ocean, sediments, and hot springs, with an especially high abundance in soil (Bates et al., 2011; Brochier-Armanet et al., 2011; Leininger et al., 2006; Ochsenreiter et al., 2003; Schleper and Nicol, 2010). Based on phylogenetic analysis, all OTUs of the Thaumarchaeota were affiliated with the 16S rRNA sequences from the soil group I.1b (Fig. S1, Table S5). Group I.1b Archaea were composed of a high number of related phylotypes (Fig. S1) similar to what is observed in soils (Auguet et al., 2010).

In addition to the 16S rRNA gene, the phylogenetic relationships of the amoA gene, which is used as a reliable marker to study the diversity of archaeal ammonia oxidizers was also analyzed (Cao et al., 2011, 2013; Junier et al., 2010). The amoA gene was successfully detected on a subset of 18 coarse particulate matter samples, spanning all four seasons (Table S1). The 176 archaeal amoA sequences grouped into 5 OTUs. Thus, the diversity of archaeal amoA genes was lower than that of archaeal 16S rRNA genes. Strengthening the results from the analysis of archaeal 16S rRNA OTUs, all amoA OTUs belonged to the genus Nitrososphaera affiliated with the group I.1b of soil Archaea identified using the nucleotide (Fig. 2) as well as the amino acid sequences. Both findings support observations made for airborne Bacteria showing that airborne microbial diversity is closely linked to soil diversity, and that soil and soil dust might be a primary source of airborne microorganisms (Brodie et al., 2007; Després et al., 2007, 2012; Fierer et al., 2008; Jones and Harrison, 2004; Lighthart and Shaffer, 1995; Prospero et al., 2005).

In comparison to Thaumarchaeota the number of OTUs of Euryarchaeota was low. Euryarchaeotal 16S rRNA gene sequences were present in 32% of the samples and attributed to 5 well-known orders. Halobacteriales, Thermoplasmatales, Methanomicrobiales and Methanosarcinales were represented by a single OTU each, while 50% of the OTUs belonged to the Methanobacteriales (Figs. 1a, S1 and Table S5). The
presence of methanogens may be surprising, as Ochsenreiter et al. (2003) suggested that oxic soils support only the *Thaumarchaeota* group I.1b. However, a recent study by Angel et al. (2012) proved that methanogenic *Euryarchaeota*, despite being obligate anaerobic, are present in oxic soils and regain their methanogenesis activity when deprived of oxygen. Other studies finding methanogens in soil attributed their presence to the effect of livestock introducing methanogens into the soil with their feces (Gattinger et al., 2007; Nicol et al., 2003; Radl et al., 2007). Similarly to *Thaumarchaeota*, *Euryarchaeota* in air are likely to originate from aerosolized soil or other emission sources.

Thaumarchaeota had a normalized species richness (S_n, number of detected OTUs divided by number of investigated samples, Table S3) of ca. 2 to 3 throughout the year (Fig. 3a) with OTU Arch1 being the most frequent OTU present in 70% of the samples. In contrast, the S_n of *Euryarchaeota* was always below one, and the two most frequent OTUs (Arch12 and Arch13) were detected in only 11% of the investigated air samples. Based on the Chao-1 index (Table S3), we obtained an estimate of ~137 OTUs for the actual species richness of *Archaea* in the investigated air samples (see also Supplement for detailed discussion). This species richness is only about 50% of that reported by Brodie and colleagues (2007) for two urban sites in North America. However, in urban air, the composition and abundance of aerosol microbes seems to be unique. *Bacteria*, for instance, are often released from strong point sources (Després et al., 2012; Fang et al., 2007; Shaffer and Lighthart, 1997) and this may also be true for *Archaea*. While the number of investigated samples and DNA amplification products used in this study certainly underestimates the actual diversity of *Archaea* in air, Fröhlich-Nowoisky and colleagues (2009) detected 368 fungal species in a slightly smaller but otherwise identical data set. Together with the low abundance observed for airborne *Archaea* (see Supplement) this again suggests that *Archaea*, when originating from soil, are either attached to larger soil particles depositing rapidly from the air, or they may decay and their DNA decomposes in the atmosphere faster than that of *Bacteria* and *Fungi*.
3.2 Seasonal and meteorological derived dynamics of airborne Archaea

Seasonal variation within the species richness of *Thaumarchaeota* shows the highest diversity in the fall/winter period as illustrated in Fig. 3a. The sampling site in Germany is situated in an area with extensive agriculture. After the harvest of particular grains or rapeseed at the end of summer, fields either remain bare over fall and winter or are prepared, e.g., by plowing and tilling of the upper 10–30 cm for seeding. Soil turnover might influence the number of *Thaumarchaeota* available for aerosolization, as the surface soil is enriched with *Thaumarchaeota* while their frequency decreases with depth (Jia and Conrad, 2009; Leininger et al., 2006).

As meteorological conditions are also known to influence airborne communities, we compared the statistical variance of archaeal diversity in relation to average wind speed, temperature, relative humidity and the sum of precipitation, since temperature and relative humidity have already been found to correlate with airborne fungal composition (Fröhlich-Nowoisky et al., 2009). We found that on a short term sample to sample basis the relative species diversity of *Archaea* correlates significantly with wind speed (negative correlation, p value = 0.01, Table S6, Fig. S2a). On a long-term monthly basis multiple linear correlation analysis revealed that the normalized species richness (S_n; Fig. 4a) negatively correlated with both temperature and wind speed, while the relative species richness ($S_{R,k}$ Fig. 4b) showed a significant positive correlation with relative humidity and wind speed, albeit with wind speed playing a secondary role in both cases (p value (S_n) = 0.02 and ($S_{R,k}$) = 0.01). These findings coincide with our results that *Archaea* diversity is highest in the fall/winter period, as in the sampling regions temperature decreases during that time. In fall and winter also relative humidity increases. At this point, however, it cannot be answered whether the meteorological factors are causing the diversity change, or whether the correlations are merely coincidental with the diversity and meteorology following similar annual cycle and other factors, e.g., increased aerosolization sources cause the phenomenon. Although, as illustrated in e.g. Fig. 4a between December 2006 and March 2007 the successive
steep rise and fall of S_n is predicted rather accurately by the linear model, indicating that the correlation might not be coincidental.

Although S_n stayed constant for *Euryarchaeota* throughout the year, the relative frequency of occurrence (RFO), that is, the proportion of samples in which these species were detected, exhibited variations (Fig. 3b). In spring *Euryarchaeota* were present in almost 50% of the air samples, while in the rest of the year they were found only in 20–30%. A constant source of *Euryarchaeota* could be the nearby river Rhine, as *Methanomicrobiales* and *Thermoplasmatales* can be found in freshwater (Auguet et al., 2010; Cao et al., 2013; Galand et al., 2006) and might thus be aerosolized. The increase of the RFO in spring may be linked to anthropogenic activities like fertilization of the soil. Although methanogens have been shown to be present in low numbers in aerated soils (Angel et al., 2012), the increase in spring might be due to fields being fertilized with manure and thus their methanogen composition may be affected (Gattinger et al., 2007; Nicol et al., 2003; Radl et al., 2007). All of the methanogens detected here are known to be common in livestock manure (St-Pierre and Wright, 2013).

3.3 Ammonia-oxidizing-*Archaea* in air

Within the air samples analyzed over a whole year, a total of five OTUs were discovered among the *amoA* gene sequences. As visualized in Fig. 5, two OTUs were present throughout the year, while the others occurred only sporadically. Comparing the two most common OTUs, *AmoA2* showed a high relative frequency of occurrence, while the other was always below 60%. Within our air filter samples we found that the 16S rRNA gene OTU *Arch1* and *amoA* OTU *AmoA2* occur on 94% of the filter samples together, while no other OTUs showed such a high co-occurrence. This co-occurrence suggests that both genes may actually have been amplified from the same microorganisms. This observation confirms that the *Nitrosophaera amoA* cluster may be equivalent to the 16S rRNA cluster I.1b as already indicated by other evidence (Bartossek et al., 2012; Pester et al., 2012).
The composition of amoA OTUs in the sampled air seems to be a combination of OTUs that are present throughout the year and others that occur only sporadically. Operational taxonomic units that occur over the entire season might originate from a constant source like the Rhine river or sparsely vegetated soil, as it has been shown that AOA are present in rivers, freshwater environments, and soils (Cao et al., 2013; Liu et al., 2011; Pouliot et al., 2009). In contrast OTUs that occur only sporadically might originate from unique sources like localized spreading of compost.

The presence of different amoA OTUs in air could indicate that air might serve as a medium to distribute AOA globally. In this case, fertilization, which is known to decrease AOA frequency and diversity in comparison to AOB (He et al., 2012; Xu et al., 2012), might also decrease to some extent the spreading of AOA.

3.4 Comparison between locations

Initial analyses suggest that the composition of airborne microorganisms shows biogeographic patterns especially between continental, coastal, and marine sites, though only a few studies have considered, or attempted to study this phenomenon (Fröhlich-Nowoisky et al., 2012; Womack et al., 2010). The comparison between sampling sites can in general be challenging when different sampling and analysis procedures are used. However, in this study the sampling and analysis methods were almost identical and thus can be compared (see Sect. 2.1). Although in a comparison between sites the local geographic and meteorological conditions need to be considered, the continental boundary layer air up to 1000 m is fairly well mixed and all sorts of atmospheric measurements are being compared. We thus compared Archaea diversity detected in the continental air of Mainz with the Archaea diversity we discovered in an additional subset of 26 air filter samples from coastal air in Cape Verde, which were collected in winter 2011. The approximately 6 m difference in sampling height is negligible. The air of Cape Verde represents typical coastal air and is influenced by a combination of marine and continental air masses. The 72 sequences detected in Cape Verde air were separated
into 25 different OTUs. Both \textit{Euryarchaeota} as well as \textit{Thaumarchaeota} were present (Fig. 1b, Table S5).

While in Mainz 86\% of the OTUs were \textit{Thaumarchaeota}, in Cape Verde only 60\% could be affiliated with this archaeal group. Out of the \textit{Thaumarchaeota} OTUs detected in Cape Verde, 73\% were identical to OTUs detected in Mainz and more than 50\% were discovered in several air samples. This might imply that the airborne \textit{Thaumarchaeota} of Cape Verde disperse on a larger scale. On the other hand, the few OTUs abundant in Germany were discovered only at the Mainz site. This might indicate that OTUs that are abundant and present throughout the year at this site are dispersed locally and do not originate from far away.

\textit{Euryarchaeota} in Cape Verde were not very diverse and only contained \textit{Halobacteriales} and \textit{Thermoplasmatales} (Fig. 1b). In Germany, in addition to one OTU of \textit{Halobacteriales}, different methanogens were found. The lack of methanogens in Cape Verde and the dominance of a limited set of \textit{Euryarchaeota} may be due to the relatively stronger influence of the marine environment compared to terrestrial ecosystems impacted by small-scale agriculture. Interestingly, we did not find \textit{Euryarchaeota} from the marine Group II which are typical for ocean surface layers (Galand et al., 2009; Hugoni et al., 2013; Massana et al., 1997). Although the results for Cape Verde are based on a preliminary data set only, our results might point to general differences in the composition of airborne \textit{Archaea} in continental vs. coastal air.

To follow up on the hypothesis that the composition of airborne \textit{Archaea} depends on the type of ecosystem found beneath the air masses, samples from other continental and coastal sites were investigated. We successfully amplified \textit{Archaea} from one of twenty random filter samples taken in Colorado (Huffman et al., 2013). The 20 sequences obtained from this filter all fell into one OTU which was identical to the 16S rRNA gene OTU \textit{Arch31}, a \textit{Thaumarchaota}, also found in Mainz. In China and the UK we tried to amplify \textit{Archaea} 16S rRNA gene sequences from 14 and 12 filter samples, respectively, taken from coastal sites with influences from marine and continental air. We could only successfully amplify \textit{Archaea} 16S rRNA gene sequences from one filter
sample at each site. All seven sequences from the Chinese site belonged to one OTU, which was identical to *Arch16*, a methanogen, observed in Mainz air. In the UK sample set, we amplified 11 sequences from a filter on which primarily air masses from the North Sea were sampled (Gysel et al., 2007). These sequences grouped into 4 OTUs, all of which belonged to the order *Thermoplasmatales* (*Euryarchaeota*). These results support the observations from Cape Verde that in coastal samples the diversity of *Euryarchaeota* might be higher and the composition of them different compared to continental samples.

We also compared our results with the scarce literature available for airborne Archaea (Table 2). Continental airborne Archaea from Salt Lake City (Radosevich et al., 2002) belonged to *Thaumarchaeota* supporting the hypothesis that *Thaumarchaeota* prevail in continental air. Using microarray techniques targeting 16S rRNA genes, Brodie et al. (2007) counted, in two cities in Texas, 30% *Crenarchaeota* (now *Thaumarchaeota*) and 70% *Euryarchaeota*. However, the influence of marine air from the nearby Gulf of Mexico cannot be judged. To our knowledge there are no sequences of airborne Archaea from coastal sites available in the literature. However, Cho and colleagues (2011) found one single Archaea OTU in marine air from the East Sea (Korea), which was identified as belonging to the *Halobacteriales* (*Euryarchaeota*). Smith and colleagues (2013) using microarrays found that within the very few Archaea detected in air influenced by marine air masses 82% of the OTUs belonged to the *Euryarchaeota*. As the number of available sequences and literature is limited, more analyses need to be done to confirm or reject the hypothesis about biogeography in airborne Archaea.

4 Conclusions

With this study we gained first insights into the seasonal behavior of airborne Archaea diversity, composition, and abundance in a continental, agriculture-dominated sampling site. The measured abundance of airborne Archaea (one to ten 16S rRNA gene copies per m³ air) was much lower than the abundance of airborne Bacteria (10⁴ – 10⁶ gene copies per m³ air).
copies per m3 air) and the ratio of *Archaea* to *Bacteria* was orders of magnitudes lower than in soil and marine environments. We show that the diversity of common soil *Thaumarchaota* (l.1b), which are present throughout the year, correlates positively with relative humidity and negatively with temperature. This, together with the increased number of bare agricultural fields after harvest being available for aerosolization processes, may lead to the observed diversity peaks in fall and winter. In general, the diversity of the *amoA* gene was much lower than in the 16S rRNA gene. The OTU *AmoA1* correlates with *Arch1*, the most abundant OTU from the 16S region. This could point to associations of an *amoA* OTU with an *archaeal* 16S rRNA gene OTU. The few methanogenic *Euryarchaeota* found show no seasonal trends in diversity but a slightly increased relative frequency of occurrence in spring, when fields are fertilized with manure. The comparison of this continental site with airborne *Archaea* at a coastal site in Cape Verde indicates differences in community composition and that the diversity of *Euryarchaeota* might increase in coastal air. These results were supported by data from additional sampling sites in the United Kingdom, China, and North America, and also concurred with the very limited information available in the literature.

We conclude that air as a transport medium might play an important role in habitat and niche formation for *Archaea*. Thus, the analysis of *Archaea* diversity, abundance, and composition in air is important in order to better understand their behavior and evolutionary history in their primary ecosystems.

Supplementary material related to this article is available online at http://www.biogeosciences-discuss.net/11/6945/2014/bgd-11-6945-2014-supplement.pdf.

Acknowledgements. We thank T. Andreae, R. Burgess, R. Garland, M. Grant, A. Huffman, M. Klose, C. Pöhler, D. Rose, B. Schmer, B. Schmitt, and H. Yang for technical assistance, H. Paulsen and Z. Jia for helpful discussions. This work was funded by the Max Planck Society, the German Research Foundation (DE1161/2-1, PO1013/5-1, FOR 1525 INUIT),
the LEC Geocycles in Mainz funded by the state Rheinland-Pfalz, and the Portuguese Science Foundation through the project PTDD/AAC-CLI/100331/2008 (CV-Dust). J. Cardoso acknowledges the PhD grant SFRH-BD-6105-2009 from FCT. P. E. Galand is supported by the Agence Nationale de la Recherche (ANR) project MICADO (ANR-11JSSV7-003-01).

The service charges for this open access publication have been covered by the Max Planck Society.

References

Diversity and seasonal dynamics of airborne Archaea

J. Fröhlich-Nowoisky et al.

6973

Table 1. Overview and diversity parameters of aerosol filter samples and detected Archaea. Sampling details of continental and coastal sites are given: number of air samples, aerosol size range (total suspended particle (TSP); particulate matter (PM)), and obtained number of DNA sequences as well as the statistical parameters: species richness (S measured, S^* estimated), Shannon index (H'), Shannon Evenness (E), and Simpson's index (D), not available (n.a., see also Table S3).

<table>
<thead>
<tr>
<th>Sampling region</th>
<th>Continental</th>
<th>Coastal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Germany</td>
<td>North America</td>
</tr>
<tr>
<td>Elevation</td>
<td>130 m</td>
<td>2370 m</td>
</tr>
<tr>
<td>Above ground</td>
<td>20 m</td>
<td>1 m</td>
</tr>
<tr>
<td>Latitude</td>
<td>49°59'31.36" N</td>
<td>39°6'0" N</td>
</tr>
<tr>
<td>Longitude</td>
<td>8°14'15.22" E</td>
<td>105°5'30" W</td>
</tr>
<tr>
<td>Samples</td>
<td>47, 47</td>
<td>20</td>
</tr>
<tr>
<td>Size range</td>
<td>< 3 µm, > 3 µm</td>
<td>TSP</td>
</tr>
<tr>
<td>Sequences</td>
<td>435</td>
<td>20</td>
</tr>
<tr>
<td>S</td>
<td>57</td>
<td>1</td>
</tr>
<tr>
<td>S^*</td>
<td>137</td>
<td>n.a.</td>
</tr>
<tr>
<td>H'</td>
<td>3.32</td>
<td>n.a.</td>
</tr>
<tr>
<td>E</td>
<td>0.82</td>
<td>n.a.</td>
</tr>
<tr>
<td>D</td>
<td>0.05</td>
<td>n.a.</td>
</tr>
</tbody>
</table>
Table 2. Summary of published airborne *Archaea* sequence information. Sampling location, the most likely source of the air masses, the number of reported OTUs, as well as the information as to which archaeal phyla they were attributed to and the performed sequencing technique.

<table>
<thead>
<tr>
<th>Location</th>
<th>Air mass</th>
<th>OTUs</th>
<th>Euryarchaeota (%)</th>
<th>Thaumarchaeota (%)</th>
<th>Other (%)</th>
<th>Technique</th>
<th>Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America (Salt Lake City, Utah)</td>
<td>Continental</td>
<td>3</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>Sanger sequencing</td>
<td>Radosevich et al. (2002)</td>
</tr>
<tr>
<td>Middle America (St Antonio & Austin, Texas)</td>
<td>Continental/urban</td>
<td>307</td>
<td>70</td>
<td>15</td>
<td>15</td>
<td>Microarray</td>
<td>Brodie et al. (2007)</td>
</tr>
<tr>
<td>Asia (East Korea)</td>
<td>Coastal</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>Sanger sequencing</td>
<td>Cho and Hwang (2011)</td>
</tr>
<tr>
<td>North America (Mt Bachelor)</td>
<td>Transpacific plume</td>
<td>11</td>
<td>82</td>
<td>0</td>
<td>18</td>
<td>Microarray</td>
<td>Smith et al. (2013)</td>
</tr>
<tr>
<td>Asia (Beijing)</td>
<td>Maritime Influence</td>
<td>0.8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>HiSeq Illumina</td>
<td>Cao et al. (2014)</td>
</tr>
<tr>
<td>Europe (Mainz, Germany)</td>
<td>Continental</td>
<td>58</td>
<td>14</td>
<td>86</td>
<td>0</td>
<td>Sanger sequencing</td>
<td>This study</td>
</tr>
<tr>
<td>North America (Colorado)</td>
<td>Continental</td>
<td>1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>Sanger sequencing</td>
<td></td>
</tr>
<tr>
<td>Africa (Cape Verde)</td>
<td>Coastal</td>
<td>25</td>
<td>40</td>
<td>60</td>
<td>0</td>
<td>Sanger sequencing</td>
<td></td>
</tr>
<tr>
<td>Europe (UK)</td>
<td>Coastal</td>
<td>4</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>Sanger sequencing</td>
<td></td>
</tr>
<tr>
<td>Asia (China)</td>
<td>Coastal</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>Sanger sequencing</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1. Species richness of airborne *Archaea*. Relative proportions of different phyla (*Thaumarchaeota* and *Euryarchaeota*) and, within the *Euryarchaeota*, of different orders for continental air, Mainz (a) and coastal air, Cape Verde (b), respectively.
Fig. 2. Phylogeny of *Euryarchaeota* and ammonia-oxidizing *Thaumarchaeota*. Schematic illustration of a collapsed Maximum Likelihood tree based on the OTU sequences found in Mainz, Germany, in the 16S rRNA gene (left) and archaeal amoA gene (right) as well as basic tree sequences (Table S2). Black dots represent bootstrap values > 80%. Red stars indicate where OTUs from airborne *Archaea* (Mainz, Germany) fall. The amoA cluster names are given according to Pester et al. (2012), the figure has been laid out as in Pester et al. (2011).
Fig. 3. Overview of the species richness in Mainz. Seasonal variations of the species richness of *Euryarchaeota* and *Thaumarchaeota* in total suspended particles (TSP) normalized by the number of investigated air samples (a) and in the relative frequency of occurrence (RFO) of the phyla *Euryarchaeota* and *Thaumarchaeota* in Mainz, Germany (b).
Fig. 4. Time series depicting the most significant results from a multiple linear regression analysis between the two diversity parameters, normalized species richness per month \((S_n) \) and relative species diversity per month \((S_{R,k}) \) and meteorological factors. The observed \(S_n \) and \(S_{R,k} \) curves (blue) were calculated with the equations given in Table S3. The modeled \(S_n \) and \(S_{R,k} \) curves (red) were calculated using the monthly averages of the corresponding meteorological factors in the equations depicted in the plots.

(a): Time series of \(S_n \). Best variable subset being \(T \) and WS (\(p \) value = 0.011) with error bars being \(\text{SE}_n(S_n) \).

(b): Time series of \(S_{R,k} \). Best variable subset: RH and WS (\(p \) value = 0.022) with error bars being \(\text{SE}_n(S_{R,k}) \). RH average relative humidity [%]; WS: average wind speed [m s\(^{-1}\)]; \(T \): average temperature [°C].
Fig. 5. Seasonal variations in the relative frequency of occurrence (RFO) of the individual amoA OTUs detected in Mainz, Germany.