Frozen ponds: production and storage of methane during the Arctic winter in a lowland tundra landscape in northern Siberia, Lena River Delta

M. Langer¹, S. Westermann²-³, K. Walter Anthony⁴, K. Wischnewski⁵, and J. Boike¹

¹Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Periglacial Research Section, Potsdam, Germany
²University of Oslo, Department of Geography, Oslo, Norway
³Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
⁴University of Alaska Fairbanks, Water and Environmental Research Center, Fairbanks, USA

Correspondence to: Moritz Langer
(moritz.langer@awi.de)

Abstract. Lakes and ponds play a key role in the carbon cycle of permafrost ecosystems, where they are considered to be hotspots of carbon dioxide CO₂ and methane CH₄ emission. The strength of these emissions is, however, controlled by a variety of physical and biogeochemical processes whose responses to a warming climate are complex and only poorly understood. Small waterbodies have been attracting an increasing amount of attention since recent studies demonstrated that ponds can make a significant contribution to the CO₂ and CH₄ emissions of tundra ecosystems. Waterbodies also have a marked effect on the thermal state of the surrounding permafrost; during the freezing period they prolong the period of time during which thawed soil material is available for microbial decomposition.

This study presents net CH₄ production rates during the freezing period from ponds within a typical lowland tundra landscape in northern Siberia. Rate estimations were based on CH₄ concentrations measured in surface lake ice from a variety of waterbody types. Vertical profiles along ice blocks showed an exponential increase in CH₄ concentration with depth. These CH₄ profiles were reproduced by a 1D mass balance model and the net CH₄ production rates were then inferred through inverse modeling.

Results revealed marked differences in early winter net CH₄ production among various ponds. Ponds situated within intact polygonal ground structures yielded low net production rates, of the order of 10⁻¹¹ to 10⁻¹⁰ mol m⁻² s⁻¹ (0.01 to 0.14 mg CH₄ m⁻² d⁻¹). In contrast, ponds exhibiting clear signs of erosion yielded net CH₄ production rates of the order of 10⁻⁷ mol m⁻² s⁻¹ (140 mg CH₄ m⁻² d⁻¹). The early winter net CH₄ production rate per square meter of ponds with signs of erosion exceeded the per square meter emission rate of the average tundra landscape which was measured at the study site during summer. Our results therefore indicate that, once a particular threshold in thermal erosion has been crossed, ponds can develop into major CH₄ sources. This implies that any future warming of the climate may result in non-linear CH₄ emission behavior in tundra ecosystems.

1 Introduction

Up to 28% of the land surface in permafrost landscapes has been attributed to lakes and ponds (Emmerton et al., 2007; Grosse et al., 2008; Muster et al., 2013). Several studies have emphasized that waterbodies are fundamental elements in Arctic ecosystems and exert a strong control on the Arctic heat, water, and carbon cycle (Cole et al., 2007; McGuire et al., 2009). This is especially true in permafrost landscapes, where large quantities of carbon are trapped in the frozen soils that can surround waterbodies (e.g. Hugelius et al., 2013). Any future mobilization and emission of this old carbon pool is likely to result in a positive feedback to global warming (O’Connor et al., 2010; Koven et al., 2011).

Lakes are considered to play a key role in the turnover and emission of the carbon in these permafrost reservoirs.
In the present study, you have not measured tundra landscape emission rates. Including terrestrial (ground) flux into this comparison makes it obviously different than pond flux (as you know, water logging is a critical factor for CH4 production). So I think this comparison weakens your argument. Your data provides a comparison between different types of ponds (cf the points you are making in the conclusions). Your data also provide an argument that we should take into account early winter net CH4 production because they are not negligible. You need to find a way to compare your results to summer pond flux, not global tundra flux.

"the" instead of "this" is preferable, since when you say "this old carbon pool" you assume all C trapped in pmf (mentionned in previous sentence) is old, and I don't think it's the case (its a mixture of different pools, and it depends on how pmf was formed, after or during deposition)

Please fill up the missing info
Many of the studies to date have focused on the greenhouse gas emission potential of large lakes such as thermokarst lakes (Zimov et al., 1997; Walter et al., 2006; Brosius et al., 2012). However, recent studies have demonstrated that not only large Arctic lakes, but also the smaller Arctic ponds, are hotspots of CO₂ and CH₄ emission (Abnizova et al., 2012b; Laurion et al., 2010). In lowland tundra landscapes such as the Lena River Delta, more than 30% of the total inland water surface can be attributed to waterbodies with surface areas less than 1 km² (Muster et al., 2012). Most of the studies to date addressing greenhouse gas emissions from Arctic ponds have focused on the summer months, but a considerable carbon turnover is also possible in waterbodies during the freezing period, until the bottom sediments are completely frozen (Karlsson et al., 2013). During winter the closed ice cover inhibits the diffusion of oxygen into the water which strongly limits the oxidation of CH₄ in the water column. Several studies have demonstrated that large quantities of CH₄ are produced during the long-lasting winter period and stored in the form of bubbles within the ice cover (Walter Anthony et al., 2010; Wik et al., 2011; Boereboom et al., 2012; Walter Anthony and Anthony, 2013).

Bubbles trapped in lake ice, resulting from a number of different processes, include ebullition bubbles, bubbles from freeze-degassing of dissolved gases, and photosynthesis bubbles. These can usually be distinguished from each other on the basis of their size, morphology, and gas content (Boereboom et al., 2012; Walter Anthony and Anthony, 2013). This study focuses on CH₄ which is stored in the form of bubbles from freeze-degassing which are continuously formed at the advancing freezing front and occur in closely spaced layers in the ice cover (Lipp et al., 1987). Due to freeze-degassing dissolved gases enrich in a very thin water layer directly at the freezing front. The saturation of dissolved gases in this thin water layer leads to bubble nucleation. The gas concentration in the growing bubbles is in equilibrium with the dissolved gases of the surrounding water (Wei et al., 2003). As soon as the bubbles are completely entrapped within the ice cover they are sealed from further gaseous exchange so that an enrichment of dissolved gases and bubble nucleation at the freezing front starts again. This results in continuous formation of freeze-out bubble layers which preserve to a certain degree information about the concentration of the dissolved gases in the water column during the time of freezing (Lipp et al., 1987; Craig et al., 1992; Killawee et al., 1998). The frequency of bubble layer formation, bubble size, and bubble shape are largely dependent on the rate of freezing (Carte, 1961; Yoshimura et al., 2008). However, a wide range of sizes of freeze-out bubbles are reported at natural freezing rates of the order of millimeters per day (Lipp et al., 1987; Yoshimura et al., 2008).

The storage of CH₄ within the ice cover of shallow Alaskan lakes through freeze-degassing has been investigated by Phelps et al. (1998). They found that CH₄ concentrations were very low in the upper part of the ice cover, but increased rapidly with depth. They also found that the CH₄ stored in the ice cover was largely released into the atmosphere during spring melt, and that the amount of CH₄ emitted in spring equated to half of the total annual CH₄ emissions from the lake. These results served to further stress the importance of the freezing period to the carbon cycle of tundra-lake ecosystems.

In this study we present profiles derived from measurements of CH₄ concentrations in the ice cover of nine typical Arctic ponds and lakes in the Lena River Delta of north-eastern Siberia. An extensive survey of pond areas and depths has provided insights into the development stages of the various waterbodies within the area of investigation. Temperature profiles were derived from measurements in three different ponds and used to investigate their freezing behavior. A 1D mass balance model was developed to reconstruct the storage of CH₄ within the ice cover and the CH₄ concentration profiles (derived from CH₄ concentration measurements in the ice cover) were used to infer net CH₄ production rates during the freezing period by inverse modeling.

2 Study area

The study area is located in the Lena River Delta of north-eastern Siberia, within the zone of continuous permafrost (Fig. 1). The region is characterized by an Arctic continental climate with a mean annual air temperature of about −14°C. Winter temperatures frequently fall below −45°C while summer temperatures can exceed 25°C (Langer et al., 2011a; Boike et al., 2013). The cold climate results in very cold permafrost temperatures: an annual average temperature of about −9°C has been recorded at a depth of 27 m (Boike et al., 2013). Permafrost in the Lena River Delta region is reported to extend to depths of several hundred meters (Grigoriev, 1960). The study area is located on Samoylov Island in the central part of the Lena River Delta (72° 22’ N, 126° 28’ E), an area characterized by the typical micro-relief of polygonal patterned ground formed by frost cracking and subsequent ice-wedge formation (Lachenbruch, 1962). The polygonal structures usually consist of depressed, water-saturated centers surrounded by elevated rims. These polygonal structures are present in different stages of degradation. Ponding water is often found in the depressed polygon centers (intra-polygonal ponds) or along the troughs between the polygon rims above the ice-wedges (ice-wedge ponds) (Fig. 2a, b) (Wetterich et al., 2008; Helbig et al., 2013; Negandhi et al., 2013). Both intra-polygonal ponds and ice-wedge ponds are usually very shallow, with water depths ranging from just a few centimeters to a few tens of centimeters. Such ponds often feature emergent vegetation, consisting mainly of hydrophilic species such as Carex aquatilis and Limprichtia revolvens (Kutzbach et al., 2007). The rims surrounding intra-polygonal ponds are mostly intact with little or no sign of degradation. However, degradation of the poly-
I think here is missing a general sentence on the type of deposits (loess? yedoma?)

not sure if however is the correct link word here

provide the range as we have no clue

I understand that it's because shallow means later in winter when CH4 production is slower, is that the case/explanation brought by Phelps? This needs to be mentioned explicitly.

Or is it increasing exponentially deeper in the ice because of the cumulation of CH4 both from new production and from ice-degasing?? Either here (if Phelps paper brings explanations) or in the discussion (based on your results) you need to talk more explicitly about the reason for this exponential shape.
Langer et al.: Frozen ponds

...nal structures can result in ponds merging to form larger ponds that often consist of several polygons, typically showing clear signs of degradation (Fig. 2c) (Helbig et al., 2013). They feature open water surfaces and lack emergent vegetation in their centers. The study area is also characterized by thermokarst (thaw) lakes, which are a result of advanced permafrost degradation associated with further thermal erosion processes (Morgenstern et al., 2013). About 50% of the free water surface on Samoylov Island is attributed to ponds, with the remaining 50% attributed to lakes, including both thermokarst lakes and oxbow lakes (Muster et al., 2012).

3 Methods and materials

3.1 Pond survey and classification

The distribution and sizes of waterbodies within the study area were mapped using ortho-rectified, visual and near-infrared aerial images. The study area (SA) lies on the first terrace of Samoylov Island and covers a typical wet lowland tundra landscape; it has a surface area of about 1.5 km² (Fig. 1). We used the supervised surface water classification from Muster et al. (2012) to extract a size distribution for the ponds and lakes within the area. Water depth measurements were also collected from two sub-areas (SUB I and SUB II), each of which had a surface area of about 30000 m² (Fig. 1). The water depths were measured manually using a depth sounder, or using a ruler where the water levels were very low.

In this study we mainly focused on small waterbodies (ponds) smaller than 10000 m². We were able to loosely distinguish three types of ponds within the study area (Fig. 2). On the basis of morphology we distinguish between ice-wedge ponds (Fig. 2a), intra-polygonal ponds (Fig. 2a), and merged ponds (Fig. 2c). These ponds are further grouped into initial state ponds (ISPs) and advanced state ponds (ASPs) according to the degrees of degradation of the polygonal ground structures within which the ponds occur. ISPs are defined as ponds that occur within almost intact polygonal structures; they include both ice-wedge ponds located between polygon rims (Fig. 2a) and intra-polygonal ponds located in polygon centers (Fig. 2b). ISPs are shallow with water depths of less than 0.5 m. Their horizontal extent typically ranges from a few meters up to about 10 m, which is a typical diameter for the polygonal structures. Due to initial degradation ISPs can be hydrologically interconnected with other ISPs or with larger waterbodies, but the individual polygon shape is still preserved. In contrast, ASPs show clear signs of degradation in the surrounding polygonal tundra (Fig. 2c). The center of an ASP is much deeper due to thaw settlement in the underlying bottom sediments, so that ASPs usually have water depths greater than 0.5 m. ASPs typically range in diameter from about 10 to 50 m. Waterbodies that reach depths greater than 2 m are likely to remain unfrozen at the bottom throughout the winter, and a continuously unfrozen layer (talik) then develops in the sediments. Such waterbodies are classified as thermokarst lakes; the horizontal extent of such lakes ranges from about 50 m to several hundreds of meters. Transitional forms between the three waterbody types are also common.

3.2 Monitoring ice cover formation

The process of ice cover formation was observed through three temperature profiles obtained from three different ponds. The temperatures were recorded using water temperature loggers (with an accuracy of ±0.5 °C) positioned along a metal wire hanging down from a small buoy anchored in the middle of each pond. The first temperature profile was from an intra-polygonal pond, based on measurements from four temperature sensors. The first three temperature profiles obtained from three different ponds. The temperatures were recorded using water temperature loggers (with an accuracy of ±0.5 °C) positioned along a metal wire hanging down from a small buoy anchored in the middle of each pond. The first temperature profile was from an intra-polygonal pond, based on measurements from four temperature sensors. The first three temperature profiles obtained from three different ponds. The temperatures were recorded using water temperature loggers (with an accuracy of ±0.5 °C) positioned along a metal wire hanging down from a small buoy anchored in the middle of each pond. The first temperature profile was from an intra-polygonal pond, based on measurements from four temperature sensors.
<table>
<thead>
<tr>
<th>Nombre</th>
<th>Auteur</th>
<th>Sujet</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ilaurion</td>
<td>Commentaire sur le texte</td>
<td>2014-11-19 13:37:11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water depth is not the correct criteria to classify thermokarst lakes from ponds. I am sure you have used other criteria but the formulation here is unclear. I am assuming you are not in a region where kettle lakes are present (cause they would also be of the same depth range as thk)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ilaurion</td>
<td>HOBO is making a large suite of loggers: please provide the name of specific one you used</td>
<td>2014-11-18 16:23:48</td>
</tr>
<tr>
<td>3</td>
<td>ilaurion</td>
<td>at</td>
<td>2014-11-18 16:25:03</td>
</tr>
</tbody>
</table>
Fig. 2. Typical ponds in the polygonal tundra mapped from near infrared (NIR) areal images. At the study site occur (a) ice-wedge ponds, (b) intra-polygonal ponds within intact polygonal structures, and (c) merged ponds show clear signs of degradation of the polygonal structures. According to their degree of degradation intra-polygonal ponds and ice-wedge ponds are classified as initial state ponds (ISPs) and merged ponds as advanced state ponds (ASPs).

3.3 Sampling methane concentrations in lake ice

Thirteen CH₄ concentration profiles were obtained from ice blocks cut from eight waterbodies using a chainsaw (STIHL, Germany) with a 40 cm guide bar during a field program in April 2011. Three waterbodies were ponds with maximum water depths of less than 0.5 m. The morphology of these ponds still placed them within the ISP category, despite some early signs of degradation. In the following, these ponds are named ISP1, ISP2, and ISP3. Four waterbodies had maximum depths greater than 0.5 m (up to 1.2 m) and occurred within clearly degraded polygonal ground structures. The four ponds fell into the ASP category and are named ASP1 to ASP4 in the following. One of the sampled waterbodies fell into the category of a thermokarst lake with a maximum water depth of 5.3 m. Temperature sensors which were fixed to the ground, all sensors were hold in place relative to the water surface on the floating metal wire.

The ice cover thickness in each pond was inferred using the temperature records from the individual sensors. The date on which the freezing front crossed the temperature sensor was identified by a sudden drop in temperature after a relatively long period at a constant temperature of 0 °C.

The ice columns were cut into smaller cuboids with a base area of about 7 × 7 cm and a height of 10 cm. The cuboids were cleaned with a sharp and sterilized knife prior to transportation and analysis. The ice samples were melted in 11 plastic containers (Nalge, USA), which were sealed with PTFE paste (Åronix, Germany). The impermeability of the containers to gas was verified by long-term testing using calibration gases prior to the analyses. The containers were flushed with nitrogen immediately after sealing in order to ensure zero CH₄ concentration in the head-space prior to melting. The head space volume in the containers varied between 0.3 and 0.6 l according to differences in sample volume. Possible corruption of the CH₄ concentration measurements due to microbial activity during the melt procedure was tested using acidified (10% HCL) parallel samples, but these showed no significant differences in CH₄ concentration from the pure samples. Methane concentrations within the ice samples were determined by gas chromatography at the field station on Samoylov Island, using an Agilent GC 7890 gas chromatograph (Agilent Technologies, Germany) equipped with a Porapak Q column (1.8 m length, 2 mm ID) and a flame ionization detector (FID). Four repeat concentration measurements (five measurements in total) were performed in order to determine the measurement uncertainty.

The total CH₄ content in the ice samples was evaluated by taking into account the head space concentration, sample volume, temperature, and pressure. A correction was also made for dissolved CH₄ in the melt water using Henry’s law. These procedures introduced a wide range of potential error sources into the CH₄ content measurements. Thus, the uncertainties in the total CH₄ content were determined by
deployed

rephrase (the metal wire is not floating, it's the buoy that maintains the wire vertical...)

Monte-Carlo simulations assuming uniform uncertainty distributions for all parameters including measurement uncertainty, head space volume, sample volume, ambient temperature, and pressure (e.g. Anderson, 1976).

3.4 Modeling methane concentrations in the ice cover of ponds

The storage of methane in the ice cover of ponds was simulated using a simplified 1D mass balance scheme, in an approach that closely resembles that used by Boereboom et al. (2012). The model was used to calculate net CH$_4$ production rates during the freezing process by fitting the model to the CH$_4$ concentration profiles obtained from the ice cover. The model simulated an ice cover growing downwards from the surface to the bottom of the pond, assuming a constant accumulation of bubbles from freeze-degassing of dissolved gases at the ice-water interface (see Appendix A). Ebulition bubbles were not taken into account in the model. Despite their importance as an efficient mode of CH$_4$ emission from lakes, ebulition bubbles have small diameters relative to the lake surface area and they usually have a rare and heterogeneous distribution within a thermokarst pond, making them difficult to quantify from a limited number of small ice samples (Walter Anthony and Anthony, 2013). The heterogeneous distribution of ebulition bubbles also means that they are impossible to simulate using a simplified 1D mass balance scheme. This limitation of the model means that the CH$_4$ storage, and hence the production of CH$_4$ in ponds, tends to be underestimated. The model results can therefore be considered to be conservative when calculating net CH$_4$ production rates. Since the size of bubbles from freeze-degassing depends largely on the rate of freezing (Carte, 1961), we assumed that the accumulation of freeze-out bubbles was adequately represented by a constant rate during periods of constant freezing (Yoshimura et al., 2008).

The partial pressure of CH$_4$ in the bubbles was assumed to be always in equilibrium with the partial pressure of CH$_4$ in the water column, following Henry’s law. We also assumed a uniform enrichment of methane in the water column beneath the ice cover. The CH$_4$ enrichment (net CH$_4$ production) is controlled by CH$_4$ production and oxidation because of the very stable temperature conditions in shallow sediments during the freezing period from October through February we assumed constant CH$_4$ production and oxidation rates. The uniform distribution of dissolved CH$_4$ in the shrinking water column is considered a reasonable guess for the investigated very shallow waterbodies albeit concentration gradients are reported for deeper lakes. However, increased CH$_4$ enrichment at the bottom of the ponds would lead to underestimated net CH$_4$ production in the model calculations. As well as the stable temperature conditions, the model also assumed constant pressure conditions during the freezing process. Nevertheless, pressure changes are an important factor for bubble formation in lakes and can result in layers of dense bubbles in the ice cover. Thus, the obtained ice profiles were analyzed for occurrence of bubble layers that were related to air pressure changes before they were used for modeling. The storage of bubbles in the ice cover was simulated by integrating an effective bubble cross-section (calculated as average horizontal area occupied by bubbles) and CH$_4$ concentration over the current ice cover thickness. The bubble volume stored in the ice cover was assumed to be no longer in gaseous exchange with the unfrozen waterbody. When the maximum solubility of methane in the shrinking water column was reached the model assumed that the excess methane was stored directly in the ice cover. The storage of excess CH$_4$ resulted in a marked increase in the methane concentration within the ice cover. The mass balance scheme results in a first order ordinary differential equation, which can be solved analytically (see Appendix A). In general, the model outcome is determined by the net CH$_4$ production rate, the effective bubble cross-section, the ice cover growth rate, and the pond depth. The pond depth and the ice cover growth rate are measured and hence known for all sites, and the net CH$_4$ production rate and effective bubble cross-section can be inferred by fitting the model to measured CH$_4$ concentration profiles. Previous measurements within the study area have shown that the concentration of dissolved CH$_4$ in different ponds varies widely (between 2 x 10$^{-3}$ and 7 x 10$^{-5}$ mol m$^{-3}$) prior to the onset of freezing (Abnizova et al., 2012a). The sensitivity of the fitting procedure was therefore tested over the entire range of initial CH$_4$ concentrations. The model was fitted to the measured CH$_4$ profiles from the ice samples using a non-linear fitting routine provided by MATLAB. This fitting procedure included evaluation of the 95% confidence intervals on the fitted parameters and the model output.

4 Results

4.1 Waterbody distribution and ice cover formation

Almost 15% of the study area (SA) consists of waterbodies, of which about 60% are less than 300 m2 in surface area (Fig. 3a). In the sub-areas SUB I and SUB II the pond surface areas range between 0 and 300 m2 and the maximum water depth ranges between 0 and 1.5 m. About 10% of the tundra landscapes in SUB I and SUB II are occupied by ponds that are shallower than 0.2 m. Most of these shallow ponds fall into the ISP class, with little or no sign of degradation in the surrounding polygon rims. Ponds with water depths of 0.5 to 0.6 m and 0.8 to 1.0 m were found to be slightly more abundant than ponds with water depths of 0.2 to 0.4 m and 1.0 to 1.3 m (Fig. 3b). Most of the ponds with a water depth greater than 0.5 m belonged to the ASP class, which made up the largest proportion of ponds in the entire study area. Despite the wide range of water depths in the surveyed ponds the deeper ponds tended to be larger than the shallower...
I think at some point you could cut this paragraph into 2, maybe here?

This needs to be defined: is it the sum of the bubble area across the whole ice matrix?? You need to explain what is the use of such term. It is very important variable in your work, yet it remains vague.

The CH4 concentrations I see in the Supplement info of Abnizova et al. is 0.07 to 249 μgCH4/L (249 being measured only once; most data being below 1), which corresponds, to 0.004 to 15.6 μM, and this is not corresponding to this range providing here… Please acknowledge where this range comes from. Moreover, this range does not seem right. It is much too low! and lower than the DL of the GC provided in method section! (5 x 10-5)

uniform along time over winter, which means uniform in the ice core?? can you please clarify?

I understand that you need to make assumptions at some point for modelling, but production and consumption is not only dependant on temperature, but also on substrate: could substrate be changing over time in autumn through winter (?)

Moreover, you seem to have data on sediment temperature (?) but unfortunately they are not presented (a point raised by both Reviewers, either concerning the data set or the discussion of the fact that higher methane production at lower T is unlikely). I think you need to defend this point better in the discussion and for this, such data could help.

you mean increased CH4 concentration?? (confusing with enrichment underneath the ice)

add support from the literature?
ones which coincided with increased thaw depths beneath the deeper ponds. This tendency was especially pronounced for ponds with depths greater than 0.5 m. In contrast, ISPs with water depths of less than 0.5 m did not show any clear depth-size correlation. The size of the ISPs appeared to be mainly determined by the size of the polygonal structures.

Ice cover growth (freezing) rates were investigated in three different ponds during the winters of 2010-2011 and 2011-2012. The freezing rate detection was limited to the first part of winter since temperature profile measurements were only available to a maximum depth of about 0.8 m (see Sect. 3.2). During the winter of 2010-2011 the average growth rate of the ice cover was 0.91 ± 0.11 cm d⁻¹ (Fig. 4a). The three investigated ponds showed deviations from the linear average of up to 0.15 m, which were particularly evident from the beginning of October to the middle of November. The shallowest pond (ISP1) revealed the highest freezing rate and was completely frozen (to the bottom; a depth of about 0.1 m) by the beginning of November. The other ponds (AS1 and AS2) achieved a similar ice cover thickness about three weeks later. In contrast to the winter of 2010-2011, all investigated ponds showed a very consistent rate of ice cover formation during the winter of 2011-2012 (Fig. 4b), when the average growth rate of the ice cover was 1.24 ± 0.12 cm d⁻¹, with only minor deviations from the linear average (up to about 0.05 m, which is well within the assumed measurement uncertainty). Despite the linear character of the freezing process, the measurements showed some temporal variations in the freezing rate. During both winter periods pond ISP1 showed a very linear freezing behavior but, in contrast, the deeper ponds showed a lower rate of freezing at the beginning of the freezing period, a slightly increased rate in the middle of the period, and a lower rate again when the ice cover approached the bottom of the ponds.

4.2 Distribution of gas bubbles within the ice cover

Most of the ice columns were very clear with only a few visible bubbles. After a short warm event during the field campaign a very thin layer of white ice (about 3 cm) was observed above black ice at some locations. This white ice layer was excluded from further analysis. The ice columns from the ISP1 and ISP2 ponds showed a layer of abundant bubbles close to the bottom of the ponds, starting from a depth of about 15 cm. Moss stems in the sediments on the floor of these two ponds were usually completely surrounded by bubbles. The diameter of these bubbles ranged from about 1 mm to 5 mm. Two or three thin layers of bubbles were observed in these two ponds at depths of between 5 and 15 cm. Three very thin layers of bubbles were observed at similar depths (between 5 and 15 cm) in the ice columns from pond ISP3. The consistent occurrence of these thin bubble layers in similar depths and different ponds indicates a formation related to air pressure changes. The three ISPs feature similar water depths of 30 to 45 cm and we expect similar freezing rates. However, the sizes of these bubbles layers were assessed to be negligible compared to the ice sample sizes. The ice columns from the relatively deep ponds (ASP1, ASP2, and ASP3), which had depths greater than 0.5 m, did not reach the bottom of the ponds and hence the presence or absence of a layer of abundant bubbles close to the bottom of the ponds (as seen in the shallow ISP1 and ISP2 ponds) could not be verified. The ice columns from pond ASP3 revealed a narrow bubble layer at about 15 cm depth similar to that seen in the shallow ponds, but those from ponds ASP1 and ASP2 showed no visible bubbles between the surface and a depth of 35 cm. However, all ice columns from the deep ponds were consistent in showing two to three thin bubble layers between depths of 35 and 40 cm.

4.3 Methane concentrations in lake and pond ice

The CH₄ concentrations obtained from all ice samples are shown in Figure 5, where they are plotted semilogarithmically against the ratio of sample depth to maximum water depth. The whiskers following the orientation of the depth axis indicate the sample size while the whiskers following the orientation of the concentration axis indicate uncertainties in the measured CH₄ concentrations according to the Monte-Carlo simulations (see Sect. 3.3). In addition, the samples are color coded according to the surface area of the lake or pond from which they were obtained. The CH₄ concentration within the ice cover showed considerable variation, ranging from the detection limit of the gas analyzer up to 0.08 mol m⁻³. The detection limit of the used GC setup was at about 1 ppm which would equate to a detection limit of about 5 × 10⁻⁵ mol m⁻³ considering sample size and head space volume. On average about 2 × 10⁻³ mol m⁻³ (0.03 gCH₄ m⁻³) was stored in the ice cover between the surface and a depth of 0.65 m. However, these concentrations varied over two orders of magnitude indicating marked differences between the different waterbody types. The CH₄ concentration was generally observed to increase with depth. The highest CH₄ concentrations were recorded from waterbodies with surface areas of less than 50 m² and in ice samples from close to the bottom of waterbodies. The results suggest an exponential relationship between CH₄ concentration and ice cover thickness; the measured concentrations generally followed an exponential trend, with the exception of four outliers. A detailed analysis of individual CH₄ profiles confirmed the exponential increase in CH₄ concentrations with depth and the marked differences between waterbodies (see Fig. 6). An exponential increase in CH₄ concentration was recorded for all ponds in which the acquired ice columns reached close (about 30 cm) to the bottom of the waterbody. The lowest CH₄ concentrations were recorded in the ice columns from large thermokarst lakes. In these lakes only the uppermost part of the ice cover was sampled relative to the maximum lake depths. However, air outliers occurred with high concentrations of up to 0.08 mol m⁻³. Three
This is unclear; a GC measure a gaseous concentration that is provided from a headspace of a container/vial/bottle. Why considering here the sample size and headspace volume? I am guessing you are converting back to ice concentrations but this is unclear to readers.

When you thawed your ice cubes in the Nalgene bottle, the gas contained in the bubbles + melted ice became in equilibrium with the nitrogen headspace, and the ratio of water to air is requested to correct for gas displacement and calculate the original concentration in the ice bubbles knowing the water volume. You mentioned that headspace is about half the 1L bottle. This needs to be clarified (but kept simple of course).

Is this the thickness of the layer or the position of the layer from top?

The next sentence seems to suggest that this layer is linked to photosynthetic activity (?); what is the gas composition in this layer? Is this very poor in CH4?

I am seeing only 2 data points that are above in Fig. 5 (top left) one from a large and one from a small waterbody; are these what you are referring to?? I am not sure to understand this sentence. This needs to be clarified.
Fig. 3. Cumulative percentage of landscape covered by ponds in different size classes (a). Percentage of landscape covered by ponds in different depth classes (b). The secondary y-axis in (b) shows the average surface area for each depth class. The whiskers indicate the standard deviation for each depth class.

Fig. 4. Growth of ice cover inferred from water temperature measurements in three different ponds during (a) the winter of 2010-2011, and (b) the winter of 2011-2012.

of four outliers were observed at thermokarst lakes with surface areas larger than 10^4 m2.

4.4 Modeling methane storage in the ice cover

The maximum CH$_4$ concentrations measured in the ISP1, ISP3, and ASP3 samples were about one order of magnitude higher than those from ISP2, ASP1, ASP2, and ASP4. The ice samples were typically 5 to 10 cm high which placed a limit on the depth resolution, but this was improved to some extent by overlap between samples. The uncertainty in the CH$_4$ concentration from each sample was relatively low although some differences were observed between overlapping samples, especially in those from the ASP1 and ASP2 ponds. Despite these uncertainties and the limited depth resolution all ponds consistently revealed an exponential increase in CH$_4$ concentration with depth (Fig. 6). The ASP3 profile in particular showed a very sharp increase in concentration in the deepest sample. The increase in CH$_4$ concentrations in the ISP1 and ISP2 coincided with increased bubble densities, but no general relationship was observed between bubble density and CH$_4$ concentration in the ISP3, ASP1, ASP2, and ASP3 ponds.

The derived CH$_4$ concentration profiles for six of the ponds were analyzed and the mass balance model fitted to these profiles in order to estimate net CH$_4$ production rates (see Sect. 3.4). From this fitting procedure the effective bubble cross-sections and net CH$_4$ production rates were obtained for all the analyzed ponds, and also for an additional ASP (ASP4). The model was able to reproduce the observed CH$_4$ concentration profiles for all of the ponds. The best fit results and the 95% confidence intervals of the fitting procedure are
<table>
<thead>
<tr>
<th>Nombre</th>
<th>Auteur</th>
<th>Sujet</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ilaurion</td>
<td>Commentaire sur le texte</td>
<td>2014-11-18 16:44:49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the use of a back slash could suggest that you are talking about pond to lake ratio (even if obviously not), so maybe you can use "or" between pond and lake instead? This comment applies throughout the ms</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ilaurion</td>
<td>Barrer</td>
<td>2014-11-19 14:00:37</td>
</tr>
<tr>
<td>3</td>
<td>ilaurion</td>
<td>Commentaire sur le texte</td>
<td>2014-11-19 14:59:07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>refer to figure at the end of sentence?</td>
<td></td>
</tr>
</tbody>
</table>
5 Discussion

5.1 Characteristics and sensitivities of Arctic ponds

The survey of ponds and lakes within the study area clearly showed an abundance of ponds in the lowland tundra landscape of the Lena River Delta. Almost 10% of the total land surface was occupied by waterbodies with surface areas of less than 300 m², most of which were no deeper than 1 m. The abundance of small waterbodies in the Arctic has been noted in a number of previous studies (Emmerton et al., 2007; Grosse et al., 2008).

Furthermore, this study has demonstrated that the freezing rates of ponds can vary greatly from one pond to another, and from one year to another. Ice thickness measurements from two consecutive years revealed a difference in ice cover thickness of about 40%. Detailed investigations of the surface energy balance within the study area have suggested that marked interannual differences in the freezing rate can be largely attributed to differences in the snow cover and the wintertime cloud cover (Langer et al., 2011b).

The survey of waterbodies also revealed that a large fraction of ponds are no deeper than 20 cm. These shallow ponds occur mainly in low-centered polygons with little or no signs of degradation. The occurrence and size of such ponds is assumed to be directly related to the polygonal microtopography, which also explains why no relationship could be observed between pond size and water depth. There is a clear contrast with the frequency of ponds deeper than 0.5 m. These ponds show a more uniform depth distribution with a slight maximum between 0.5 and 1 m. A depth-size relationship was observed for these deeper ponds. The existence of such a relationship suggests a link between the erosive processes leading to the deepening of the pond and the size of the waterbody. However, the poorly defined depth-size relationships indicates a rather complex interrelationship.

5.2 CH₄ concentrations and net production rates

All of the CH₄ profiles derived from ice samples indicate an exponential increase in CH₄ concentration with depth, which is in agreement with previous observations by Phelps et al. (1998) from various Alaskan and Canadian lakes. The consistency between these two studies suggests that both freeze-degassing of CH₄ and CH₄ storage within the ice cover generally involve the same processes. Some individual concentrations have been observed to deviate from the general exponential behavior. These outliers may be explained by the admixture of ebullition bubbles, which are not explicitly accounted for in this study. However, the exponential relationship between ice depth and CH₄ concentration can be reproduced by a simplified mass balance model, assuming constant net CH₄ production and bubble accumulation. The exponential shape results from the dynamic balance between net CH₄ production, freeze-degassing, and storage of CH₄ within the ice cover. The mass balance model was successfully fitted to the measured CH₄ concentrations by optimizing the net CH₄ production rate and the effective bubble size. A high level of confidence was achieved in all profiles. Furthermore, the model was able to realistically reproduce the sharp increase in CH₄ concentration observed in one of the
<table>
<thead>
<tr>
<th>Nombre</th>
<th>Auteur</th>
<th>Sujet</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ilaurion</td>
<td>Commentaire sur le texte</td>
<td>2014-11-18 16:46:51</td>
</tr>
<tr>
<td>2</td>
<td>ilaurion</td>
<td>Commentaire sur le texte</td>
<td>2014-11-18 11:41:59</td>
</tr>
<tr>
<td>3</td>
<td>ilaurion</td>
<td>Commentaire sur le texte</td>
<td>2014-11-18 11:43:40</td>
</tr>
</tbody>
</table>

- Ice sample?
- See comment on Fig. 6. This is indeed a depth, not a thickness as indicated in Y-axis title.
- Check English meaning. What process are you referring to?
profiles. This indicated that the model was able to accurately represent the timing of CH$_4$ saturation in the shrinking water column during freezing. The overall high level of performance of the model for the different profiles suggests that the basic process of CH$_4$ freeze-degassing and storage in the ice cover is adequately represented. In addition, sensitivity tests revealed that the fit was very robust against variations in the initial values of net CH$_4$ production and effective bubble size. This inspires confidence that the magnitudes of the fitted net CH$_4$ production and bubble accumulation rates are realistic. The results were also found to be robust against uncertainties in the initial CH$_4$ concentration within the water column, prior to the onset of freezing. Nevertheless, unpredictable errors due to gas loss from the edges of the samples or methane oxidation within the ice could negatively bias the measured concentration rates, and consequently the resulting net CH$_4$ production rates. Oversimplified model assumptions, such as uniformly distributed CH$_4$ concentrations and a constant rate of bubble accumulation, could also affect the simulated net CH$_4$ production rates. The model results must therefore be considered to represent first order estimates. The results of the fitting procedure generally suggest marked differences in the net CH$_4$ production from different pond types. Initial state ponds (water depth < 0.5 m) show very low net production rates, of the order of 10^{-11} and 10^{-10} mol m$^{-2}$ s$^{-1}$ (0.01 to 0.14 mg CH$_4$ m$^{-2}$ d$^{-1}$). In contrast, advanced state ponds (depth > 0.5 m) with clear signs of thermal erosion show net CH$_4$ production rates of the order of 10^{-7} mol m$^{-2}$ s$^{-1}$ (140 μg CH$_4$ m$^{-2}$ d$^{-1}$). Similar ranges of CH$_4$ emission rates have previously been reported in summer from ponds in a similar type of landscape on Bylot Island, Canada (Laurion et al., 2010). The net CH$_4$ production rates from the ponds at our study area were of a similar magnitude to observed summertime CH$_4$ emission rates (excluding ebullition) from ice-wedge ponds on Bylot Island, Canada.

Fig. 6. Measured and modeled CH$_4$ concentrations in the ice cover of different ponds. The whiskers show the measurement uncertainty and the shaded areas indicate the 95% confidence interval of the model. The range of depth axis represents the maximum pond depth.

Fig. 7. Net methane production and effective bubble cross-section for different ponds, calculated by inverse modeling using the 1D mass balance model (note the logarithmic scale). The whiskers indicate the 95% confidence interval of the model results.
I think Y-axis identification should be **ice depth** not **ice cover thickness**. You did not measure CH4 as the ice thickness was "growing" but you took CH4 measurements from different depths in the ice.

When we report data on a water column, we say water depth, not water thickness... Anyway in the text you do use ice depth correctly.

Does it mean ASP ponds were 1.2 or 0.9 m deep but ice grew only to about 0.6 meter? or it means you did not sample ice lower than 0.6m below the ice surface? It's possible that I would get the answer by reading once more the ms but nevertheless it's always better that figure captions are self-explanatory.

why is this error bar thicker?

But I noted that values provided at line 380 above is super low, if this is what you are referring to = between 2 x 10⁻⁹ and 7 x 10⁻⁷ mol/m³ = between 2 x 10⁻⁶ and 7 x 10⁻⁴ µM! (reported as coming from Abnizova et al. 2012, while in this ref. values are = 0.07 - 249 µg/L = 0.0044 to 15.6 µM. There is confusion here. How is this affecting your robustness tests AND absolute values of net production rates?

Nevertheless, when I use 0.0025 mol/m³ as a maximal concentration in ice bubbles, and convert it to aqueous concentration (in water at 0.1degC, just above freezing point), I get 0.9 µM which makes sense to my knowledge (I found 0.02 to 25µM at my field site on Bylot).
Island. The ice-wedge ponds on Bylot Island mainly occur within collapsed polygonal structures and could be classified as ASPs (Negandhi et al., 2013). Significantly lower CH$_4$ emission rates were reported from intra-polygonal ponds on Bylot Island, which may correspond to our ISP class. These results provide further evidence that the marked differences in net CH$_4$ production rates between the different pond types are likely to be due to fundamental differences in biogeochemical processes resulting from active thermal erosion (Laurion et al., 2010; Rautio et al., 2011; Laurion and Mladenov, 2013). The differences in net CH$_4$ production may also be related to differences in the vegetation growing on the floor of the ponds. The vegetation in ISPs within the study area often consists of the brown mosses Scorpidium scorpioides (Liebner et al., 2011). These mosses live in symbiosis with chemotrophic CH$_4$-oxidizing bacteria that could effectively limit CH$_4$ emissions (Liebner et al., 2011). Photosynthesis and oxygen production are still possible beneath the growing ice cover during early winter. Indicators of active photosynthesis in ISPs during freezing is provided by the large number of bubbles observed around moss stems. However, other processes such as CO$_2$ emission through moss respiration or preferential bubble nucleation at the moss stems could have contributed to the formation of these bubble clusters. The maximum summertime CH$_4$ emission rates per square meter from the average tundra landscape on Samoylov Island are of the order of 5 × 10$^{-8}$ mol m$^{-2}$ s$^{-1}$ (60 mg CH$_4$ m$^{-2}$ d$^{-1}$) (Sachs et al., 2008; Wille et al., 2008). Using this emission rate as a reference, the early winter net CH$_4$ production rates per square meter from ASPs are half an order of magnitude larger. This stresses the importance of ponds and the freezing period to the local carbon cycle. Even during the freezing period small waterbodies must therefore be considered hotspots of CH$_4$ production in a tundra landscape. It is, however, important to note that our results do not take into account CH$_4$ that is transported and stored in the ice column, and the total CH$_4$ production from ASPs is therefore likely to be much greater than our modeling suggests.

Appendix A

The mass balance of methane in a freezing pond can be written as

$$N_i + N_g + N_a - N_0 - N_P = 0,$$

where N_i is the amount of CH$_4$ molecules that are stored in the ice cover, N_g is the amount of methane stored in bubbles at the ice-water interface, N_a is the number of dissolved methane molecules in the water column, N_0 is the amount of dissolved methane that is stored in the water column at the start of freezing, and N_P is the number of CH$_4$ molecules produced. The individual CH$_4$ components of the mass balance are parameterized as

$$N_i = A_b \int_0^t C(\tau) \frac{\partial z(\tau)}{\partial \tau} d\tau,$$

$$N_g = C(t) V_b,$$

$$N_a = C(t) k_H R T \frac{z_0 - z(t)}{1},$$

$$N_0 = C_0 z_0,$$

$$N_P = \int_0^t P(\tau) d\tau,$$

where $C(t)$ is the concentration of methane in bubbles at the ice-water interface at time t; k_H is the Henry’s law constant.

6 Conclusions

Our results show that ponds in the polygonal tundra can be important sources of CH$_4$ during the freezing period. Extensive measurements in the ice cover of different ponds have revealed that the CH$_4$ concentrations increase exponentially with depth, indicating intensive CH$_4$ production under the growing ice cover. The measured CH$_4$ concentration profiles were successfully reproduced by 1D mass balance model demonstrating that the exponential shape results from the dynamic balance between net CH$_4$ production, freeze-degassing, and storage of CH$_4$ within the ice cover. Furthermore, inverse modeling has revealed high net CH$_4$ production rates in ponds showing signs of erosion in the surrounding polygonal ground structures, which contrasts with the low net production rates observed in ponds located within almost intact polygonal ground structures. These results have far ranging implications for the CH$_4$ emission potential of lowland tundra landscapes, since:

- The CH$_4$ that is produced during the freezing period is likely to be released into the atmosphere during the spring melt.

- Ponds are abundant in lowland tundra landscapes and their occurrence is closely related to the state of degradation of surface structures in permafrost landscapes. Hence, further degradation of surface structures due to thawing permafrost may affect the occurrence of ponds and thus the CH$_4$ emissions from tundra landscapes.

- The net production of CH$_4$ from ponds that show signs of erosion in the surrounding polygonal ground structures is observed to be two to three orders of magnitude greater than from ponds located within largely intact permafrost. Any future warming-induced erosion and pond expansion may therefore greatly increase the CH$_4$ emission potential of tundra landscapes.
Our ice-wedge ponds indeed are featuring erosion and thermokarst subsidence, but are variably shallow (few cm to <1.5m) and elongated such as your ice-wedge ponds. I don't think you should compare them to your ASPs as they are morphologically very different and it brings confusion (there is already enough confusion about pond classification!).

In our case, in addition to thermokarstic ice-wedge pond class, we combined the 2 other types (your intra-polygonal class + your merged ponds) into the "polygonal ponds" class based on the fact that neither were showing erosion and both were having cyanobacterial mats (sink in CO2). In our case, the merged ponds were not showing erosion features.

Maybe you can distinguish your types, when comparing with other studies, based on erosional features (slumping) as you do below? In other words, time stage is rather more complex and not a good point of comparison.

Of course, the same applies to next sentence (i.e. avoid this confusing comparison of my polygonal ponds to your ISPs; they do not correspond). I suggest that you remove lines 654-661 completely. It's enough that you mention that your values compare well to mine globally. It takes nothing away from the following sentence were you say that YOUR results provide evidence that the marked difference in net CH4 production rates between different ponds types are likely to be due to fundamental differences in biogeochemical processes resulting from active thermal erosion.

I would add explicitly the role of organic matter availability. Did you find difference in the amount of OM in your pond types? (in terms of DOM or in sediments?)

By the way Rautio et al. 2011 is a review and do not present such evidence if I recall correctly. You would rather cite a paper from other arctic regions.

As a note, in fact, if the difference is quite large in Laurion et al. 2010 data series (2007), with median POL = 0.2 and median ice-wedge (RUN) of 1.8 mmol/m²/d (0.05 and 0.45 if I apply a correction factor for the improper use of wind-based model estimations…), the difference between these 2 types gets smaller when using a larger data set (N=129): respectively 0.6 and 1.9 (or 0.14 and 0.46 corrected values).

why referring to this study??

do you mean methanotrophic?? But it would not be necessary as you already say "CH4-oxidizing bacteria".

there is nothing in this section supporting this sentence...

One important aspect to mention is the method used to estimate diffusive summer fluxes as the choice of models (wind-based, ones taking into account heat exchange) or methods (tower, chamber, models) can largely affect the estimations! At least mention how Sachs and Wille obtained their estimations (I think from Eddie tower right?).

I found in average 4 times lower chamber flux values than wind based modeled values... And tower estimations integrate over a certain area over the landscape (including ground) so they are not fully comparable to discrete measurements over a pond. I think this comparison is biaised.

It needs at best further description and justification.

I think this needs to be toned down.
of methane, assuming constant pressure and a water temperature T_w of 273.15 K; R is the universal gas constant; A_0 is the effective bubble size in direct contact with the ice-water interface; $z(t)$ is the ice cover thickness; V_b is the effective volume of bubbles at the ice-water interface; z_0 is the depth of the water column at the start of freezing; C_0 is the concentration of methane in water at the start of freezing; and P is the rate of net methane production in the pond. Equation A4 is modified to

$$N_a = k_1 (z_0 - z(t)), \quad (A7)$$

as soon as CH$_4$ saturation is reached in the remaining water column so that all excess methane is deposited directly into the ice cover. Thus, combining the equations A1 - A7 results in two first order linear differential equations for (i) the duration of CH$_4$ under-saturation ($t \leq t_S$) and (ii) the period of CH$_4$ saturation ($t > t_S$)

$$a C(t) + b \frac{dC(t)}{dt} - P(t) = 0, \quad \text{for } 0 \leq t \leq t_S, \quad (A8)$$

$$c C(t) + d \frac{dC(t)}{dt} - e - P(t) = 0, \quad \text{for } t > t_S, \quad (A9)$$

where a, b, c, d, and e summarize the parameters according to equations A2 - A7. The differential equations can be solved with exponential functions so that the concentration of methane in the water column and in the ice cover can be calculated for each time step in the freezing process.

Acknowledgements. Special thanks go to Katrin Fröb and Karoline Morling for their invaluable work in the field and laboratory. Furthermore, we thank Waldemar Schneider and our Russian partners at AARI and the Lena Delta Reserve for the logistical support of our field work. We gratefully acknowledge the financial support by the Helmholtz Association through a grant (VH-NG 203) awarded to Julia Boike. Furthermore, the authors acknowledge the financial support by the European Union FP7-ENV project PAGE21 under contract number GA282700.

References

I don't think supplement info is cited separately

Cette page ne contient aucun commentaire.