Nitrate limitation and ocean acidification interact with UV-B to reduce photosynthetic performance in the diatom *Phaeodactylum tricornutum*

W. Li, K. Gao, and J. Beardall

1 State Key Laboratory of Marine Environmental Science, Xiamen University (Xiang-An campus), Xiamen, Fujian, 361102, China
2 College of Life and Environmental Sciences, Huangshan University, 245041, Huangshan, China
3 School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia

Received: 8 November 2014 – Accepted: 13 November 2014 – Published: 18 December 2014

Correspondence to: K. Gao (ksgao@xmu.edu.cn)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

It has been proposed that ocean acidification (OA) will interact with other environmental factors to influence the overall impact of global change on biological systems. Accordingly we investigated the influence of nitrogen limitation and OA on the physiology of diatoms by growing the diatom *Phaeodactylum tricornutum* Bohlin under elevated (1000 µatm, HC) or ambient (390 µatm, LC) levels of CO$_2$ with replete (110 µmol L$^{-1}$, HN) or reduced (10 µmol L$^{-1}$, LN) levels of NO$_3^-$ and subjecting the cells to solar radiation with or without UV irradiance to determine their susceptibility to UV radiation (280–400 nm). Our results indicate that OA and UVB induced significantly higher inhibition of both the photosynthetic rate and quantum yield under LN than under HN conditions. UVA or/and UVB increased the cells’ non-photochemical quenching (NPQ) regardless of the CO$_2$ levels. Under LN and OA conditions, activity of superoxide dismutase and catalase activities were enhanced, along with the highest sensitivity to UVB and the lowest ratio of repair to damage of PSII. HC-grown cells showed a faster recovery rate of yield under HN but not under LN conditions. The finding that nitrate limitation and ocean acidification interact with UV-B to reduce photosynthetic performance of the diatom *P. tricornutum* implies that ocean primary production and the marine biological C pump will be affected by the OA under multiple stressors.

1 Introduction

Increasing atmospheric levels of CO$_2$ and the associated dissolution of CO$_2$ into the oceans has resulted in ocean acidification (OA), with increased levels of pCO$_2$, HCO$_3^-$ and H$^+$ and decreased CO$_3^{2-}$ concentration. The acidity of surface oceans has increased by 30% (lowered pH by 0.1 unit) since the Industrial Revolution and is expected to increase by 100–150% (0.3–0.4 pH units) by the year 2100 (Orr et al., 2005). At the same time, increased sea surface temperatures are predicted to cause a shoaling of the surface mixed layer, which in turn will lead to enhanced exposure to...
sunlight (both as photosynthetically active radiation (PAR) and as UV radiation). This enhanced stratification will also decrease upward transport of nutrients from deeper, nutrient rich layers, leading to more frequent/marked nutrient limitation (Cermeño et al., 2008). Global change is thus likely to cause changes in a multiplicity of factors that influence phytoplankton growth and it is thus critical to examine OA in the context of interactive effects with these other environmental drivers (Boyd, 2011).

Increased availability of CO$_2$ in seawater appears in some cases to bring a low level of benefit to growth and photosynthesis of natural phytoplankton populations (Riebesell and Tortell, 2011 and references therein), though in most cases laboratory experiments have shown little effect of OA alone (Doney et al., 2009). However, the effects can differ according to changes in solar radiation and/or other physical or chemical factors (Gao et al., 2012a). Increased acidity of seawater may lead to physiological stress (Pörtner and Farrell, 2008) and affect phytoplankton nutrient uptake (Beman et al., 2011; Shi et al., 2012). Therefore, OA could most likely result in differential effects on different photosynthetic organisms or under different environmental conditions (Gao, 2011).

Diatoms account for about 20% of the total global primary production and about 40% of that in the oceans (Granum et al., 2005). Early reports suggested that growth of diatom species could be limited by the availability of CO$_2$ (Riebesell et al., 1993). However, the growth rate of diatom-dominated natural phytoplankton populations was not affected by CO$_2$ enrichment to 800 µatm (Tortell, 2000), and not all diatom species were sensitive to seawater pH$_{CO_2}$ rise under nutrient-replete conditions in a mesocosm study (Kim et al., 2006). In laboratory experiments, growth of Skeletonema costatum was not stimulated by elevated CO$_2$ (800 µatm) (Chen and Gao, 2011). Phaeodactylum tricornutum grown under nitrate-limited conditions also showed no enhancement of growth under high CO$_2$ (Li et al., 2012a). Nevertheless, in other work, the diatoms Phaeodactylum tricornutum (Wu et al., 2010) and Attheya sp. (King et al., 2011) showed enhanced growth rate in nutrient replete conditions under elevated CO$_2$ levels. These variable findings reflect physiologically differential responses among different species or under different experimental or environmental conditions. Changes
in light intensity can lead to enhanced, unaffected or inhibited growth rates under OA conditions, even for the same diatom species (Gao et al., 2012b). Therefore, the effects of OA should be considered in the context of the influence of multiple factors, such as temperature, nutrient status, light and UV radiation (Boyd, 2011; IPCC, 2011; Gao et al., 2012a).

Solar UVB radiation (280–315 nm), which is increasing due to interactions of global change and ozone depletion (Häder et al., 2011), is known to damage DNA (Buma et al., 2003; Gao et al., 2008), lower photosynthetic rates (Hellblng et al., 2003), perturb the uptake of nutrients (Hessen et al., 2008) and alter morphological development (Wu et al., 2005) of phytoplankton. In contrast, under moderate levels of solar radiation, solar UVA radiation (315–400 nm) is known to stimulate photosynthesis (Gao et al., 2007), signaling (Cashmore, 1998) and photo-repair of UVB-induced damage (Buma et al., 2003) in phytoplankton. Previously, it was shown that UV-induced inhibition of dinoflagellates was lower under nutrient replete conditions but higher under nutrient limitation, due to less efficient repair resulting from lowered nutrient availability (Litchman et al., 2002). Similar enhancement of UVB impacts under nutrient (N, P) limitation were shown for a green microalga, *Dunaliella tertiolecta* (Shelly et al., 2002; Heraud et al., 2005). Recently, OA was found to enhance UVB-induced damage to a red tide alga, *Phaeocystis globosa*, leading to a greater decrease in growth rate and photochemical yield under 1000 µatm CO₂ (Chen and Gao, 2011).

Marine phytoplankton often experience nutrient limitation in offshore waters; with progressive ocean warming, such limitation will be intensified due to decreased depth of the surface mixed layer (enhanced stratification) (Cermeño et al., 2008). Photosynthetic carbon fixation of the coccolithophorid *Emiliania huxleyi* was enhanced under high light and low nitrogen conditions when the seawater CO₂ concentration was raised to 2000 µatm (Leonardos and Geider, 2005). However, increased seawater CO₂ concentration also showed antagonistic effects with iron in modulating (down- or up-regulating) primary production of marine phytoplankton in the Gulf of Alaska (a nutrient replete but low chlorophyll area) (Hopkinson et al., 2010). In the dinoflagellate
Karlodinium veneficum, toxicity was enhanced under high CO$_2$ and low phosphate conditions (Fu et al., 2010). However, to the best of our knowledge, there is little information concerning the combined effects of OA and NO$_3^-$ limitation on diatoms and their susceptibility to damage from solar UV radiation (UVR, 280–400 nm).

Nutrient availability can influence phytoplankton responses to UV and to CO$_2$-induced seawater acidification. Theoretically, increased seawater acidity can perturb intracellular acid-base balance and thus lead to differential interactions between nutrients and solar UV radiation. In this study, we hypothesize that reduced availability of NO$_3^-$ under OA would affect the photosynthetic performance under solar radiation with or without UVR. We used the diatom Phaeodactylum tricornutum, whose genome has been completely sequenced (http://genome.jgi-psf.org/Phatr2/Phatr2.home.html), to test this hypothesis.

2 Materials and methods

2.1 Growth conditions

The diatom Phaeodactylum tricornutum Bohlin (strain CCMA 106), isolated from the South China Sea (SCS) and maintained in the Center for Collections of Marine Bacteria and Phytoplankton (CCMBP) of the State Key Laboratory of Marine Environmental Sciences (Xiamen University), was grown mono-specifically in artificial seawater enriched with Aquil medium (Morel et al., 1979). Cells were cultured in 500 mL vessels containing 250 mL medium under two levels of NO$_3^-$ (110 µmolL$^{-1}$, LN; 10 µmolL$^{-1}$, HN) and aerated with ambient (outdoor) air (LC, 390 µatm) or elevated (1000 µatm, HC) CO$_2$ levels within a plant CO$_2$ chamber (HP1000G-D, Ruihua instrument & equipment Co. Ltd, China). Gas flow rate was 300 mL min$^{-1}$, and the CO$_2$ concentrations varied by less than 3 % of the target value. The low NO$_3^-$ level of 10 µmolL$^{-1}$ was based on its concentration range (ca. 0–20 µmolL$^{-1}$) in the oligotrophic SCS, from where the diatom strain was isolated. Dilutions were made every 24 h, so that the seawater
carbonate system was maintained stable under each CO$_2$ level within the cell density range of 6×10^4 to 3×10^5 cells mL$^{-1}$ (exponential growth phase). The cells were grown at 70 µmol photons m$^{-2}$ s$^{-1}$ (cool white fluorescent tubes) under a 12L:12D photoperiod for at least 10 generations before being used for the solar radiation treatments described below. Three independent cultures were grown at each condition.

2.2 Determination of seawater carbonate system parameters

The pH in the cultures was determined daily during the light period with a pH potentiometric titrator (DL15, Mettler-Toledo, Schwerzenbach, Switzerland), which was calibrated with NBS (National Bureau of Standards) buffer solutions (Hanna). DIC (dissolved inorganic carbon) was estimated with an automatic system (AS-C3, Apollo Scitech) linked to an infrared gas detector (Li-Cor 7000, Li-Cor). DIC, pH, nutrient concentrations (phosphate, 10 µmol L$^{-1}$; silicate, 100 µmol L$^{-1}$), salinity (35) and temperature (20°C) were used to calculate the parameters of the seawater carbonate system (HCO$_3^-$, CO$_3^{2-}$, CO$_2$ and TA) using the CO$_2$ system analyzing software CO$_2$SYS (Lewis and Wallace, 1998) as described previously (Li et al., 2012a). The carbonic acid dissociation constants (K_1 and K_2) used were those of Roy et al. (1993), and that for boric acid (K_B) was from Dickson (1990).

2.3 Radiation treatments

To determine the effects of growth conditions on the sensitivity of carbon fixation and chlorophyll fluorescence to short-term exposure to UV radiation, *P. tricornutum* cells, grown under LC-LN (low CO$_2$ + low nitrate), HC-LN (high CO$_2$ + low nitrate), LC-HN (low CO$_2$ + high nitrate) and HC-HN (high CO$_2$ + high nitrate) conditions, were exposed for 1 h to different radiation treatments with or without UV radiation, as follows: (1) PAB treatment, tubes wrapped with Ultraphan Film 295 (Digefra, Munich, Germany), so that the cells received wavelengths above 295 nm (PAR + UVA + UVB); (2) PA treatment, tubes wrapped with Folex 320 (Montagefolie, Folex, Dreieich, Germany),
receiving wavelengths above 320 nm (PAR + UVA); (3) \(P \) treatment, tubes wrapped with Ultraphan film 395 (UV Opak, Digefra), being exposed to PAR alone. The transmission spectra of the cut-off filters are available elsewhere (Zheng and Gao, 2009). Samples were placed at a distance of 1.2 m from a solar simulator (Sol 1200W, Dr. Hönle, Martinsried, Germany), so that the actual PAR light intensities to which the cells were exposed within the tubes (calculated taking into account the transmission properties of the quartz tubes and the filters) was 44.11 W m\(^{-2}\) (ca. 190.11 \(\mu \)mol photons m\(^{-2}\) s\(^{-1}\)) (close to the daytime mean photon flux in the middle of the photic zone). The corresponding UVA and UVB irradiances were 14.19 W m\(^{-2}\) (ca. 41.99 \(\mu \)mol photons m\(^{-2}\) s\(^{-1}\)) and 0.75 W m\(^{-2}\) (ca. 1.89 \(\mu \)mol photons m\(^{-2}\) s\(^{-1}\)). Irradiances were measured with a broad-band filter radiometer (ELDONET, Real Time Computer, Möhrendorf, Germany). After the radiation treatments, the cells were replaced under their growth light level (70 \(\mu \)mol photons m\(^{-2}\) s\(^{-1}\)) to examine the recovery of photosynthetic performance. During the incubations, the tubes were maintained in a water bath at 20 °C using a circulating cooler (Eyela, CAP-3000, Tokyorikakikai Co. Ltd., Tokyo, Japan).

2.4 Measurement of carbon fixation

The \(^{14}C\) method was applied to measurements of marine photosynthetic carbon fixation (Nielsen, 1952), and has been detailed with modified protocols in many publications (Holm-Hansen and Helbling, 1995; Gao et al., 2007). Cells were harvested in the middle of the light phase, diluted with freshly made medium equilibrated with the designated concentrations of CO\(_2\) to a cell concentration of 2–3 \(\times \) 10\(^4\) cells mL\(^{-1}\) and transferred to 35 mL quartz tubes. Each tube was injected with 100 \(\mu \)L–5 \(\mu \)Ci (0.185 MBq) NaH\(^{14}\)CO\(_3\) solution (ICN Radiochemicals). Triplicate incubations were carried out for each treatment as mentioned above and, additionally, 3 tubes were wrapped in aluminum foil and incubated as a dark control. The cells were collected on Whatman GF/F glass filters either immediately after 1 h exposure to the solar simulator or after a period of recovery under their growth light for another hr. The filters were
put into 20 mL scintillation vials, fumed with HCl for 12 h and then dried for 6 h at 45 °C to expel the non-fixed inorganic carbon as CO₂. Scintillation cocktail (3 mL of Tri-Carb 2800TR, Perkin Elmer®) was added to the vials, and radioactivity in the vials counted with a liquid scintillation counter (LS 6500, Beckman Coulter, USA). Carbon fixation rates were calculated from these counts and are presented on a per cell basis or per chl a.

2.5 Measurement of chlorophyll fluorescence

For chlorophyll fluorescence measurements, cell collection and radiation treatments were carried out as described above. The effective quantum yield (yield) was measured every 20 min either during the solar simulator exposure or during recovery under the growth light level.

The effective quantum yield (yield) and non-photochemical quenching (NPQ) parameters were calculated according to Genty et al. (1990) as

\[
\text{yield} = \frac{F'_m - F_t}{F'_m} \quad \text{and} \quad \text{NPQ} = \frac{F_m - F'_m}{F'_m},
\]

respectively, where \(F_m \) is the maximum fluorescence yield after 15 min dark adaptation, \(F'_m \) is the light-adapted maximal chlorophyll fluorescence yield measured during the exposures, and \(F_t \) is the steady fluorescence level during the exposures. The actinic light was set at the growth light level, and the saturating pulse (5000 µmol photons m⁻² s⁻¹) lasted for 0.8 s.

Repair \((r)\) and damage \((k)\) rates during the 60 min exposure period in the presence of UV were calculated using the Kok model (Heraud and Beardall, 2000): \(P/P_{\text{initial}} = \frac{r}{(k + r)} + \frac{k}{(k + r)} e^{-(k+r)t} \), where \(P_{\text{initial}} \) and \(P \) were the yield values at beginning and at exposure time \(t \).

During the recovery period, the exponential rate constant for recovery \((R)\) was calculated from the following equation: \(y = y_0 + b \times [1 - \exp(-R \cdot t)] \), where \(y \) represents the yield value at time \(t \), \(y_0 \) is the starting value before recovery and \(b \) is a constant.
The relative inhibitions of carbon fixation or yield caused by UVA or UVB were calculated as follows:

\[\text{Inh}_{\text{UVR}} = \left(\frac{P_{\text{PAR}} - P_{\text{PAB}}}{P_{\text{PAR}}} \right) \times 100\% ; \]
\[\text{Inh}_{\text{UVA}} = \left(\frac{P_{\text{PAR}} - P_{\text{PA}}}{P_{\text{PAR}}} \right) \times 100\% ; \]
\[\text{Inh}_{\text{UVB}} = \text{Inh}_{\text{UVR}} - \text{Inh}_{\text{UVA}} ; \]

where \(P_{\text{PAR}} \), \(P_{\text{PA}} \) and \(P_{\text{PAB}} \) represent carbon fixation or yield values under PAR, PAR + UVA, PAR + UVA + UVB treatments, respectively.

2.6 Chlorophyll \(\alpha \) measurements and cells counts

The cells were counted using a Z2™ Coulter Counter (Beckman, USA). Where needed, we used the values for chlorophyll \(\alpha \) contents of the cells grown under the same \(\text{CO}_2 \) and nitrate levels reported previously (Li et al., 2012a).

2.7 Total protein content, superoxide dismutase (SOD) and catalase (CAT) measurements

To determine the total protein content and activities of SOD and CAT, cells were collected, in the middle of the light phase, onto a polycarbonate membrane (0.22 µm, Whatman) under vacuum at a pressure of less than 0.1 Pa and washed into a 1 mL centrifuge tube with phosphate buffer (pH 7.6). The enzyme extractions were carried out in 0.6 mL phosphate buffer (pH 7.6) that contained 50 mM \text{KH}_2\text{PO}_4, 1 mM Ethylene Diamine Tetraacetic Acid (EDTA), 0.1 % Triton X-100 and 1 % (w/v) polyvinyl polypyrrolidone. The cells were broken by sonication in an ice-water bath (4 °C), and the homogenized extract was centrifuged at 12 000 g (4 °C) for 10 min before the activities of SOD and CAT were tested with SOD and CAT Assay Kits (Nanjing Jiancheng Biological Engineering Company, China). One unit of SOD was defined as the amount causing a 50 % inhibition of nitroblue tetrazolium (NBT) reduction (Wang and Wang,
2010). One unit of CAT activity was defined as the amount required to decompose 1 µmol H$_2$O$_2$ s$^{-1}$. The SOD and CAT activities were expressed as U mg$^{-1}$ protein and per 106 cells (Fig. S1 in the Supplement). The total protein content was determined according to Bradford (1976) using bovine serum albumin as the standard.

2.8 Statistical analyses and calculations

One-way analysis of variance (ANOVA) was used, followed by a multiple comparison using a Tukey-test to establish differences among the treatments. Interactive effects among CO$_2$, NO$_3^-$ and UV radiation on carbon fixation and yield were determined using a two- or three-way ANOVA to establish significant differences among the variables.

3 Results

3.1 Carbon fixation

Carbon fixation was significantly inhibited by UV radiation in both HN and LN-grown cells either based on per cell or chl a (Fig. 1). Under the HN conditions, the carbon fixation rates of LC and HC cultures, compared to that of PAR alone treatment, were inhibited by 29.4 % ($P = 0.0002$) and 36.7 % ($P < 0.0001$) in the presence of UVA (PA treatment: PAR + UVA), and by 47.7 % ($P < 0.0001$) and 46.1 % ($P = 0.0029$) with both UVA and UVB (PAB, PAR + UVA + B) (Fig. 1a and c). However, the carbon fixation per cell in the LC grown cells was 10.0 % ($P = 0.0058$) higher in those exposed to PA, and that based on chl a was higher under the PAR alone or PA treatments, by about 8.4 % ($P = 0.0253$) and 17.9 % ($P = 0.005$) compared to that of the HC-grown cells. For PAB treatments, there were no significant differences between the HC and LC-grown cells (Fig. 1a and c).

Under LN conditions, carbon fixation rates of LC and HC grown cells were decreased by 14.7 % ($P = 0.0039$) and 1.1 % ($P = 0.8658$) in the presence of UVA (PA) and by
23.3 % ($P = 0.0019$) and 27.3 % ($P = 0.0123$) with UVA and UVB (PAB) treatments, respectively (Fig. 1b and d), compared with that of PAR alone treatment. That is, both UVA and UVB resulted in significant impacts in the LN-grown cells under LC, but only UVB brought about significant reduction of the rate under HC. In the PA treatment, the HC-LN cells fixed carbon at a rate 21.7 % ($P = 0.0071$) higher than in the LC-LN cells (Fig. 1b), however, there were no significant differences between HC and LC cells in the PAR and the PAB treatments under N-limitation. Under the LN level, the carbon fixation rate per chl a was about 30.8 % ($P = 0.01$), 51.6 % ($P = 0.0013$) and 24.0 % ($P = 0.03$) higher in HC than in LC-grown cells (Fig. 1d).

3.2 Photochemical quantum yield

When exposed to different irradiation treatments, photochemical quantum yields (“yield”) in the cells grown under either HC or LN conditions showed similar patterns with those grown at LC and HN conditions (Fig. 2), decreasing rapidly during the initial 20 min and leveling off after 40 to 60 min. Under HN conditions, the yield in the HC-grown cells decreased to a similar level among the treatments (PAR, $P = 0.1568$; PA, $P = 0.0879$; PAB, $P = 0.1341$) as that in the LC-treatments (Fig. 2a and b). Under the LN condition, the yield decreased to much lower levels compared to those under HN treatments (Fig. 2c and d). Cells exposed to all treatments showed recovery of the yield, under their growth light (70 µmol photons m$^{-2}$ s$^{-1}$), to approximately their initial levels in about 80 min (Fig. 3).

3.3 UVA and UVB induced inhibition of photosynthetic performance

While UVA induced significantly higher ($P = 0.0114$) inhibition of photosynthetic carbon fixation in the HC-HN but lower ($P = 0.0038$) in the HC-LN grown cells (Fig. 3a and b), it did not cause significant changes in the yield between the HC- and LC-grown cells (HN, $P = 0.1375$; LN, $P = 0.0500$) (Fig. 3c). While the contribution of UVB did not induce significant inhibition of either carbon fixation ($P = 0.2308$) or yield ($P = 0.5319$).
in the HN-grown cells, under both the HC and LC conditions (Fig. 3a and c), it caused significantly higher inhibition of the photosynthetic rate (by 203.3 %, \(P = 0.0006 \)) and the yield (by 76.8 %, \(P = 0.0451 \)) in the HC- than the LC-grown cells under \(\text{NO}_3^- \) limited conditions (Fig. 3b and d). Interactive effects among \(\text{CO}_2 \), \(\text{NO}_3^- \) and radiation treatments on yield were significant (Table 1).

3.4 Repair, damage rates and constant for recovery rate

The HC-grown cells had higher rates of damage, \(k \), than the LC-grown cells under nitrogen limitation but not under N replete conditions (HN, \(P = 0.2109 \); LN, \(P = 0.0092 \)). No effect was observed for repair rates \(r \) (HN, \(P = 0.1655 \); LN, \(P = 0.5276 \)). The repair : damage (\(r/k \)) ratios in the HC-grown cells showed a 21.0 % (but statistically insignificant) increase under HN (\(P = 0.3450 \)) but decreased significantly by 31.1 % under LN (\(P = 0.0320 \)) conditions, compared to the LC-grown cells, respectively (Table 2). Under the low PAR, the exponential rate constant for recovery (\(R \)) showed dependency on previous light treatments with lowered rate in the cells exposed to UV radiation, while HC stimulated the rate under the HN but not LN condition (Table 3). Obviously, the cells exposed to the radiation treatments with UVB took longer (\(P < 0.05 \)) to recover their photochemical yield, and pre-exposure to UVA had little (\(P > 0.05 \)) effect on the recovery; HC-HN-grown cells had faster (\(P < 0.05 \)) photochemical recovery (Table 4).

3.5 Non-photochemical quenching (NPQ)

Non-photochemical quenching (NPQ) showed an opposite pattern of change to yield during both the exposure and recovery periods (Fig. 4). Under HN conditions, HC treatments triggered the highest NPQ within 20 min (Fig. 4a), while NPQ reached its maximal values at 40 min under the ambient (LC) \(\text{CO}_2 \) level (Fig. 4b). Similar trends were found in both the LN and HN grown cells regardless of the radiation treatments (Fig. 4). Both UVA and UVB caused additional (\(P < 0.05 \)) rises in NPQ.
in HN-grown cells regardless of the CO₂ levels (Fig. 4a and b). However, neither UVA nor UVB induced significant \((P > 0.05)\) change in NPQ in LN-grown cells, regardless of the CO₂ levels (Fig. 4c and d). Lower NPQ values were found in HN-grown cells compared with LN, under either PAR alone or PAR + UVA treatments. Addition of UVB, however, resulted in an approximately 17.0 % higher, but statistically insignificant (LC, \(P = 0.1150\); HC, \(P = 0.1660\)), increase of NPQ in HN compared to LN-grown cells. Transfer to the growth light level without UV, to allow recovery, led to a rapid decline of NPQ with time. For the cells that were pre-exposed to the PAR + UVA + B treatment, relaxation of NPQ during the recovery period showed no difference \((P > 0.05)\) between HC- and LC-grown cells except that NPQ in the HC-HN grown cells declined faster \((P = 0.0242)\) than in LC-HN cells. Two-way ANOVA showed that both nitrogen levels and radiation treatments individually, and also interactively, affected the NPQ (Table 1).

3.6 Protein content, SOD and CAT activities

Protein contents were enhanced in HN cultures under both LC (3.21 ± 0.98 pg cell⁻¹) and HC (3.38 ± 1.35 pg cell⁻¹) conditions, compared with LN grown cells (LC, 2.58 ± 0.46 pg cell⁻¹; HC, 2.28 ± 0.68 pg cell⁻¹), though statistically there were no significant differences among the treatments \((P = 0.4296)\) (Fig. 5a). There was no significant difference in protein content between LC and HC treatments at a given NO₃⁻ concentration. However, NO₃⁻-limitation enhanced SOD (LC, by 62.5 %, \(P = 0.0004\); HC, by 72.5 %, \(P = 0.0007\)) and CAT (LC, by 67.5 %, \(P = 0.0759\); HC, by 67.1 %, \(P = 0.0747\)) activities in both LC and HC-grown cells, when based on protein content (Fig. 5b and c), though such enhancement was insignificant \((P > 0.1)\) when normalized to per cell (Fig. S1).

4 Discussion

This study shows that nitrate limitation interacts with OA to affect the overall impacts of solar UV radiation on the diatom *P. tricornutum*. OA and UVB caused significantly higher inhibition of the photosynthetic rate and the quantum yield under LN than under HN conditions. Interactive effects of reduced nitrate availability and OA increased protein-based activity of superoxide dismutase (SOD) and catalase (CAT) but decreased the rate of repair of PSII from UV-induced damage. OA appeared to counteract UVB-induced damage under NO$_3^-$ replete conditions, but when combined with decreased availability of nitrate, it increased the diatom’s sensitivity to UV radiation.

Most diatoms have evolved CO$_2$ concentrating mechanisms (CCMs) as a response to low availability of CO$_2$ in the present-day oceans (Raven et al., 2011). Increasing pCO$_2$ may, to some extent, benefit marine phytoplankton due to increased availability of CO$_2$ (Burkhardt et al., 2001; Rost et al., 2003). CCMs are known to be down-regulated under a CO$_2$ level doubling that of the current ambient concentration, saving about 20% of the energy cost for active inorganic carbon acquisition in some diatoms (including *P. tricornutum*) (Hopkinson et al., 2011). Such a down-regulation of CCMs was equally obvious in *P. tricornutum* grown under nitrate-limited or replete conditions (Wu et al., 2010; Li et al., 2012a). However, this down-regulated CCM and its effects may be mediated by many other factors. A recent study found that different acclimation times (short term, 15–16 generations and longer term, 33–57 generations) to increased CO$_2$ and nitrate limitation may have different effects on the DIC and DIN uptake rate in diatom *Thalassiosira pseudonana*, with short-term acclimated cells showing a linear correlation with changes in fCO$_2$ although this was not the case in long-term acclimated cells (Hennon et al., 2014). On the other hand, the down-regulation of CCM operation was recently shown to decrease the growth of 3 diatoms (*Phaeodactylum tricornutum, Thalassiosira pseudonana* and *Skeletonema costatum*) under high levels of sunlight but to enhance it under low light (Gao et al., 2012b). The growth rate
of *P. tricornutum* under high CO$_2$ (1000 µatm) decreased at light levels higher than 180 µmol m$^{-2}$ s$^{-1}$ to be lower than that of the low CO$_2$-grown cells (Gao et al., 2012b). In the present study, under the near-saturation light level (ca. 190 µmol photons m$^{-2}$ s$^{-1}$ of PAR), photosynthetic carbon fixation rate per chl a under the nitrate limited condition was higher in the HC-grown cells. Obviously, the nutrient limitation influenced the effects of OA.

UVR is known to damage photosynthetic pigments and proteins (for example D1 and Rubisco proteins) (Zacher et al., 2007) and therefore would reduce the photosynthetic capacity of algae (Häder et al., 2011). UVA induced significantly higher inhibition of carbon fixation in HC-HN than in LC-HN grown cells, reflecting a synergistic effect of UVA and OA; however, for the same cells, UVB induced no greater inhibition of the photosynthetic carbon fixation in HC compared to LC cells, which is in contrast to the findings reported in another study (Li et al., 2012b). In the LN-grown cells, UVB induced higher inhibition of both carbon fixation and yield, probably due to a decreased repair/damage ratio (Table 2) and reduced both chl a and other light harvesting pigments (Li et al., 2012a), since the (re)synthesis of both proteins and UV-screening compounds depends on nitrogen availability (Beardall et al., 2009, 2014). Such an inhibition by UVB in LN-grown cells was more pronounced under OA conditions (Fig. 3b and d), though UVB appeared to counteract the OA effect under the HN condition. When the cells are exposed to lower external pH, they would need additional energy to cope with the acid-base perturbation (Kanazawa and Kramer, 2002). Nitrogen limitation could decrease the supply of energy, especially in the presence of UVB (Döhler, 1998). Though SOD and CAT normalized per cell showed no change in all treatments (Fig. S1), the fact that nitrogen limitation led to decreased protein contents per cell and with higher activity of SOD and CAT (based on protein content) implies that these enzymes are preferentially retained in the face of decreasing protein per cell and thus reflects an enhanced defense strategy (Fig. 5), so that reactive oxygen species (ROS) that were formed under N-limitation could be scavenged. The differential impacts of UVB on HN and LN-grown cells under the OA treatment could be due to
differences in the repair and damage rates (Table 2) and differential stimulation of periplasmic proteins (Wu and Gao, 2009), which are important transporters of ions and play important roles in maintaining intracellular acid-base stability. On the other hand, \(\text{NO}_3^- \) scarcity usually leads to an impaired PSII reaction center activity due to decreased synthesis of key proteins, therefore, leading to decreased quantum yields of PSII (Geider et al., 1993). In this study, \(P. \text{ tricornutum} \) showed much lower yield (Fig. 2c and d), as well as NPQ, in the nitrogen limited cells (Fig. 4c and d), indicating smaller functional PSII reaction centers and a lower heat dissipating capability, when combined with the OA treatment, consistent with these cells having the highest damage and the lowest repair (Table 2). In the HN-grown cells, better recovery of both photosynthetic carbon fixation (data not shown) and photochemical performance (Tables 3 and 4) under the OA condition could be attributed to faster repair rate of PSII and related metabolic up-regulations.

The results from the present work suggest that nutrient limitation can alter the effects of OA or UV radiation and their interactions. In the oligotrophic oceans, such as the surface mixed layers of the South China Sea (SCS), where averaged total inorganic nitrogen concentrations range from 0–20 µmol, UVB and OA can act synergistically to bring about a higher inhibition of photosynthetic carbon fixation. Higher UVB-induced inhibition of photosynthesis was found in pelagic low-nutrient waters than in coastal waters in the SCS (Li et al., 2011). With enhanced stratification and reduced thickness of the upper mixed layer due to ocean warming, fewer nutrients will be transported from deeper layers to the photic zones, and interactions of enhanced nutrient limitation, OA and increased solar exposures will become the main drivers influencing marine primary production (Gao et al., 2012a). For the diatoms, such as \(P. \text{ tricornutum} \), OA and other ocean changes may result in transitions in their vertical and horizontal distributions and changes in phytoplankton community structure.

The Supplement related to this article is available online at doi:10.5194/bgd-11-17675-2014-supplement.
Author contributions. K. Gao and W. Li conceived and designed the experiments, W. Li performed the experiments. W. Li, K. Gao. and J. Beardall analyzed the data and wrote the paper.

Acknowledgements. This study was supported by National Natural Science Foundation (41120164007, 41430967), by Joint project of NSFC and Shandong province (Grant No. U1406403), Strategic Priority Research Program of CAS (Grant No. XDA11020302), Program for Chang-jiang Scholars and Innovative Research Team (IRT_13R51), SOA (GASI-03-01-02-04) and China-Japan collaboration project from MOST (S2012GR0290). JB’s work on climate change effects on algae has been funded by the Australian Research Council and his visit to Xiamen was supported by “111” project from Ministry of Education. We thank Yahe Li (Xiamen University, China) for her kind assistance during the experiments.

References

Dickson, A. G.: Standard potential of the reaction: AgCl(s) + 1/2H$_2$(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO$_4^-$ in synthetic seawater from 273.15 to 318.15 K, J. Chem. Thermodyn., 22, 113–127, 1990.

Shelly, K., Heraud, P., and Beardall, J.: Nitrogen limitation in *Dunaliella tertiolecta* Butcher (chlorophyceae) leads to increased susceptibility to damage by ultraviolet-B radiation but also increased repair capacity, J. Phycol., 38, 713–720, 2002.

Table 1. Interactive effects among NO$_3^-$ concentrations, CO$_2$ levels and radiation treatments. Two or three way ANOVA analysis of individual and interactive effects among NO$_3^-$ concentrations, CO$_2$ levels and radiation treatments. Stars indicate significance at $P < 0.05$. Where “Ni” indicates nitrate, “OA” CO$_2$ / pH, “Rad-Treat” radiation treatments, “Inh-C” inhibition of carbon fixation and “Inh-yield” inhibition of yield.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ni</th>
<th>OA</th>
<th>Rad-Treat</th>
<th>Ni and OA</th>
<th>Ni and Rad-Treat</th>
<th>OA and Rad-Treat</th>
<th>Ni, OA and Rad-Treat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon fixation</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Inh-C</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>yield</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Inh-yield</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>NPQ</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. The PSII damage (k) and repair (r) rate constants (min$^{-1}$) in *Phaeodactylum tricornutum* cells grown in LC-HN, LC-LN, HC-HN and HC-LN during the 60 min exposures to PAR + UVA + UVB (44.11 + 14.19 + 0.75 W m$^{-2}$). Parameters of repair and damage rates were calculated based on Fig. 2 according to Heraud and Beardall (2000). SD was for triplicate cultures. Different letters of superscripts indicated significant differences among different treatments at $P < 0.05$ level.

<table>
<thead>
<tr>
<th></th>
<th>R^2 for fit</th>
<th>Repair rate (r)</th>
<th>Damage rate (k)</th>
<th>r/k</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC-HN</td>
<td>> 0.99</td>
<td>0.044 ± 0.007^a</td>
<td>0.068 ± 0.007^a</td>
<td>0.666 ± 0.216^{ab}</td>
</tr>
<tr>
<td>HC-HN</td>
<td>> 0.99</td>
<td>0.064 ± 0.019^{ab}</td>
<td>0.079 ± 0.010^{ab}</td>
<td>0.806 ± 0.145^{ab}</td>
</tr>
<tr>
<td>LC-LN</td>
<td>> 0.99</td>
<td>0.054 ± 0.012^{ab}</td>
<td>0.062 ± 0.008^a</td>
<td>0.854 ± 0.138^a</td>
</tr>
<tr>
<td>HC-LN</td>
<td>> 0.99</td>
<td>0.059 ± 0.005^b</td>
<td>0.095 ± 0.010^b</td>
<td>0.588 ± 0.073^b</td>
</tr>
</tbody>
</table>
Table 3. The exponential rate constant for recovery (R, min$^{-1}$) under growth light after 80 min exposure to solar radiation with or without UV. Different letters of superscripts indicate significant differences between the CO$_2$ and NO$_3^-$ treatments at $P < 0.05$ level.

<table>
<thead>
<tr>
<th></th>
<th>LC-HN</th>
<th>LC-LN</th>
<th>HC-HN</th>
<th>HC-LN</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0.038 ± 0.006ab</td>
<td>0.029 ± 0.011b</td>
<td>0.043 ± 0.009a</td>
<td>0.038 ± 0.002ab</td>
</tr>
<tr>
<td>PA</td>
<td>0.028 ± 0.002a</td>
<td>0.023 ± 0.007a</td>
<td>0.037 ± 0.002b</td>
<td>0.027 ± 0.008ab</td>
</tr>
<tr>
<td>PAB</td>
<td>0.019 ± 0.002a</td>
<td>0.024 ± 0.001b</td>
<td>0.029 ± 0.003c</td>
<td>0.021 ± 0.003d</td>
</tr>
</tbody>
</table>
Table 4. The recovery time to half maximal yield values under growth light after 80 min exposure to solar radiation with or without UV. Different letters indicate significant differences between the radiation treatments at $P < 0.05$ level.

<table>
<thead>
<tr>
<th></th>
<th>LC-HN (min)</th>
<th>LC-LN (min)</th>
<th>HC-HN (min)</th>
<th>HC-LN (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>16.78 ± 2.94<sup>a</sup></td>
<td>20.81 ± 5.93<sup>a</sup></td>
<td>15.41 ± 2.57<sup>ab</sup></td>
<td>16.79 ± 0.64<sup>a</sup></td>
</tr>
<tr>
<td>PA</td>
<td>20.38 ± 1.28<sup>a</sup></td>
<td>23.36 ± 4.47<sup>a</sup></td>
<td>16.83 ± 0.67<sup>a</sup></td>
<td>21.66 ± 4.52<sup>ab</sup></td>
</tr>
<tr>
<td>PAB</td>
<td>25.82 ± 1.51<sup>b</sup></td>
<td>22.73 ± 1.25<sup>a</sup></td>
<td>20.05 ± 1.78<sup>b</sup></td>
<td>24.64 ± 1.57<sup>b</sup></td>
</tr>
</tbody>
</table>
Table A1. Abbreviations.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIC</td>
<td>dissolved inorganic carbon</td>
</tr>
<tr>
<td>NPQ</td>
<td>non-photochemical quenching</td>
</tr>
<tr>
<td>SOD</td>
<td>superoxide dismutase</td>
</tr>
<tr>
<td>CAT</td>
<td>catalase</td>
</tr>
<tr>
<td>Inh<sub>UVR</sub></td>
<td>inhibition due to UVR</td>
</tr>
<tr>
<td>r</td>
<td>repair rate</td>
</tr>
<tr>
<td>k</td>
<td>damage rate</td>
</tr>
<tr>
<td>CCMs</td>
<td>CO<sub>2</sub> concentrating mechanisms</td>
</tr>
</tbody>
</table>
Figure 1. Photosynthetic carbon fixation rates in *P. tricornutum* cells represented as rates (a, b) per cell and (c, d) per chl a grown at ambient (390 µatm, LC) or elevated CO$_2$ (1000 µatm, HC) under NO$_3^-$ replete (110 µmolL$^{-1}$, HN) (a, c) or limited condition (10 µmolL$^{-1}$, LN) (b, d) when exposed to PAR (P), PAR + UVA (PA) and PAR + UVA + UVB (PAB) for 60 min, respectively. Vertical bars indicate ±SD, the means and standard errors were based on 3 replicates. The different letters indicated significant differences between different treatments at $P < 0.05$ level.
Figure 2. Changes of effective quantum yield in *P. tricornutum* cells at ambient (390 µatm, LC) or elevated CO$_2$ (1000 µatm, HC) under (a, b) NO$_3^-$ replete (110 µmol L$^{-1}$, HN) or (c, d) limited (10 µmol L$^{-1}$, LN) when exposed to PAR (P), PAR + UVA (PA) and PAR + UVA + UVB (PAB) for 60 min and another 80 min under the growth light level, respectively. The irradiance intensities under solar simulator or growth light were the same as mentioned above. Vertical bars means ± SD, $n = 3$.

17703
Figure 3. UVA and UVB induced inhibition of (a, b) photosynthetic carbon fixation and (c, d) PSII of *P. tricornutum* cells grown at ambient (390 µatm, LC) or elevated CO₂ (1000 µatm, HC) under (a, c) NO₃⁻ replete (110 µmol L⁻¹, HN) or (b, d) limited condition (10 µmolL⁻¹, LN) when exposed to PAR (P), PAR + UVA (PA) and PAR + UVA + UVB (PAB) for 60 min, respectively. The irradiance intensity under solar simulator was the same as mentioned above. Vertical bars means ±SD, n = 3, the different letters indicated significant differences between different treatments at *P* < 0.05 level.
Figure 4. Non-photochemical quenching (NPQ) of *P. tricornutum* grown at ambient (390 µatm, LC) or elevated CO$_2$ (1000 µatm, HC) under (a, b) NO$_3^-$ replete (110 µmol L$^{-1}$, HN) or (c, d) limited condition (10 µmol L$^{-1}$, LN) when exposed to PAR (P), PAR + UVA (PA) and PAR + UVA + UVB (PAB) for 60 min and another 80 min under the growth light level, respectively. The irradiance intensities under solar simulator or growth light were the same as mentioned above. Vertical bars means ±SD, *n* = 3.
Figure 5. (a) Protein contents, (b) SOD and (c) CAT activities (represented as per milligram protein) of *P. tricornutum* grown at ambient (390 µatm, LC) or elevated CO₂ (1000 µatm, HC) under NO₃⁻ replete (110 µmol L⁻¹, HN) or limited (10 µmol L⁻¹, LN). The different letters above each column indicate significant differences between different treatments at *P* < 0.05 level. Vertical bars means ±SD, except the CAT value in HC-LN for which there were only 2 replicates, other treatments used at least 3 replicates (*n* = 3–7).