Answer to the referee’s comments

Dear Prof. Dr. Bernard Quéguiner,

We have now resubmitted the revised version of our manuscript entitled *Enhanced viral production and virus-mediated mortality of bacterioplankton in a natural iron-fertilized bloom event above the Kerguelen Plateau.*

We are grateful for the reviewers’ constructive suggestions and considered them carefully. All corrections are highlighted in the attached pdf file (track changes mode of the word document). A detailed point-by-point response to all referee comments is given below.

Andrea Malits on behalf of the co-authors

Anonymous Referee #1

This is a very interesting study, bringing key results for our understanding of the role of viruses in the C-cycle. The manuscript is well written, clear and concise.

I’m picky and I will just mention a few minor points.

Protozoans, protists and HNF are not synonymous and correspond to different microbiol communities. The term protozoan should be avoided as it refers to an obsolete classification. Protists are unicellular eukaryotes of all sizes and encompassing pigmented and non pigmented cells. HNF, for heterotrophic nano-flagellates, corresponds only to non-pigmented protists and of the nano-size fraction. It should be homogenized throughout the paper.

ANSWER: The reviewer’s concerns about the terminology are justified and we replaced ”protozoan” and “protists” by “heterotrophic nanoflagellates (HNF)”.

The recent study of Biller et al. (2014) should shed light on potential biases in the measure of the abundance of viruses using the fluorescent dye method. Indeed, numerous microbes may produce vesicles that can be counted as viruses either by fluorescent microscopy or flow cytometry. This can affect virus abundance, viral production and burst size measurements as done in this study. TEM, though tedious, should considerably reduce this potential bias. The term virus-like particle is thus more suited for Studies were fluorescently stained particles are counted by flow cytometry or
fluorescent microscopy.

Also, the viruses considered in this study comprise bacteriophages but also cyanophages and viruses specific to eukaryotes. Because heterotrophic prokaryotes are more abundant than the other microbial communities, it is likely that most of the viruses are bacteriophages. For both potential biases, the relationships observed between viral and bacterial parameters suggest that these two potential biases might be of minor importance here and would not change the conclusions of the study. However, it could be briefly mentioned in the discussion.

ANSWER: Flow-cytometric assessment of viral abundances may indeed encompass particles other than viruses. However, as insinuated by the referee, bacterial and viral parameters were related significantly (Table 4) and a potential overestimation of viral abundances will probably not change the conclusions of the study. Therefore and for the sake of clarity we prefer to stick to the term virus. We discussed this shortly in the Methods section (P7L13-17).

We are aware of that viral counts by flowcytometry potentially include bacteriophages as well as cyanophages and viruses associated to small eukaryotes. In fact, we avoided the term bacteriophage throughout the manuscript. However, it should be stressed that in the virus reduction approach (VRA), viral counts should mostly include bacteriophages since they comprise viruses released by infected bacteria in a dark incubation of virus-reduced seawater. Cyanobacteria were rare in situ (Gerringa et al., 2008) and not present in the VRA (as assessed by flowcytometry).

Should viruses be considered as “living entities” as mentioned L18 - P10829 in this manuscript or as “biological entities”? This is a hot debate as highlighted by the review of Moreira and López-García (2009) but "biological entities" should be preferred.

ANSWER: We agree with both referees that viruses lacking an own metabolism to reproduce should not be considered as living entities. Therefore we replaced ‘living’ by ‘biological‘ as suggested by both referees.

What hypothesis may explain that there was no lysogenic infection in 9 out of 15 experiments?
ANSWER: It is a common feature that lysogens are induced only in some out of all experiments performed (Boras et al., 2010, Boras et al., 2009, Evans & Brussaard, 2012). The explanation may be the following one and has been added to the discussion (P16L27-P17L7):

In natural communities, lysogens are usually induced by mitomycin C in an experimental approach, but not all prophages can be induced by mitomycin C and this inducing agent may be toxic to some bacteria (Paul, 2008, Paul & Weinbauer, 2010). Thus, lysogeny may be present although not detected.

There are some indications that lysogenic infection occurs preferentially in oligotrophic systems (Boras et al., 2010, Payet & Suttle, 2013). Interestingly, we found no difference in lysogenic infections between trophic situations. It was suggested that enhanced growth causes temperate viruses to enter the lytic cycle (Wilson and Mann 1997). Both, filtration and incubation could have stimulated bacterial production in the virus reduction approach (Weinbauer et al., 2009) and consequently induced prophages in the Mitomycin C treatment controls. Thus again, the low incidence of lysogenic infection in HNLC waters might be an artifact.

Anonymous Referee #2

This is an interesting and well-written article describing the little-studied role of viruses during phytoplankton blooms in a natural iron fertilised region of the Southern ocean. This study helps to unveil more of the key role viruses play in cycling of nutrients and how central the viral shunt is during bloom events in the open ocean. There are just a couple of minor specific points to add.

L18 – P10829: As there is still a lot of debate ongoing with regards to the status of viruses in terms of being ‘living’ entities or not, it would be more appropriate to use the term ‘biological entities’.

ANSWER: This has been changed.

L 9-10 – P10834: – Is it correct that 250 mL seawater was concentrated using TFF or should this read litres?

ANSWER: Yes, mL is correct, 200mL seawater was concentrated by means of a VIVAFLOW50 cartridge.

Enhanced viral production and virus-mediated mortality of bacterioplankton in a natural iron-fertilized bloom event above the Kerguelen Plateau

Andrea Malits¹², Urania Christaki³, Ingrid Obernosterer⁴⁵ and Markus G. Weinbauer¹²

¹ Sorbonne Universités, UPMC Univ Paris 06, UMR 7093, LOV, Observatoire océanographique, F-06230, Villefranche/mer, France
² CNRS, UMR 7093, LOV, Observatoire océanographique, F-06230, Villefranche/mer, France
³ INSU-CNRS, UMR 8187 LOG, Laboratoire d’Océanologie et des Géosciences, Université du Littoral, ULCO, 32 avenue Foch, F-62930 Wimereux, France
⁴ Sorbonne Universités, UPMC Univ Paris 06, UMR 7621, LOMIC, Observatoire océanographique, F-66650 Banyuls/mer, France
⁵ CNRS, UMR 7621, LOMIC, Observatoire océanographique, F-66650 Banyuls/mer, France

Correspondence to: A. Malits (amalits@cadic-conicet.gob.ar)

Running title: Enhanced viral production in iron-fertilized waters
Abstract

Above the Kerguelen Plateau in the Southern Ocean natural iron fertilization sustains a large phytoplankton bloom over three months during austral summer. During the KEOPS1 project (KErguelen Ocean and Plateau compared Study1) we sampled this phytoplankton bloom during its declining phase along with the surrounding HNLC waters to study the effect of natural iron fertilization on the role of viruses in the microbial food web. Bacterial and viral abundances were 1.7 and 2.1 times, respectively, higher within the bloom than in HNLC waters. Viral production and virus-mediated mortality of bacterioplankton was 4.1 and 4.9 times, respectively, higher in the bloom, while the fraction of infected cells (FIC) and the fraction of lysogenic cells (FLC) showed no significant differences between environments. The present study suggests viruses to be more important for bacterial mortality within the bloom and dominate over grazing of heterotrophic nanoflagellates (HNF) during the late bloom phase. As a consequence, at least at a late bloom stage, viral lysis shunts part of the photosynthetically fixed carbon in iron-fertilized regions into the dissolved organic matter (DOM) pool with potentially less particulate organic carbon transferred to larger members of the food web or exported.
1 Introduction

A quarter of a century ago the importance of viruses as the most abundant biological entity in the oceans (Bergh et al., 1989) and their role in the material and energy cycles have been recognized (Proctor and Fuhrman, 1990; Suttle et al., 1990). Shortly afterwards, Smith et al. (1992) conducted the first study on viral distribution and their relationship to bacteria in the Southern Ocean. Since then studies on viral abundance and production or infectivity in the cold high latitude marine environments remained limited or are only recently accumulating (Bird et al., 1993; Brussaard et al., 2008b; Evans and Brussaard, 2012; Evans et al., 2009; Guixa-Boixereu et al., 2002; Higgins et al., 2009; Manganelli et al., 2009; Marchant et al., 2000; Payet and Suttle, 2008, 2013; Smith et al., 1992; Steward et al., 1996; Strzepek et al., 2005; Weinbauer et al., 2009a).

These observations demonstrate that viruses are ecologically as important in these cold environments as in other world’s oceans. Viral lysis of cells converts particulate organic matter into dissolved and colloidal organic matter, reduces the carbon flow to higher trophic levels and increases the residence time of carbon and mineral nutrients in the euphotic zone (Fuhrman, 1999). By this process, called the “viral shunt” (Wilhelm and Suttle, 1999), heterotrophic bacteria are supplied with substrate, which finally increases respiration (Bonilla-Findji et al., 2008; Middelboe and Lyck, 2002). This could reduce the efficiency of the biological carbon pump, i.e. the process which transforms inorganic to organic carbon, part of which is then transferred to the deep ocean (Suttle, 2007). The relative significance of viral lysis and protistan grazing can strongly vary on temporal and spatial scales (Boras et al., 2009; Fuhrman and Noble, 1995). This has also been shown for cold marine environments (Boras et al., 2010; Guixa-Boixereu et al., 2002; Steward et al., 1996; Wells and Deming, 2006).

In about one-third of the World Ocean, including the sub-arctic northeast Pacific, the equatorial Pacific and the Southern Ocean, phytoplankton growth is limited by available iron resulting in excess phosphorus and nitrogen (Martin and Fitzwater, 1988). In these high nutrient-low
chlorophyll (HNLC) regions, bacterioplankton are thought to be the key player of the « microbial ferrous wheel » (Kirchman, 1996), i.e. the uptake and remineralization of iron. Bacterioplankton contain more than twice iron per carbon units than eukaryotic phytoplankton, and they can thereby store up to 50% of the biogenic iron in the HNLC ocean (Tortell et al., 1996).

Viral activity has a potential impact on nutrient regeneration. Typically, nutrients released as a result of viral lysis are thought to be organically complexed, which may facilitate their use by marine plankton (Poorvin et al., 2004; Rue and Bruland, 1997). Iron released by viral lysis can account for more than 10% of ambient Fe concentrations (Gobler et al., 1997) and thus potentially relieve its limitation in depleted environments. Furthermore, marine viruses may serve as nuclei for iron adsorption and precipitation, and thus represent a significant reservoir of iron in seawater (Daughney et al., 2004). Despite their key role, viruses are hardly included in iron enrichment studies. These experiments were originally stimulated by the “iron hypothesis” (Martin, 1990) which assigns iron a paramount role in controlling ocean productivity and consequently atmospheric carbon dioxide concentrations. Only two out of 13 iron fertilization experiments so far performed (Secretariat of the Convention on Biological Diversity, 2009) report on viral abundance and activity (Higgins et al., 2009; Weinbauer et al., 2009a). Both studies from the Subartic and Southern Ocean, respectively, found that viral production was significantly enhanced after iron fertilization.

Above the Kerguelen Plateau in the Southern Ocean, the largest HNLC ocean, a large phytoplankton bloom occurs annually during austral summer. The continuous supply of Fe and major nutrients from below has been shown to sustain this massive bloom (Blain et al., 2007). The region off Kerguelen provides the opportunity to study natural iron fertilization in the Southern Ocean and to compare it to blooms induced by mesoscale Fe additions. Within the KEOPS1 project (KErguelen Ocean and Plateau compared Study1, 2005-2007), we sampled the phytoplankton bloom above the Kerguelen plateau during its late successional stage (~ 3rd month) along with the surrounding HNLC waters. The aim of the present study was to assess the role of viruses within the microbial food web affected by natural Fe fertilization and to elucidate the
possible implications for the final destiny of organic carbon. For this purpose, we measured viral
production, the fraction of infected cells (FIC), lysogeny and estimated bacterial mortality
through viral lysis in the bloom and surrounding HNLC waters.
2 Material and Methods

2.1 Description of the study site

Sampling was performed in the Indian sector of the Southern Ocean above the Kerguelen Plateau (49°-53° S and 72°-78° E) in austral summer (18 January – 13 February 2005) on board the R/V Marion Dufresne in the framework of the project KEOPS (Blain et al., 2008). We sampled a large phytoplankton bloom dominated by diatoms from its peak to its decline (Mosseri et al., 2008) (Figure 1). Satellite images dated the onset of this bloom more than two month before its first visit (Blain et al., 2007). Hydrographic conditions are described in detail in Park et al. (2008). Dissolved Fe concentrations in the surface mixed layer were low and similar on and off the plateau (0.09 ± 0.03 nM) but increased with depth above the plateau reaching a mean maximum of 0.35 nM at 500m. This strong vertical gradient in combination with physical features such as internal waves and tidal activity sustained the phytoplankton bloom above the plateau (Blain et al., 2007).

2.2 Sampling strategy

Water was collected using General Oceanics 12L Niskin bottles mounted on a rosette with a Sea Bird SBE19 plus CTD sensor for salinity, temperature and oxygen from 2-3 depths (within and below the surface mixed layer) at the following stations to cover the centre and borders of each of three transects (A, B, C): A3, A11, B1, B5, B11, C3 and C11 (Figure 1, Table 1). The stations A3 and C11 were considered as the most contrasting stations and sampled repeatedly. The first sampling of station A3 (A3-1) was done during the peak of the bloom, and about two weeks later, station A3 was re-sampled at a fourth visit (A3-4) during the decline of the bloom. Station B5 was situated within a new phytoplankton bloom above the Kerguelen plateau (Obernosterer et al., 2008). Station A11 was located in iron-fertilized waters. The annually occurring spring bloom developed prior to our visit, explaining the low concentrations of chl a at this site (Table 1). Stations B11, C3 and C11 were in HNLC waters off the Kerguelen plateau and the latter was sampled twice (Table 1).

Total chlorophyll a (Chl a and divinyl-Chl a) was measured by High Performance Liquid
2.3 Enumeration of viruses and prokaryotes

Subsamples (2 mL) were fixed with glutaraldehyde (0.5% final concentration), incubated for 15-30 minutes at 4°C, subsequently frozen in liquid nitrogen and stored at –80°C. Within a few days samples were thawed and viral particles and bacteria were stained with SYBR Green I (Molecular Probes) and quantified using a FACSscalibur (Becton and Dickinson) flow-cytometer after dilution with TE buffer (10mM Tris, 1 mM EDTA, ph = 8). For viruses an optimized protocol by Brussaard (2004) was followed. Viruses and prokaryotes were determined in plots of 90° light scatter (SSC) and green DNA fluorescence. Differences in the green fluorescence and side scatter signature in the cytometric plot allowed to separate prokaryotes with low nucleic acid content (LNA) from prokaryotes with high nucleic acid content (HNA) as previously described by Gasol et al. (1999). Similarly, different size classes of viruses were distinguished on the basis of green fluorescence. Abundances were calculated by the used flow rate.

Flow-cytometric assessment of viral abundance may encompass particles other than viruses such as bacterial vesicles (Biller et al., 2014). However, since bacterial and viral parameters were related significantly (Table 4), a potential overestimation of viral abundances did probably not bias the conclusions of the study.

To convert bacterial abundance (BA) to biomass we used a conversion factor of 12.4 fg C cell⁻¹ for oceanic prokaryotes (Fukuda et al., 1998).

2.3 Bacterial Production

The incorporation of ³H leucine into protein (Smith and Azam, 1992) was used to estimate the production of heterotrophic bacteria (BP). At each depth, 1.5 mL duplicate samples and a trichloroacetic acid (TCA)-killed control were incubated with a mixture of L-[4,5-³H] leucine (Amersham, 160 Ci mmol⁻¹) and nonradioactive leucine added at final concentrations of 7 nM and 13 nM for the upper 100 m, and 13 nM and 7 nM for the 100-200 m depth layer. Samples were incubated in the dark at the ambient temperature of the depth where samples were collected. The incubation time (2-3h) was tested to satisfy linear incorporation with time. We checked by
concentration kinetics (2.5, 5, 10, 20 and 40 nM), at 3 stations inside and outside the bloom at 5 m and 175 m depths that there was no isotopic dilution. The theoretical conversion factor of 1.55 kg of C mol⁻¹ was used to convert leucine incorporation rates to prokaryotic carbon production (Kirchman, 1993).

2.4 Viral production, the fraction of infected cells and the fraction of lysogenic cells

Lytic viral production (VP₁), the fraction of infected cells (FIC), induced viral production (VP₂) and the fraction of lysogenic cells (FLC) were estimated using the virus reduction approach (VRA, Weinbauer et al., 2009b; Wilhelm et al., 2002). The rationale behind VRA is to reduce viral abundance in order to stop new viral infection. Thus, the viruses produced originate from already infected cells. Briefly, bacteria from 200 mL raw seawater were concentrated using a tangential flow system with a peristaltic pump (Watson-Marlow 323) equipped with a 0.2 µm cartridge (VIVAFLOW 50). To obtain virus-free seawater, the 0.2 µm pore-size ultrafiltrate was passed through a 100kDalton cartridge (VIVAFLOW 50). The bacterial concentrates were brought up to the original volume with virus-free seawater and incubated in duplicate 50 mL Falcon tubes in the dark at ± 2°C in situ temperature for 24 hours. Lysogeny was estimated by adding mitomycin C (SigmaChemical Co, No. M-0503, final concentration 1 µg mL⁻¹) to duplicate 50mL Falcon tubes in order to induce the lytic cycle in lysogens; untreated duplicate samples served as controls (Paul and Weinbauer, 2010). Subsamples (2mL) for viral and bacterial abundance from each incubation were taken immediately (t₀ samples) and every 3-4 hours, fixed with glutaraldehyde (0.5% final concentration), incubated for 15-30 minutes at 4ºC, subsequently frozen in liquid nitrogen and stored at –80ºC until enumeration using a flow-cytometer as described above. VP was calculated as

\[VP_i = \frac{(V_2 - V_1)}{(t_2 - t_1)} \] (1)

where \(V_1 \) and \(V_2 \) are viral abundances and \(t_1 \) and \(t_2 \) the elapsed time. Dividing the number of produced phages by an estimated burst size (BS, i.e. the number of phages released during the
lysis of a single host) yields the number of lysed cells and thus gives an estimation of FIC
(Weinbauer et al., 2002). FIC was calculated as
\[FIC = 100 \times \frac{[V_2 - V_1]}{BS \cdot BA} \] (2)
where BA is the bacterial abundance at \(t_0 \). The difference in phage abundance between lysogeny
treatment and the control is the number of induced phages, which is divided by BS to estimate the
fraction of lysogenic cells (FLC). FLC was calculated as
\[FLC = 100 \times \frac{[V_{MC} - V_C]}{BS \cdot BA} \] (3)
where \(V_{MC} \) and \(V_C \) is the maximum difference in viral abundance at corresponding time points in
control and mitomycin C treatments, respectively. Calculations were performed for each replicate
separately.

2.5 Contact rates
The rates of contact (R, number mL\(^{-1}\) d\(^{-1}\)) between viruses and bacteria were calculated by using
the following equations (Murray and Jackson, 1992).
\[R = Sh \times 2 \pi d \times D_v \times VA \times BA, \] (4)
where \(Sh \) is the Sherwood number [1.06 for a bacterial community with 10% motile cells;
(Wilhelm et al., 1998)], \(d \) is the diameter of the target, \(VA \) and \(BA \) are the abundances of viruses
and bacteria, respectively, and \(D_v \) is the diffusivity of viruses.
\[D_v = k \times \frac{T}{(3 \times \pi \times \mu \times d_v)} = 5 \times 10^{-8} \text{ cm}^2 \text{ s}^{-1}, \] (5)
where \(k \) is the Boltzmann constant (1.38 \times 10^{-23} \text{ J K}^{-1}), \(T \) is the \textit{in situ} temperature (~275 K), \(\mu \) is
the viscosity of water (Pascal s\(^{-1}\)) and \(d_v \) is the diameter of the viral capsid (~60 nm). The contact
rates were divided by \textit{in situ} bacterial abundance to estimate the number of contacts per cell on a
daily basis.

2.6 Bacterial mortality
To obtain the rate of cell lysis, viral production corrected for \textit{in situ} bacterial abundance was
divided by an estimated BS following the approach of Wells and Deming (2006), i.e. dividing the
number of viruses produced during the first hours of incubation by the concomitant decline of
bacterial abundance. The number of lysed bacteria was converted into carbon by the factor of 1.24 fg C cell\(^{-1}\) (Fukuda et al., 1998). The fraction of bacterial mortality through viral lysis (VMM) was calculated following the Model by Binder (1999).

\[
VMM = \frac{FIC}{\ln(2)} \times (1 - 0.186 - FIC) \tag{6}
\]

2.7 Statistics

Normal distribution of data was checked using the Shapiro-Wilk W-test. Differences between different trophic situations were analyzed by the Kruskal-Wallis test for non parametric data and by one-way ANOVA for normally distributed data. Spearman rank correlation for non normally distributed data was applied. Significance was considered for \(P < 0.05\).
3 Results

3.1 Bacterial and viral abundances

From surface water down to 200m, BA was on average 1.7 fold higher within the Fe-fertilized (3.9 x 10^5 mL^-1) than in HNLC waters (2.4 x 10^5 mL^-1, Kruskal-Wallis test, \(P < 0.0001 \), Table 2; Figure 2). Similarly, viral abundance (VA) averaged 9.9 x 10^6 mL^-1 at the Fe-fertilized stations and was twice as high than in the HNLC environments (4.7 x 10^6 particles mL^-1, Kruskal-Wallis test, \(P < 0.05 \), Table 2). VA ranged from 3.1 - 14.2 x 10^6 mL^-1 with the highest values found at the main bloom station A3 and the lowest value detected in the deep layer of the HNLC station B11. Viruses were homogeneously distributed with depth at the HNLC stations. The virus to bacteria ratio (VBR) ranged from 11 to 34 and averaged 21 without significant differences between stations or trophic situations.

3.2 Contact rates

Contact rates were significantly higher at the Fe-fertilized stations than in HNLC waters (Kruskal-Wallis test, \(P < 0.05 \), Table 2). At the Fe-fertilized stations, on average 29.4 ± 11.1 viruses contacted a bacterial cell per day while in the HNLC waters contact rates were 14.2 ± 4.4 viruses cell^-1 d^-1 with the highest values at the bloom station A3 and the lowest at the HNLC station B11 in accordance to the highest and lowest viral abundances, respectively (see Figure 2).

3.3 Bacterial production, viral production, fraction of infected cells, lysogeny

Bacterial production ranged from 0.1 - 0.7 \(\mu \)gC L^-1 d^-1 at the HNLC stations and from 0.1- 2.5 \(\mu \)gC L^-1 d^-1 at the Fe-fertilized stations (Table 2). The highest values were found throughout the depth profile of the main bloom station A3-1 and the lowest values were measured between 150 and 200m at the HNLC stations. Despite the wide range of values, BP was on average four times higher at the Fe-fertilized stations than at the HNLC stations (Kruskal-Wallis test, \(P < 0.0001 \), Table 2).
Initial virus abundance in the VRA was 45 ± 25% (11 – 88%) of *in situ* abundance. Pre-filtration through 0.2µm and 100kDa cartridge to obtain virus-free water and bacterial concentrate and adding back resulted on average in recovery efficiencies of 26% ± 18% (5-83%).

Lytic viral production (VP), corrected for *in situ* bacterial abundance averaged 59.0 x 10^6 mL^-1 d^-1 in the naturally Fe-fertilized patch compared to 14.5 x 10^6 mL^-1 d^-1 in the HNCL environments. This 4.1 fold difference was significant (Kruskal-Wallis test, P < 0.05, Table 2). Induced viral production (VPi) was detected in 4 out of 9 stations (3 fertilized and 1 HNLC stations, Table 3) and averaged 44.8 ± 44.2 x 10^6 mL^-1 d^-1 (Table 2). VPi at the main bloom station A3 at 50m increased from the first visit (15.6 x 10^6 mL^-1 d^-1) to the fourth visit (105.6 x 10^6 mL^-1 d^-1) by a factor of 6.8, when the decline of the bloom was sampled. BS estimates ranged from 36 to 261 with mean values of 115 ± 74 in the bloom and 139 ± 77 in the HNLC waters.

Although FIC values at the Fe-fertilized stations almost doubled that in HNLC waters, this difference between environments was not significant (Kruskal-Wallis test, Table 2). Average values for duplicate assays ranged from 4% to 47% (average: 22%) in fertilized waters and from 3% to 23% (average: 12%) in HNLC waters. Lysogenic infection of bacterioplankton could be detected only in 7 out of 15 lysogenic phage induction essays and ranged from 1-31% in fertilized waters and from 1-4% in the HNLC environment.

At the fertilized stations, on average 5.4 ± 4.1 x 10^5 bacteria mL^-1 d^-1 were lysed, 5 times more than at the HNLC stations (1.1 ± 0.6 10^5 bacteria mL^-1 d^-1; P < 0.05, Kruskal-Wallis test, Table 2).

The resulting viral mediated loss of bacterial standing stock was on average 44 ± 24 % per day in the HNLC waters and more than twice as high at the fertilized stations although this was not significant (104 ± 76 % d^-1, Kruskal-Wallis test, Table 2). The fraction of bacterial mortality through viral lysis (VMM) following the model by Binder (1999) averaged 72 ± 72% in the bloom and 27 ± 19% at the HNLC sites (Kruskal-Wallis, ns, Table 2).

3.4 Relation between the different parameters

Spearman rank correlation coefficients ρ for chlorophyll a, viral and bacterial parameters from HNLC and bloom stations are shown in Table 4. BA and BP correlated positively throughout
trophic situations but only in HNLC waters, BA and BP increased with chla. In the fertilized
waters VA correlated positively with BP while in HNLC waters VP increased with BA. Only in
these waters VP correlated significantly and positively with the fraction of infected cells (Table
4).
4 Discussion

Viruses were the dominant mortality factor of bacteria during the late stage of a phytoplankton bloom induced by natural iron fertilization in the Southern Ocean (second visit to A3) but accounted for a small part of bacterial mortality within a new bloom (station B5, Table 3). Additionally, observations from the early bloom phase showed that heterotrophic nanoflagellates (HNF) dominated the loss of BP, and viruses accounted for only 10% of bacterial mortality (Christaki et al., 2014). These seasonal dynamics point to a switch from an efficient functioning of the microbial food web during the onset of the phytoplankton bloom to a microbial food web where organic carbon is mainly processed by the viral shunt. The increase in viral mediated release of dissolved organic carbon over time has important consequences for the fate of part of the photosynthetically fixed carbon and reduces its transfer to higher trophic levels and export.

4.1 Comparison of viral data with high latitude marine environments

Viral production rates in the present study match well the data obtained from the Australian Sector of the Southern Ocean (Evans et al., 2009) and are within the range of VP rates from an iron induced bloom in the subarctic Pacific (Higgins et al., 2009). However, our VP rates are high when compared to data from an artificial iron-fertilization experiment in the Southern Ocean (Weinbauer et al., 2009a) or those from other high latitude marine environments, i.e. the Arctic Sea (Steward et al., 1996; Boras et al., 2010) (Table 5). Differences between studies could be due to spatio-temporal variations of VP, however, it is also conceivable that differences between methods (Helton et al., 2005; Weinbauer et al., 2009a; Winget et al., 2005) have contributed to the variability of reported VP data.

In the present study, the burst size averaged 128 throughout the experiments. This value is high compared to two studies from the Southern Ocean where measured BS was about 40 (Strzepek et al., 2005; Weinbauer et al., 2009a) and to a study in early spring above and off the Kerguelen plateau where BS evaluated with TEM observations varied from 6 to 88 (mean±SD, 22±15, Christaki et al., 2014). These different BS could be inherent to the study regions or due to the
used method, i.e. estimating BS by an increase in VA and a decrease of BA in the VRA (Wells and Deming, 2006) which can result in increases of BP and thus potentially increase VP (Helton et al., 2005; Weinbauer et al., 2009a; Winget et al., 2005). However, Steward et al. found BS as high as 270 for areas of high productivity in the Chukchi Sea and studies from the North Sea have reported 100 phages produced per lysed bacterium (Brathak et al., 1992).

4.2 Viruses in HNLC waters versus a phytoplankton bloom induced by natural iron fertilization

Viral distribution during the late stage of the phytoplankton bloom above the Kerguelen plateau and its relation to the bacterial hosts (e.g. VBR) and phytoplankton biomass is extensively reported, discussed and compared to existing data from similar regions in Brussard et al. (2008b). During the late bloom average viral abundance at the bloom stations was twice as high as in HNLC waters (Brussaard et al., 2008b), while during the early bloom viral abundance remained unaffected (Christaki et al., 2014). Data from mesoscale Fe fertilization experiments showed that viral abundance inside the fertilized patch were higher (Weinbauer et al., 2009a) or not substantially different from outside (Higgins et al., 2009). The authors of the latter study explained the lack of differences between inside and outside the fertilized patch with the time lag of the microbial response to the induced bloom, since viral abundance and production were only increasing at the end of their observations (day 12 after iron fertilization). This observation is in line with the increase in viral abundance and activity on a seasonal scale in the Kerguelen bloom (Christaki et al., 2014).

The present study observed a mature bloom and could thus track a period with a more pronounced microbial response. The 4 times higher viral production at the naturally Fe-fertilized study sites compares well to the 3 fold increase in phage production after an induced bloom through iron addition (Weinbauer et al., 2009a). Interestingly, Christaki et al. (2014) reported higher VP rates already at the early bloom stages. Thus, there is a trend of higher viral production in the iron-fertilized bloom compared to the surrounding HNLC waters consistent with existing
data on iron fertilization (Weinbauer et al., 2009a). Complementary, within the bloom, HNF did not seem to control enhanced bacterial production rates while in HNLC waters heterotrophic
HNF consumed 95% of bacterial production (Christaki et al., 2008). These studies suggest that there is a switch towards viral lysis dominating in the bloom situations. More generally, this is in accordance with previous studies across environments which showed viral influence to be more important in more eutrophic waters (Weinbauer et al., 1993; Steward et al., 1996), particularly in the cold environments such as the Arctic (Steward et al., 1996) or the Southern Ocean, where Guixa-Boixereu et al. (2002) found that viruses were responsible for the entire bacterial mortality. The high viral induced mortality in the bloom could also be a reason for low biomass accumulation, despite the high BP. We calculated carbon release rates through viral lysis in two ways; first, based on VP, and second, based on VMM related to FIC by a Model of Binder (1999) (Table 6). Independent of the absolute values, which were one order of magnitude higher in the former than in the latter way (Table 6), C-release through viral lysis was 5-8 times higher in the Fe-fertilized than in the surrounding HNLC waters.

The percentages of lysogens (i.e. bacteria containing temperate viruses) were more variable in the fertilized (0-31 %) than in the HNLC waters (0-4%) but not significantly different between environments. Consistent with our study, Weinbauer et al. (2009a) did not find differences inside and outside the iron-enriched patch during a fertilization experiment in the Southern Ocean. The proportion of the lysogenized bacterial population can vary extensively, for example, from 1.5 to 11.4% in the Gulf of Mexico (Weinbauer and Suttle, 1996), from 4 to 38% in the Canadian Arctic Shelf (Payet and Suttle, 2013) and from 0 to 100% in Tampa Bay, Florida (Williamson et al., 2002). According to conceptual models, lysogeny should occur in environments, where the contact rate between infective phage and hosts is too low to sustain the lytic life style (Paul et al., 2002), e.g. in deep sea where host abundance was low and lysogeny was highest in an across system study (Weinbauer et al., 2003) or when system productivity is low (Payet and Suttle, 2013). Apparently, this was not the case in the present study as the fraction of lysogenic cells was not different between trophic situations. It was suggested that enhanced growth causes temperate
viruses to enter the lytic cycle (Wilson and Mann 1997). Both, filtration and incubation could
have stimulated bacterial production in the virus reduction approach (Weinbauer et al., 2009a)
and consequently induced prophages in the mitomycin C treatment controls. Additionally, it has
to be stressed that mitomycin C used as an inducing agent of lysogens in the natural bacterial
communities may not induce all prophages and be toxic to some bacteria (Paul, 2008; Paul and
Weinbauer, 2010). Thus, the apparent low incidence of lysogenic infection, particularly in HNLC
waters might be an artifact. However, it could also be that the study period was not long enough
to induce potential changes of lysogenic infection. In addition, our study provides no evidence
that lysogens were induced by relieving iron addition.

4.3 Role of viruses for sustaining phytoplankton productivity by Fe-supply
Bacteria store about 50% of the biogenic iron in HNLC areas (Tortell et al., 1996) and the mode
of bacterial mortality will affect the way of Fe regeneration and bioavailability (Kirchman,
1996; Mioni et al., 2005; Strzepek et al., 2005). While viral lysis liberates organically complexed
iron, which may be assimilated rapidly, grazing mainly sets free inorganic Fe (Gobler et al.,
1997; Poorvin et al., 2004). Assimilation studies with a model heterotrophic bacterium
demonstrated that Fe in the virus mediated cell lysates was more bioavailable than the
siderophores produced by the same cells supporting the importance of virus-mediated Fe
regeneration in marine surface waters (Poorvin et al., 2011). We calculated Fe release rates in
two ways; first, based on VP, and second, based on VMM related to FIC by a Model of Binder
(1999). The former resulted in average iron regeneration rates due to viral lysis of bacteria of
4.18 and 0.86 pMol Fe d^{-1} in fertilized and HNLC waters, respectively, while the latter resulted in
more realistic values ranging from 0.03 pM d^{-1} to 1.58 pM d^{-1} (average: 0.42 ± 0.49 pM d^{-1}) in
iron-fertilized and from 0.004 pM d^{-1} to 0.12 pM d^{-1} (average: 0.05 ± 0.05 pM d^{-1}) in HNLC
waters (Table 6). These values are similar to those found in the Southern Ocean (Evans and
Brussaard, 2012) and an iron-induced bloom (ibid., Weinbauer et al., 2009a) but low compared to
other studies. Poorvin et al. (2004) reported Fe regeneration rates of 19.2-75.5 pM d^{-1} in HNLC
waters off Peru, and Strzepek et al. (2005) found a high range over two orders of magnitude of
0.4-28 pM d\(^{-1}\) in HNLC waters SE of New Zealand. Fe regeneration rates are calculated from
viral induced bacterial loss, which is inversely related to burst size. When taking into account that
the calculated burst size in the present study was five times higher than the assumed BS in the
study of Poorvin et al. (2004), the values in the present study compare well to data on Fe
regeneration through viral activity from artificial fertilization experiments and other
environments.

Significantly more iron was released by viral lysis within the naturally Fe-fertilized bloom than at
the HNLC stations (\(P < 0.05\), Kruskal-Wallis, Table 6). The concentration of dissolved iron in
the surface mixed layer on and off the Kerguelen plateau were typical for the open Southern
Ocean and averaged 90 ± 34 pM (Blain et al., 2007) and the estimated biogenic iron pool at the
main bloom station equaled 80 ± 9 pM (Sarthou et al., 2008). Taking into account the total Fe
demand of the producers within the bloom of 6.04 ± 0.62 pM d\(^{-1}\) (Sarthou et al., 2008), the
remobilization of iron through viral lysis above the Kerguelen plateau following the Model by
Binder (1999) accounts for up to 26% of the demand of the producers and this appears to be a non-
negligible iron source for sustaining plankton productivity.

4.4 Implications for carbon cycling and sequestration

Enrichment of bacterial biomass and production in the naturally fertilized bloom in the present
study ranged from 287 to 797 mg C m\(^{-2}\) and from 23.5 mg C m\(^{-2}\) d\(^{-1}\) to 304 mg C m\(^{-2}\) d\(^{-1}\),
respectively (Christaki et al., 2008). Bacterial abundance and production are often correlated with
viral abundance and production. Thus, elevated bacterial activity in the (natural or induced)
bloom could explain the enhanced viral abundance and production found in previous in situ Fe
enrichment studies (Arrieta et al., 2000; Higgins et al., 2009; Weinbauer et al., 2009a).
The finding of higher viral lysis rates of bacteria in the sites of natural Fe fertilization, where
HNF grazing could only explain a small fraction of bacterial mortality (Christaki et al., 2008) has
important implications for the carbon cycling. Due to enhanced viral lysis, less carbon will be
transferred to larger members of the food web but becomes again part of the DOM pool (Middelboe et al., 1996). This viral shunt should result in elevated bacterial production and respiration, thus more CO$_2$ would be produced and less carbon sequestered. Experimental studies indicate that most of the lysis products belong to the labile fraction of DOM and are consequently rapidly degraded (Weinbauer et al., 2011). By the transformation of bacterial biomass into DOM, viruses have the effect of retaining carbon and nutrients in the photic zone (Suttle, 2007). Thus, viral lysis of bacteria could short-circuit the biological pump (Brussaard et al., 2008a).

However, there are other possible scenarios. For example, microbial activity converts part of the organic matter into recalcitrant DOM (RDOM) that is resistant to microbial utilization and can persist in the interior of oceans for up to thousand of years. The detailed role of viral lysis in this new concept of the microbial carbon pump (MCP) (Jiao et al., 2010) is still poorly known. However, a compilation of data suggests that viral lysis increases the DOM pool and the ratio of recalcitrant vs labile organic matter (Weinbauer et al., 2011). Thus, enhanced viral lysis of bacteria due to Fe fertilization could result in an enhanced carbon sequestration not related to the biological pump.

Rates of bacterial production ([H3] leucine incorporation) and respiration (< 0.8 μm size-fraction) were 5-6 times higher in the bloom at Station A3 than those in surrounding HNLC waters indicating that heterotrophic bacteria within the bloom processed a significant portion of primary production with most of it being rapidly respired (Obernosterer et al., 2008) fueling the CO$_2$ pool. This scenario is coherent with the finding of small particulate organic carbon export fluxes to depth necessary for long-term sequestration (de Baar et al., 2005;Street and Paytan, 2005), despite the role of iron in regulating primary productivity. However, most in situ mesoscale iron enrichment experiments so far performed in the HNLC regions did not last long enough to follow the termination of the bloom (Buesseler and Boyd, 2003;Smetacek et al., 2012). In the present study, we sampled a bloom in its late successional stage and could thereby track the fate of fixed carbon by an iron-fertilized phytoplankton bloom. Figure 4 shows a simple sketch to highlight the importance of each compartment of the microbial food web in the transfer of organic material...
in an Fe-fertilized bloom compared to HNLC waters. Sequestration of material in viruses, bacteria and dissolved matter may lead to stronger retention of nutrients in the euphotic zone in systems with high viral lysis rates of bacteria, because more material remains in these small non-sinking forms. This could be of major importance for large-scale iron fertilization of ocean regions as a means of enhancing the ability of the ocean to store anthropogenic CO$_2$ and mitigate 21st century climate change.

5 Conclusions

Enhanced bacterial production following the iron-fertilized phytoplankton bloom induced a switch from grazing to viral lysis as major mechanisms causing bacterial mortality. This could change the carbon flow through the microbial food web. We suggest that enhanced viral lysis of bacteria short-circuits the biological pump but potentially prime the microbial carbon pump.

Acknowledgements

We thank the chief scientists (S. Blain and B. Quéguiner) for the possibility to participate in this cruise, the captain and crew of R.V. Marion Dufresne for their efficient assistance during work at sea and the colleagues for help on board. The financial support was provided by the European Union in the framework of the BASICS project (EVK3-CT-2002-00078), by the French Research program of the INSU-CNRS PROOF, the French Polar Institute (IPEV) and a spanish grant from the ministry of education (SB2010-0079) to A.M.

References

Table 1. Date, location, mixed layer depth (Zm) and physicochemical characteristics of all sampled stations.

<table>
<thead>
<tr>
<th>Date</th>
<th>Station</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Water type</th>
<th>Zm (m)</th>
<th>Sampling depth (m)</th>
<th>T °C</th>
<th>Salinity</th>
<th>Chla µg L⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/19/05 A3-1</td>
<td>50°38'S</td>
<td>72°05'E</td>
<td>+ Fe</td>
<td>52</td>
<td>10</td>
<td>3.5</td>
<td>33.9</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>1/19/05 A3-1</td>
<td>50°38'S</td>
<td>72°05'E</td>
<td>+ Fe</td>
<td>52</td>
<td>50</td>
<td>3.3</td>
<td>33.9</td>
<td>1.72</td>
<td></td>
</tr>
<tr>
<td>1/19/05 A3-1</td>
<td>50°38'S</td>
<td>72°05'E</td>
<td>+ Fe</td>
<td>52</td>
<td>100</td>
<td>3</td>
<td>33.9</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>1/20/05 A11</td>
<td>49°09'S</td>
<td>74°00'E</td>
<td>+ Fe</td>
<td>44</td>
<td>10</td>
<td>3.8</td>
<td>33.9</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>1/20/05 A11</td>
<td>49°09'S</td>
<td>74°00'E</td>
<td>+ Fe</td>
<td>44</td>
<td>75</td>
<td>3.3</td>
<td>33.9</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>1/20/05 A11</td>
<td>49°09'S</td>
<td>74°00'E</td>
<td>+ Fe</td>
<td>44</td>
<td>200</td>
<td>1.6</td>
<td>34.1</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>1/26/05 C11-1</td>
<td>51°39'S</td>
<td>78°00'E</td>
<td>- Fe</td>
<td>73</td>
<td>10</td>
<td>1.9</td>
<td>33.8</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>1/26/05 C11-1</td>
<td>51°39'S</td>
<td>78°00'E</td>
<td>- Fe</td>
<td>73</td>
<td>80</td>
<td>1.6</td>
<td>33.8</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>1/26/05 C11-1</td>
<td>51°39'S</td>
<td>78°00'E</td>
<td>- Fe</td>
<td>73</td>
<td>200</td>
<td>1.3</td>
<td>34.2</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>1/29/05 B11</td>
<td>50°30'S</td>
<td>77°00'E</td>
<td>- Fe</td>
<td>59</td>
<td>10</td>
<td>2.2</td>
<td>33.8</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>1/29/05 B11</td>
<td>50°30'S</td>
<td>77°00'E</td>
<td>- Fe</td>
<td>59</td>
<td>120</td>
<td>0.5</td>
<td>33.8</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>1/29/05 B11</td>
<td>50°30'S</td>
<td>77°00'E</td>
<td>- Fe</td>
<td>59</td>
<td>200</td>
<td>0.2</td>
<td>34.1</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>2/1/05 B5</td>
<td>51°06'S</td>
<td>74°36'E</td>
<td>+ Fe</td>
<td>84</td>
<td>60</td>
<td>2.8</td>
<td>33.9</td>
<td>1.54</td>
<td></td>
</tr>
<tr>
<td>2/1/05 B5</td>
<td>51°06'S</td>
<td>74°36'E</td>
<td>+ Fe</td>
<td>84</td>
<td>100</td>
<td>2.6</td>
<td>33.9</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>2/2/05 B1</td>
<td>51°30'S</td>
<td>73°00'E</td>
<td>+ Fe</td>
<td>59</td>
<td>60</td>
<td>3.3</td>
<td>33.9</td>
<td>1.29</td>
<td></td>
</tr>
<tr>
<td>2/2/05 B1</td>
<td>51°30'S</td>
<td>73°00'E</td>
<td>+ Fe</td>
<td>59</td>
<td>100</td>
<td>2.7</td>
<td>33.9</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>2/4/05 A3-4</td>
<td>50°39'S</td>
<td>72°05'E</td>
<td>+ Fe</td>
<td>80</td>
<td>50</td>
<td>3.6</td>
<td>33.9</td>
<td>1.48</td>
<td></td>
</tr>
<tr>
<td>2/4/05 A3-4</td>
<td>50°39'S</td>
<td>72°05'E</td>
<td>+ Fe</td>
<td>80</td>
<td>150</td>
<td>1.7</td>
<td>33.9</td>
<td>1.54</td>
<td></td>
</tr>
<tr>
<td>2/6/05 C11-2</td>
<td>51°39'S</td>
<td>78°00'E</td>
<td>- Fe</td>
<td>20</td>
<td>60</td>
<td>1.6</td>
<td>33.8</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>2/6/05 C11-2</td>
<td>51°39'S</td>
<td>78°00'E</td>
<td>- Fe</td>
<td>20</td>
<td>100</td>
<td>0.6</td>
<td>33.9</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>2/9/05 C3</td>
<td>52°43'S</td>
<td>74°49'E</td>
<td>- Fe</td>
<td>42</td>
<td>60</td>
<td>2.5</td>
<td>33.9</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>2/9/05 C3</td>
<td>52°43'S</td>
<td>74°49'E</td>
<td>- Fe</td>
<td>42</td>
<td>100</td>
<td>1.9</td>
<td>33.9</td>
<td>0.17</td>
<td></td>
</tr>
</tbody>
</table>

T, temperature in ° Celsius; chl a, total chlorophyll a, +Fe, iron-fertilized, -Fe, HNLC waters
* data are from Uitz et al. 2009
Table 2. Average ± SD values of viral and bacterial parameters from the iron-fertilized and
HNLC stations in the upper 200m water layer and results from one-way ANOVA for normally
distributed data and Kruskal Wallis test for nonparametric data. Ranges are given in parenthesis.
The average ratio between the two environments is shown and significant differences are
indicated.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Fe-fertilized stations</th>
<th>HNLC stations</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA mL⁻¹</td>
<td>3.9 ± 0.9 (1.9-5.3) x 10⁶</td>
<td>2.4 ± 0.7 (1.3-3.8) x 10⁶</td>
<td>1.7 ***</td>
</tr>
<tr>
<td>BP µgC L⁻¹ d⁻¹</td>
<td>1.1 ± 0.7 (0.1-2.5)</td>
<td>0.3 ± 0.2 (0.1-0.7)</td>
<td>4.1 ***</td>
</tr>
<tr>
<td>VA mL⁻¹</td>
<td>9.9 ± 3.6 (3.4-14.2) x 10⁶</td>
<td>4.7 ± 1.4 (3.1-7.4) x 10⁶</td>
<td>2.1 *</td>
</tr>
<tr>
<td>VP, mL⁻¹ d⁻¹†</td>
<td>59.0 ± 47.1 (9.9-117.9) x 10⁶</td>
<td>14.5 ± 7.4 (6.0-25.6) x 10⁶</td>
<td>4.1 *</td>
</tr>
<tr>
<td>VP, mL⁻¹ d⁻¹††</td>
<td>50.9 ± 46.4 (2.8-125.5) x 10⁶</td>
<td>13.9 x 10⁶</td>
<td>3.7</td>
</tr>
<tr>
<td>FIC %</td>
<td>22 ± 17 (4-47)</td>
<td>12 ± 7 (3-23)</td>
<td>1.8</td>
</tr>
<tr>
<td>FLC %††</td>
<td>10 ± 14 (1-31)</td>
<td>3 ± 2 (1-4)</td>
<td>4.0</td>
</tr>
<tr>
<td>Prophage replication</td>
<td>18.1 ± 29.2 (0.6-61.5) x 10⁵</td>
<td>1.0 ± 1.2 (0.2-2.4) x 10⁵</td>
<td>18.5</td>
</tr>
<tr>
<td>rate mL⁻¹ d⁻¹††</td>
<td>29.4 ± 11.1 (10.3-43.0)</td>
<td>14.2 ± 4.4 (9.3-22.4)</td>
<td>2.1 *</td>
</tr>
<tr>
<td>lysed bacteria mL⁻¹ d⁻¹</td>
<td>5.4 ± 4.1 (0.8-10.3) x 10⁵</td>
<td>1.1 ± 0.6 (0.4-2.1) x 10⁵</td>
<td>4.9 *</td>
</tr>
<tr>
<td>VMM %</td>
<td>72 ± 72 (8-202)</td>
<td>27 ± 19 (6-58)</td>
<td>2.6</td>
</tr>
</tbody>
</table>

VA, viral abundance, VP, lytic viral production, VP, induced viral production, FIC, fraction of
infected cells, FLC, fraction of lysogenic cells, BA, bacterial abundance, BP, bacterial
production, R, viral contacts per cell and day, VMM, virus-mediated bacterial mortality.

* P < 0.05, ** P < 0.001, *** P < 0.0001
†† detected in 6 out of 15 essays, only one in HNLC waters
†† detected in 7 out of 15 essays
Table 3. *In situ* BP and viral parameters from all virus reduction experiments.

<table>
<thead>
<tr>
<th>Station</th>
<th>Water type</th>
<th>Depth m</th>
<th>BP μgC L$^{-1}$ d$^{-1}$</th>
<th>VP 10^6mL$^{-1}$d$^{-1}$</th>
<th>FIC %</th>
<th>FLC %</th>
<th>VMM %</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3-1</td>
<td>+ Fe</td>
<td>10</td>
<td>2.5</td>
<td>16.7</td>
<td>12</td>
<td>31</td>
<td>25</td>
</tr>
<tr>
<td>A3-1</td>
<td>+ Fe</td>
<td>50</td>
<td>1.9</td>
<td>15.6</td>
<td>6</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>A3-1</td>
<td>+ Fe</td>
<td>100</td>
<td>2.4</td>
<td>56.4</td>
<td>10</td>
<td>ND</td>
<td>19</td>
</tr>
<tr>
<td>A3-4</td>
<td>+ Fe</td>
<td>50</td>
<td>1.2</td>
<td>105.6</td>
<td>34</td>
<td>ND</td>
<td>106</td>
</tr>
<tr>
<td>A3-4</td>
<td>+ Fe</td>
<td>150</td>
<td>0.3</td>
<td>82.4</td>
<td>36</td>
<td>ND</td>
<td>115</td>
</tr>
<tr>
<td>B1</td>
<td>+ Fe</td>
<td>60</td>
<td>1.7</td>
<td>117.9</td>
<td>41</td>
<td>ND</td>
<td>147</td>
</tr>
<tr>
<td>B1</td>
<td>+ Fe</td>
<td>100</td>
<td>0.2</td>
<td>115.6</td>
<td>47</td>
<td>3</td>
<td>202</td>
</tr>
<tr>
<td>B5</td>
<td>+ Fe</td>
<td>100</td>
<td>1.1</td>
<td>11.2</td>
<td>4</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>A11</td>
<td>+ Fe</td>
<td>200</td>
<td>0.3</td>
<td>9.9</td>
<td>7</td>
<td>ND</td>
<td>14</td>
</tr>
<tr>
<td>B11</td>
<td>- Fe</td>
<td>10</td>
<td>0.2</td>
<td>16.3</td>
<td>14</td>
<td>ND</td>
<td>29</td>
</tr>
<tr>
<td>B11</td>
<td>- Fe</td>
<td>120</td>
<td>0.3</td>
<td>25.6</td>
<td>23</td>
<td>1</td>
<td>58</td>
</tr>
<tr>
<td>B11</td>
<td>- Fe</td>
<td>200</td>
<td>0.1</td>
<td>6.0</td>
<td>11</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>C3</td>
<td>- Fe</td>
<td>60</td>
<td>0.2</td>
<td>20.1</td>
<td>6</td>
<td>no exp</td>
<td>11</td>
</tr>
<tr>
<td>C3</td>
<td>- Fe</td>
<td>100</td>
<td>0.4</td>
<td>16.7</td>
<td>22</td>
<td>no exp</td>
<td>55</td>
</tr>
<tr>
<td>C11-1</td>
<td>- Fe</td>
<td>10</td>
<td>0.4</td>
<td>11.2</td>
<td>8</td>
<td>ND</td>
<td>17</td>
</tr>
<tr>
<td>C11-1</td>
<td>- Fe</td>
<td>80</td>
<td>0.7</td>
<td>9.6</td>
<td>9</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>C11-1</td>
<td>- Fe</td>
<td>200</td>
<td>0.1</td>
<td>7.5</td>
<td>6</td>
<td>ND</td>
<td>12</td>
</tr>
<tr>
<td>C11-2</td>
<td>- Fe</td>
<td>60</td>
<td>0.3</td>
<td>25.1</td>
<td>20</td>
<td>no exp</td>
<td>47</td>
</tr>
<tr>
<td>C11-2</td>
<td>- Fe</td>
<td>100</td>
<td>0.2</td>
<td>6.4</td>
<td>3</td>
<td>no exp</td>
<td>6</td>
</tr>
</tbody>
</table>

VPl, lytic viral production; FIC, fraction of infected cells; FLC, fraction of lysogenic cells; VMM, viral-mediated bacterial mortality; ND, Not detectable; no exp, no lysogen induction essay.
Table 4. Nonparametric Spearman rank correlation matrix for chlorophyll a, bacterial and viral parameters from the fertilized (n=8-9, except for BP-BA-chla: 36-41) and HNLC stations (n=10, except for BP-BA-chla: 23-31). Bold numbers are significant r-values (* $P < 0.05$, ** $P < 0.001$, *** $P < 0.0001$).

<table>
<thead>
<tr>
<th></th>
<th>Chl a</th>
<th>BA</th>
<th>BP</th>
<th>VA</th>
<th>VP$_l$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe-fertilized</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>0.209</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td>0.243</td>
<td>0.633*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td>0.357</td>
<td>0.548</td>
<td></td>
<td>0.762*</td>
<td></td>
</tr>
<tr>
<td>VP$_l$</td>
<td>0.083</td>
<td>0.476</td>
<td>-0.050</td>
<td>0.310</td>
<td></td>
</tr>
<tr>
<td>FIC</td>
<td>-0.183</td>
<td>0.333</td>
<td>-0.267</td>
<td>0.095</td>
<td>0.900</td>
</tr>
<tr>
<td>HNLC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td></td>
<td>0.688*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td>0.380*</td>
<td>0.635*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td>0.164</td>
<td>0.576</td>
<td>0.515</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP$_l$</td>
<td>0.426</td>
<td>0.746*</td>
<td>0.406</td>
<td>0.273</td>
<td></td>
</tr>
<tr>
<td>FIC</td>
<td>0.168</td>
<td>0.304</td>
<td>0.310</td>
<td>-0.249</td>
<td>0.608</td>
</tr>
</tbody>
</table>

BA, bacterial abundance; BP, bacterial production; VA, viral abundance; VP$_l$, lytic viral production; FIC, fraction of infected cells
Table 5. Comparison of viral abundance (VA) and production (VP), virus-mediated bacterial mortality (VMM) and % loss of bacterial production (% BP) and standing stock per day (% SS d\(^{-1}\)) with literature data from other polar/subpolar environments.

<table>
<thead>
<tr>
<th>Location</th>
<th>Depth (m)</th>
<th>Method</th>
<th>VA (10(^9)L(^{-1}))</th>
<th>VP (10(^9)L(^{-1})d(^{-1}))</th>
<th>VMM (10(^8)L(^{-1})d(^{-1}))</th>
<th>% BP</th>
<th>% SS d(^{-1})</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO: Fe-fertilized</td>
<td>0-150</td>
<td>VRA</td>
<td>3.4-14.2 (9.9 ± 3.6)</td>
<td>9.9-117.9 (59.0 ± 47.1)</td>
<td>0.8-10.3 (5.4 ± 4.1)</td>
<td>8-202 (72)</td>
<td>104</td>
<td>present study</td>
</tr>
<tr>
<td>SO: HNLC</td>
<td>0-200</td>
<td>VRA</td>
<td>3.1-7.4 (4.7 ± 1.4)</td>
<td>6.0-25.6 (14.5 ± 7.4)</td>
<td>0.4-2.1 (1.1 ± 0.6)</td>
<td>6-58 (27)</td>
<td>44</td>
<td>present study</td>
</tr>
<tr>
<td>Antarctic</td>
<td>0-100</td>
<td>VDR</td>
<td>1-74 (13±10.4)</td>
<td>>100</td>
<td></td>
<td></td>
<td></td>
<td>Guixa-Boixereu et al., 2002</td>
</tr>
<tr>
<td>SO-Subantarctic</td>
<td>10</td>
<td>VRA</td>
<td>6.1-26</td>
<td>17.5-216.3</td>
<td>3.6-43.3</td>
<td>43-63</td>
<td>40-130</td>
<td>Evans et al., 2009</td>
</tr>
<tr>
<td>SO</td>
<td>5-200</td>
<td>VRA</td>
<td>0.5-7.6</td>
<td>0.4-16</td>
<td>0-8.7</td>
<td></td>
<td>0-72</td>
<td>Evans and Brussaard, 2012</td>
</tr>
<tr>
<td>SO: Fe patch</td>
<td>10-150</td>
<td>VRA</td>
<td>2.3-7(4.3±5.5)</td>
<td>0.9-3.6(1.9±0.5)</td>
<td></td>
<td>41–172 (104)*</td>
<td></td>
<td>Weinbauer et al., 2009</td>
</tr>
<tr>
<td>SO: HNLC</td>
<td>10-150</td>
<td>VRA</td>
<td>1.4-2.5(2.1±2)</td>
<td>0.3-0.8(0.6±0.1)</td>
<td></td>
<td>14–70 (39)*</td>
<td></td>
<td>Weinbauer et al., 2009</td>
</tr>
<tr>
<td>Arctic</td>
<td>0-10</td>
<td>TEM</td>
<td>2.5-36</td>
<td>0.2-4.6 (2)</td>
<td></td>
<td>2-36 (13)</td>
<td></td>
<td>Steward et al., 1996</td>
</tr>
<tr>
<td>North waters</td>
<td>0-200</td>
<td>TEM</td>
<td>1.36-5.55(3.3±1.6)</td>
<td>0.1-1.3</td>
<td></td>
<td>6-28</td>
<td></td>
<td>Middelboe et al., 2002</td>
</tr>
<tr>
<td>Arctic</td>
<td>0-230</td>
<td>VDA</td>
<td>1.4-4.5(2.8±1.3)</td>
<td>0.1-1.9</td>
<td>0.28-0.72</td>
<td></td>
<td></td>
<td>Wells and Deming, 2006</td>
</tr>
<tr>
<td>Subarctic Fe patch</td>
<td>0-10</td>
<td>TEM/VRA</td>
<td>40.5</td>
<td>30-200</td>
<td>90±25</td>
<td>7.4</td>
<td></td>
<td>Higgins et al., 2009</td>
</tr>
<tr>
<td>Subarctic outside</td>
<td>0-10</td>
<td>TEM/VRA</td>
<td>35.7</td>
<td>30-200</td>
<td>25.8±6.1</td>
<td>7.2</td>
<td></td>
<td>Higgins et al., 2009</td>
</tr>
<tr>
<td>Arctic</td>
<td>0-100</td>
<td>VRA</td>
<td>0.32-7.28</td>
<td>0.1-4.2</td>
<td></td>
<td>2-24 (9)</td>
<td>2-30</td>
<td>Boras et al., 2010</td>
</tr>
<tr>
<td>Canadian Arctic Shelf</td>
<td>2-56</td>
<td>VRA</td>
<td>2.7-27</td>
<td>0.03-7.7</td>
<td>0.02-4.3</td>
<td>31-156</td>
<td>1.4-29</td>
<td>Payet and Suttle, 2013</td>
</tr>
</tbody>
</table>

Table 6. C and Fe release rates (L$^{-1}$ d$^{-1}$) through viral lysis calculated from VP (12.4 fg C cell$^{-1}$, (Fukuda et al., 1998) and from FIC following the Model by Binder (1999) using bacterial iron quota of 7.5 μMol Fe mol C$^{-1}$ (Tortell et al., 1996). Averages are given in parenthesis.

<table>
<thead>
<tr>
<th></th>
<th>Release based on VP</th>
<th></th>
<th>Release based on FIC</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pmol Fe L$^{-1}$ d$^{-1}$</td>
<td>μmol C L$^{-1}$ d$^{-1}$</td>
<td>pmol Fe L$^{-1}$ d$^{-1}$</td>
<td>μmol C L$^{-1}$ d$^{-1}$</td>
</tr>
<tr>
<td>Fertilized stations</td>
<td>0.60-7.97 (4.18 ± 3.15)</td>
<td>0.08-1.06 (0.56 ± 0.42)</td>
<td>0.03-1.58 (0.42 ± 0.49)</td>
<td>0.003-0.21 (0.06 ± 0.07)</td>
</tr>
<tr>
<td>HNLC stations</td>
<td>0.28-1.60 (0.86 ± 0.43)</td>
<td>0.04-0.21 (0.11 ± 0.06)</td>
<td>0.004-0.12 (0.05 ± 0.05)</td>
<td>0.001-0.02 (0.01 ± 0.01)</td>
</tr>
</tbody>
</table>

*Values are significantly higher in the Fe-fertilized than in the HNLC stations (Kruskal-Wallis, $P < 0.05$)
Figure 1. Real-time satellite images of chlorophyll during the KEOPS cruise dating from the first sampling of station A3 (19/2/2005), (MODIS results provided by CSIRO marine research) and overlaid transects and sampled stations.

Figure 2. Depth profiles of bacterial (A) and viral abundance (B) in the Kerguelen study area. Full symbols indicate Fe-fertilized sites, open symbols indicate HNLC waters.

Figure 3. Lytic viral production from the Fe-fertilized (A) and HNLC (B) stations. Values are the averages of duplicates and error bar indicate the minimum and maximum values. When not visible, error bars are within the width of the line.

Figure 4. Simple sketch of the carbon and nutrient flow through the microbial food web in the Fe- fertilized (left) and HNLC waters (right). Arrow thickness represents the relative importance of factors controlling the size of each pool of the microbial food web.