Supplement of Biogeosciences Discuss., 11, 13127–13156, 2014
http://www.biogeosciences-discuss.net/11/13127/2014/
doi:10.5194/bgd-11-13127-2014-supplement
© Author(s) 2014. CC Attribution 3.0 License.

Supplement of

Nitrogen control of 13C enrichment in heterotrophic organs relative to leaves in a landscape-building desert plant species

J. Zhang et al.

Correspondence to: L. Gu (lianhong-gu@ornl.gov), Q. Lu (luqi@caf.ac.cn), and P. Meng (mengping@caf.ac.cn)
Figure Caption

Figure S1. Nutrient dependence of the difference in carbon isotope compositions between leaves and heterotrophic organs of *Nitraria tangutorum* Bobrov, which is measured by $\Delta^{13}C_{\text{organ}}$ in Eq (1) and averaged across the nebkhas excavated at the same study site. Negative values indicate 13C enrichment in heterotrophic organs compared to leaves. Changes of $\Delta^{13}C_{\text{organ}}$ as a function of organ contents of carbon (a), nitrogen (b) and phosphorous (c) and of organ ratios of carbon to nitrogen (d), nitrogen to phosphorous (e), and carbon to phosphorus (f). The two arrows in (b) indicate values for woody debris from dead ramets at each study site while in (d) indicates an outlier caused by measurements in phosphorous content (see the outlier in c and f). All nutrient values are normalized (divided) by their corresponding values in the leaves.