Tidal controls on trace gas dynamics in a seagrass meadow of the Ria Formosa lagoon (southern Portugal)

Enno Bahlmann*1, Ingo Weinberg1, Jošt V. Lavrič2, Tim Eckhard1, Walter Michaelis1, Rui Santos3 and Richard Seifert1

1University of Hamburg, Institute for Biogeochemistry and Marine Chemistry, Bundesstraße 55, 20146 Hamburg, Germany
2Max Planck Institute for Biogeochemistry, Hans-Knoell Str 10, 07745 Jena, Germany
3Centro de ciências do mar, Universidade do Algarve, Gambelas, 8005-139 Faro, Portugal

*corresponding author: enno.bahlmann@zmaw.de
phone: +49-40-42838-5167
fax: +49-40-42838-6347

Abstract
Coastal zones are important source regions for a variety of trace gases including halocarbons and sulphur-bearing species. While salt-marshes, macroalgae and phytoplankton communities have been intensively studied, little is known about trace gas fluxes in seagrass meadows. Here we report results of a newly developed dynamic flux chamber system that can be deployed in intertidal areas over full tidal cycles allowing for high time resolved measurements. The trace gases measured in this study included carbon dioxide (CO2), methane (CH4) and a variety volatile organic compounds (VOCs). The high time resolved CO2 and CH4 flux measurements revealed a complex dynamic mediated by tide and light. In contrast to most previous studies our data indicate significantly enhanced fluxes during tidal immersion relative to periods of air exposure. Short emission peaks occurred with onset of the feeder current at the sampling site.
We suggest an overall strong effect of advective transport processes to explain the elevated fluxes during tidal immersion. Many emission estimates from tidally influenced coastal areas still rely on measurements carried out during low tide only. Hence, our results may have significant implications for budgeting trace gases in coastal areas. This dynamic flux chamber system provides intensive time series data of community respiration (at night) and net community production (during the day) of shallow coastal systems.

1 Introduction

Coastal zones are are important sites for carbon turnover and hot spots for a variety of volatile organic compounds (VOCs) including halogenated compounds (Gschwend et al., 1985; Moore et al., 1995; Baker et al., 1999; Rhew et al., 2000; Christoph et al., 2002, Manley et al., 2006; Valtanen et al., 2009) and sulphur-bearing compounds (Dacey et al., 1987; Cooper et al., 1987a, b; De Mello et al., 1987; Turner et al., 1989; Leck and Rhode, 1990; Baker et al., 1992), but a minor source for hydrocarbons such as CH$_4$ (Van der Nat and Middelburg, 2000; Middelburg et al., 2002). While coastal ecosystems, such as salt-marshes, macroalgae and phytoplankton communities have been intensively studied, little is known about trace gas fluxes from seagrass meadows. Seagrass meadows are amongst the most productive coastal ecosystems with an average net primary production of 817 g carbon m$^{-2}$ yr$^{-1}$ (Mateo et al., 2006). They cover a considerable portion of global coastal zones with estimates ranging from 300000 km2 (Duarte et al., 2005) to 600000 km2 Mateo et al., 2006. Most previous studies in seagrass meadows have focussed on carbon dynamics (e.g. Migné et al., 2004; Davoult et al., 2004; Spilmont et al., 2005, Silva et al., 2005; Hubas et al., 2006) and were often restricted to periods of air exposure. More recently, benthic chambers for underwater incubations were developed (Nicholson et al., 1999; Larned, 2003; Barron et al., 2006; Silva et al., 2008; Ferron et al., 2009). There is some evidence that seagrass meadows (Zostera spec.) are capable to form a variety of trace gases (Urhahn, 2003; Weinberg et al., 2013). As other higher plants rooting in anoxic soils and sediments, seagrasses have an aerenchymatic tissue for supplying oxygen to their root system. This aerenchymatic tissue may also provide an effective transport pathway for trace gases from the sediment to the atmosphere(Armstrong, 1979; Larkum et al., 1989). The importance of this transport pathway has been shown for CH$_4$ emissions from a variety of vegetation types (Laanbroek, 2010). However, early incubation experiments have indicated fairly low emission rates from *Thalassia testudinum* beds (Oremland et al., 1975).
More recently Deborde et al. (2010) reported \(\text{CH}_4 \) fluxes from \textit{Z. noltii} meadows in the Arcachon lagoon (SW France) being below 1.6 \(\mu \text{mol m}^{-2}\text{h}^{-1} \), which was the detection limit of the instrumentation used for the experiment.

So far, the fluxes of trace gases in coastal environments, mainly \(\text{CH}_4 \) and \(\text{CO}_2 \), have been measured in most cases using static chambers (e.g. Van der Nat and Middelburg, 2000; Delaune et al., 1983; Bartlett et al., 1987; Migne´ et al., 2002, 2004; Davoult et al., 2004; Spilmont et al., 2005, Silva et al., 2005; Hubas et al., 2006). There are several problems arising from chamber based flux measurements that require a careful testing of the chamber system. Under aerial conditions problems may arise from pertubations of the turbulent fields on both air and water side, introduction of artificial gradients, pertubations of the thermal environment and the gas composition inside the chamber (Gao et al 1997; Meixner et al. 1997; Gao & Yates, 1998; Zhang et al. 2002; Pape et al, 2009). In particular deposition fluxes of reactive trace gases are very sensitive towards the aerodynamic properties of the chamber (Meixner et al. (1997; Pape et al., 2008) In contrast the emission fluxes of most VOCs are insensitive against the turbulent conditions inside the chamber. The reason is that their production is independent of the headspace concentration (Pape et al., 2008).

Under submersed conditions solid static chambers will most likely introduce stagnant conditions and thus reduce the diffusive exchange and suppress advective exchange (Cook et al., 2007). This has for instance been shown for oxygen (Billerbeck et al, 2006; Werner et al, 2006; Kim & Kim, 2007; Cook et al., 2007; Jansen et al, 2009), total inorganic carbon (Cook et al., 2007), dissolved organic matter (Huettel et al., 1997)Tengberg et al. (2004) compared three different types of stirred benthic chambers and found no significant differences between these chambers. The authors concluded that benthic chambers are insensitive to the hydrodynamic conditions as long as the water is well mixed and the sediment is not resuspended.

For this study we used a dynamic chamber modified to enable flux measurements over full tidal cycles. During tidal immersion the chamber is continously purged whereby the purging introduces a turbulent flow inside the chamber. Though artificial, this turbulent motion inside the chamber may to some extent mimic the turbulent flow outside the chamber. The system allows continous \(\text{CH}_4 \) and \(\text{CO}_2 \) flux measurements with a time resolution of 15 minutes as well as the determination of VOC fluxes by discrete sampling. Here we provide a detailed description of the flux chamber system and first results of a field study conducted in a
seagrass meadow of the Ria Formosa lagoon, southern Portugal. We report tidal-cycle fluxes
of CO₂, CH₄, propene, chloromethane (CH₃Cl), bromomethane (CH₃Br), iodomethane
(CH₂I), chloroform (CHCl₃), Bromoform (CHBr₃) as well as ascarbondisulfide (CS₂) and
discuss them in terms of the factors controlling trace gas dynamics in intertidal seagrass
meadows.

2 Methods

2.1 Flux chamber design

Dynamic flux chambers have been widely used in trace gas studies in terrestrial systems (Gao
et al., 1997; Gao and Yates, 1998; Kim and Lindberg, 1995; Zhang et al., 2002; Pape et al.,
2009). Details on the theory of dynamic flux chamber measurements are given in Gao et al.
(1997) and Meixner et al. (1997). Briefly, the surface of interest is enclosed with a chamber
and air is pumped through the chamber at a predefined flow rate. Net fluxes above the
covered surface are commonly calculated from the concentration difference between the
outlet and inlet of the chamber.

\[F_{\text{Net}} = \frac{Q_N \times (C_{\text{out}} - C_{\text{in}})}{A \times V_N \times 1000} \]

(1)

where \(F_{\text{Net}} \) is the net flux [mol m⁻² h⁻¹], \(Q_N \) is the flushing flow rate through the chamber
[m³ h⁻¹, at 1013.25 mbar and 298.15 K], \(C_{\text{out}} \) and \(C_{\text{in}} \) are the air mixing ratios of target
compounds [mole fractions] at the outlet and the inlet of the flux chamber, respectively, \(A \) is
the bottom surface area of the flux chamber [m²], and \(V_N \) is the molar volume [m³] at 1013.25
mbar and 298.15 K. Note that emission fluxes are positive.

The chamber we used was made from a 10 L Duran glass bottle with the bottom cut off (fig.
1). The chamber had a volume of 8 L, a bottom surface area of 0.037 m², and a height of 0.3
m. Prior to sampling, the chamber is pressed 5 cm into the sediment resulting in a headspace
volume of approximately 6 L. During tidal change water enters and leaves the chamber
through a U-tube at the bottom (stainless steel tube 50 cm length, 4 mm i.d.). The tube was
connected to a valve that was closed during air exposure and open during tidal immersion.
During sampling, ambient air is pumped through the chamber with a membrane pump (KNF-
Neuberger, Germany, mod. N86KNDC) at a flow rate between 3.0 and 3.5 L min⁻¹. The air
enters the chamber through a PFA-tube at the top of the chamber and is further distributed to two metal frits (10 µm pore size). The frits are placed 12 cm above the sediment surface preventing visible dispersion of surface sediments. The outlet of the chamber is connected to an open split in 2.5 m height via a ½’’ o.d. PFA-tube. The tube is inserted 30 cm into a stainless steel tube (50 cm long, ¾’’ o.d.) that is open at the bottom and has two sampling ports at the top. Typically, about 0.5 L min⁻¹ are directed to the CO₂ / CH₄ analyzer and 1.5 L min⁻¹ are directed to the trace gas sampling system. The excess air, along with water droplets and aerosols is vented into the atmosphere via the open split. Two Teflon® membrane filters are used to further protect the sampling systems from water and aerosols. The U-tube at the bottom and the open split ensured pressure equilibrium between the chamber and the ambient water body. The performance of the chamber has been tested under aerial und submersed condition under in the laboratory. A detailed description of these tests is given in the supplementary material. Under aerial conditions the response time of the chamber is 2 min. at a flushing flow rate of 3 L min⁻¹. Complete mixing of the chamber volume is achieved within 0.4 min. Hence with respect to our sampling frequency we can safely assume complete mixing of the air inside the chamber.

The physical nature of trace gas fluxes across natural interfaces is commonly described in terms of a multiresistance model (Hicks et al., 1987). This model has been applied to flux chambers Gao & Yates 1987; Zhang et al., 2002; Pape et al. 2008:

\[F_i = \frac{c_s - c_a}{R_c + R_s} \]

Where \(F_i \) denotes the flux across the interface, \(c_s \) is the concentration in the sediment, \(c_a \) is the gas concentration on the air side of the interface \(R_c [t L^{-1}] \), is the overall transfer resistance of the chamber system and \(R_s [t L^{-1}] \) transfer resistance of the sediment surface layer (\(R_s \)). While \(R_c \) is dependent on the aerodynamic properties of the chamber, \(R_s \) is dependent on the sediment properties. The sensitivity of the overall flux against the aerodynamic properties depends on the magnitude \(R_c \) and \(R_s \). When both share the same magnitude the flux across the interface depends on \(R_c \) and \(R_s \). On the other hand, when \(R_s \) becomes large relative to \(R_c \) the flux is mainly governed by \(R_s \) (Zhang et al., 2002). The chamber tests revealed an upper limit of 0.162 hm⁻¹ for the aerodynamic transfer resistance of the chamber. The sediment side transfer resistance has been estimated from the diffusivity of the sediment surface layer and its thickness (Gao 1986, Zhang et al. 2002). For water logged intertidal sediments with an air filled pore space from 1% to 10%, \(R_s \) ranges from 1.54 to 15.4 h m⁻¹. The transfer resistance
of the seagrass leafs has been derived from the CO₂ permeability of the cuticula of submersed plants (MacFarlane (1992) and the leaf area index of Z.noltii in the Ria Formosa (Pérez-Lloréns & Niell, 1993). It has been estimated to range from 26.5 to 46 h m⁻¹. Both are one to two orders of magnitude larger than R_c. Given this it is reasonable to assume that during air exposure the gas exchange across the sediment surface and the seagrass leafs is not dependent on the aerodynamic properties of the chamber. Further our tests suggest a minor effect of the flushing flow rate on the atmospheric transfer resistance making the overall transfer resistance insensitive against the aerodynamic properties of the chamber.

During submersion the interfacial fluxes are insensitive to the hydrodynamic conditions in the chamber as long as the water inside the chamber is well mixed and the sediment is not re-suspended. Re-suspension of the sediments was avoided during the experiments and has been checked visibly. The gas flow through the chamber introduced a water flow in the order of 10 to 15 cm s⁻¹ providing a corresponding boundary layer thickness in the range of 60 to 120 µm where the carbon uptake is mainly enzymatically limited. The visible inferred mixing time was in 1.1 min. Under submersed conditions the dissolved trace gases are equilibrated with ambient air. The flux and thus the response time will depend on the volatility (given by the inverse Henrys law constant) and the water air transfer resistance of the chamber system. In analogy to the air sea gas exchange the gas air water exchange can be computed as:

\[F = k_c \times (c_w/H - c_g) = \frac{(c_w/H - c_g)}{R_c} \]

where \(k_c \) is the specific gas exchange velocity [L t⁻¹] of the chamber. \(K_c \) depends on the flushing flow rate (Q) and the chamber design (in particular the chamber geometry and the gas bubble geometry) \(R_c = 1/k_c \) is the corresponding transfer resistance, \(c_w \) is the water concentration [mol L⁻³], \(c_g \) is the concentration in the gas phase inside the chamber, and \(H \) is Henry’s law constant.

The response time of the chamber towards changes in the pCH₄ was 1.20±0.20 min. The response time for DIC(dissolved inorganic carbon) depends on the carbon speciation. It ranged from 10 min to 58 min for a ΔDIC ranging from 188 to -203 µmol kg⁻¹. Reflecting the changing ratio of dissolved CO₂ to DIC. Here ΔDIC refers to the deviation of the DIC concentration from equilibrium with the inlet air. Equilibrium conditions during the tests were a DIC of 1960±15 µmol kg⁻¹, an alkalinity of 2180±15 µeg Kg⁻¹ and a pCO₂ of 425±10 ppm at 296.5 K.
The U-tube at the bottom of the chamber inevitably leads to an exchange of water between the chamber and the surrounding water body that may affect the flux measurements. The water exchange was not metered onsite. From Hagen-Poiseilles law we estimated a response time towards water exchange of 2.15 ± 0.15 h. This is substantially larger than the respective response times for the gas exchange. For CH$_4$ we can safely assume that the bias due to water exchange is regardless of the concentration difference between the chamber and the surrounding water less than 1%. Due to the much slower response time the bias with respect to DIC becomes larger.

2.2 For a first estimate of the bias we assumed a constant source or sink inside the chamber and an incubation time of 6h. Under these conditions the recovery for a CO$_2$ sink ranges from 69 to 75% and the recovery for a CO$_2$ source ranges from 78 to 83% with both depending on the source/sink strength. We found these recovery acceptable for a first tentative assessment of the DIC dynamics over full tidal cycles as was the primary goal of our study.

The sampling was conducted in an intertidal seagrass meadow of *Zostera noltii* (*Hornemann*) of Ria Formosa lagoon, a mesotidal system located in southern Portugal. The lagoon has a surface area of 84 km2 with about 80% of it being intertidal. It is separated from the open ocean by a system of sand barrier islands. Six inlets allow exchanges of water with the Atlantic Ocean. The tidal amplitude ranges from 3.50 m on spring tides to 1.30 m on neap tides. In each tidal cycle about 50% to 75% of the water in the lagoon is renewed. Except during sporadic periods of heavy rainfall salinity ranges from 35.5 to 36.0 PSU throughout the year; water temperature varies between 12 and 27º C in winter and summer, respectively.

Z. noltii is the most abundant seagrass species in the Ria Formosa, covering about 45% of the intertidal area (Guimarães et al., 2012). The species plays a major role in the whole ecosystem metabolism of the lagoon (Santos et al., 2004). The range of *Z. noltii* biomass variation at the sampling site is 229 - 310 g DW m$^{-2}$ (Cabaço et al 2008).

2.3 Sampling and measurement

The CO$_2$ and CH$_4$ flux measurements were performed between 23 April and 27 April 2012. VOC fluxes were measured between April 17th and April 28th 2012. Therefore, the time base
of the VOC sampling does not fully overlap the time base of the CO2 and CH4 sampling. The sampled seagrass patches (Z. noltii) were free of visible epiphytes and macroalgae. The canopy coverage was estimated to be higher than 95%.

CO2 and CH4 were measured on site with a Picarro 1301 cavity ring down spectrometer. A six port Valco valve was used to switch between three different sampling lines. The first sampling line was directly connected to the dynamic flux chamber and the two other sampling lines were used to sample ambient air from two different heights above the ground (2m and 4m). The sampling lines were consecutively sampled for 5 minutes and each line was connected to an additional membrane pump for continuously flushing at a flow rate of 0.5 L min⁻¹ when not sampled. The sampling order was height 1, height 2, chamber. The mixing ratios from the two air sampling lines were averaged to calculate the inlet concentration of the chamber. Discrete gas samples were taken from the second sampling port of the flux chamber to determine the outlet concentration of the VOCs. In parallel, discrete samples were taken from the feeding line to the flux chamber via a T-union to determine the inlet concentration of the VOCs. Details of the VOC sampling system are given in Weinberg et al. (submitted).

Briefly, 30±5 L of ambient air was drawn through a cryo trap at a flow rate of 1.0±0.2 L min⁻¹. The samples were thermally desorbed from the cryo trap (310°C) using a flow of helium (30 mL min⁻¹ for 15 min) and recollected on peltier-cooled adsorption tubes maintained at –10°C. From the adsorption tube the samples were again desorbed into a flow of helium and refocused on a quartz capillary (0.32 mm i.d., 60 cm length) immersed in liquid nitrogen. The analytes were desorbed from the quartz capillary at ambient temperature and transferred to a GC-MS system (6890N/5975B, Agilent). VOCs were separated on a CP-PorabondQ column (Varian, 25m, 0.25 µm i.d.) with helium as a carrier gas. Quantification of CH3Cl, CH3Br, CH3I, CHCl3, CHBr3, propene, and CS2 was performed against a Scott TOC 15/17 standard containing, among others, 1ppm each in nitrogen. Typically two to four aliquots of 1ml were analyzed each day. The overall precision of this method is better then ± 6%.

3 Results

The high time resolution of our measurements provided detailed insights into the complex dynamics of CH4 and CO2 fluxes of Ria Formosa intertidal. The flux patterns of CO2 and CH4 of both Z. noltii and adjacent bare sediment patches are sown in Figures 2 and 3, respectively. Table 1 provides the time-averaged fluxes for different stages of the tidal cycle. In general,
much higher CO$_2$ and CH$_4$ fluxes were observed for the seagrass covered areas than for the bare sediment. The fluxes of both gases showed clear diurnal variations with similar patterns above the seagrass and the bare sediment. We observed a strong influence of the tidal cycle on fluxes of both gases with more pronounced emission fluxes generally occurring during tidal inundation. At daytime, CO$_2$ assimilation dominated over benthic respiration resulting in a net uptake, regardless of the tidal state. Elevated fluxes during tidal immersion were also observed for all non-CH$_4$ VOCs studied here.

3.1 Methane

During air exposure at low tide CH$_4$ fluxes averaged 4.4 µmol m$^{-2}$ h$^{-1}$ at night and 6.9 µmol m$^{-2}$ h$^{-1}$ at day. With the flood current just arriving at the sampling site the fluxes dropped almost to zero for > 15 minutes. A sharp emission peak was observed for 15 minutes following this drop. Accounting for the integration time and the response time of the chamber system we deduce that these events may have actually lasted for 2 to 5 minutes. During these peak events the fluxes averaged 71 µmol m$^{-2}$ h$^{-1}$. The peaks were more pronounced during the night (76 and 123 µmol m$^{-2}$ h$^{-1}$) than during daytime (38 and 51 µmol m$^{-2}$ h$^{-1}$). After the peak events, the fluxes rapidly decreased to values below 9±1 µmol m$^{-2}$ h$^{-1}$.

During tidal immersion the CH$_4$ fluxes increased with rising height of the water and showed a second maximum of 30 ±1 µmol m$^{-2}$ h$^{-1}$ at high tide. With the ebb flow the CH$_4$ fluxes decreased constantly to values about 9±1 µmol m$^{-2}$ h$^{-1}$ at water levels below 10 cm. The change from tidal immersion to air exposure was marked by slightly elevated fluxes observed for about 15 minutes followed by a drop close to zero before the flux stabilized on the low tide level again.

The diurnal flux cycles observed above the sediment (Fig. 3) were similar to those above the seagrass but, with much lower values (Table 1 and Fig. 2). The CH$_4$ fluxes averaged 0.3 µmol m$^{-2}$ h$^{-1}$ during low tide, and 6 µmol m$^{-2}$ h$^{-1}$ (5.2 µmol m$^{-2}$ h$^{-1}$ at daytime and 6.6 µmol m$^{-2}$ h$^{-1}$ at night time) during tidal inundation.

3.2 CO$_2$

In contrast to CH$_4$, the CO$_2$ flux was strongly influenced by both, the time of day and the tidal cycle. Deposition fluxes were observed during the day resulting from photosynthetic carbon uptake while positive fluxes were observed during the night due to respiratory release of CO$_2$.

9
During air exposure at night, the emissions were relatively constant and averaged 8.4±0.5 mmol m\(^{-2}\) h\(^{-1}\). As observed for CH\(_4\), the flux dropped to zero for about 10 minutes with the incoming tide and then rapidly increased to highest CO\(_2\) emissions of up to 62 mmol m\(^{-2}\) h\(^{-1}\). Thereafter, the CO\(_2\) flux decreased rapidly to 38±4 mmol m\(^{-2}\) h\(^{-1}\) and then further declined slowly over the period of tidal inundation. After sunrise, roughly coinciding with high tide during our measurements, the CO\(_2\) fluxes declined more rapidly due to the beginning of photosynthetic CO\(_2\) assimilation. During the daylight period, CO\(_2\) assimilation dominated over benthic CO\(_2\) respiration resulting in a net uptake of CO\(_2\) with average fluxes of -9.1 mmol m\(^{-2}\) h\(^{-1}\) during air exposure and of -16.4 mmol m\(^{-2}\) h\(^{-1}\) during immersion.

At night, the average sedimentary CO\(_2\) fluxes were 1.0 mmol m\(^{-2}\) h\(^{-1}\) during air exposure and 6.4 mmol m\(^{-2}\) h\(^{-1}\) during tidal inundation. The CO\(_2\) night time flux during inundation decreased until high tide and increased again with the onset of ebb flow indicating an inverse relation with the height of the water table. The daytime average CO\(_2\) fluxes from sediment were -1 mmol m\(^{-2}\) h\(^{-1}\) during low tide and -2 mmol m\(^{-2}\) h\(^{-1}\) during tidal inundation.

3.3 VOCs

Relative fluxes of, CS\(_2\), CH\(_3\)Cl, CH\(_3\)Br, CH\(_3\)I, CHCl\(_3\), CHBr\(_3\), and propene are shown in figure 4. Mean fluxes and ranges are provided in table 2. It has to be noted that for most of the VOC flux data the sampling time does not coincide with the sampling time for the CO\(_2\) and CH\(_4\) data shown above. As observed for CO\(_2\) and CH\(_4\), the emission rates during tidal immersion significantly exceeded those measured during air exposure. The average enhancement during tidal immersion (relative to the average fluxes during air exposure) ranged from 4 – 12 for CS\(_2\) the halocarbons CH\(_3\)Br, CH\(_3\)I CHCl\(_3\) and CHBr\(_3\). A higher enhancement was observed for CH\(_3\)Cl. A less pronounced enhancement ranging from 1 to 3 was observed forpropene. Among the analysed VOCs, only CH\(_3\)Cl fluxes increase similarly drastically as the CH\(_4\) with the feeder current arriving at the sampling site. In this context it is important to note that the sampling time for the VOCs was 30 minutes followed by a break of 15 minutes required to change the cryo traps. Hence, it is possible that peak flux, lasting 3 to 5 minutes for CH\(_4\), is missed or not fully captured by our VOC sampling protocol. For CHBr\(_3\), our data also show a small enhancement when the water just starts receding from the sampling site.
The temporal flux patterns show some remarkable differences between individual VOCs during tidal immersion. Strongly enhanced fluxes during high tide were observed for CS$_2$, showing a similar pattern as for CH$_4$. The fluxes of the other monitored compounds decreased or even turned from emission to uptake during high tide and thus acted more similar as CO$_2$.

3.4 Atmospheric mixing ratios of CO$_2$ and CH$_4$

The atmospheric mixing ratios of CO$_2$ and CH$_4$ are shown in figure 5. Throughout the campaign the atmospheric mixing ratios of CO$_2$ (average from both heights) ranged from 395.5 to 429.7 ppm (both heights) and averaged 400.3 ppm. The atmospheric mixing ratios of CH$_4$ ranged from 1.831 to 1.895 ppm (both heights) and averaged 1.861 ppm. Lowest mixing ratios of 395.8±0.2 ppm for CO$_2$ and of 1.834±0.004 ppm for CH$_4$ were observed between 8:00 pm on April 25th and 4:00 am on April 26th and coincided with westerly winds from the Open Ocean and wind speeds above 4m/s. With decreasing wind speeds and during easterly winds, when the air masses passed over large parts of the lagoon the atmospheric mixing ratios of CO$_2$ and CH$_4$ increased.

The close coupling between the measured fluxes and the atmospheric mixing ratios at low wind speeds becomes in particular evident at the end of the campaign. Over the last two tidal cycles the atmospheric mixing ratios of CH$_4$ nicely resemble the enhanced emissions during immersion. The sharp methane emission peak observed when the water entered the chamber becomes diffuse under ambient conditions as bubble ebullition will occur throughout rising tide a the water line On April 27th this coupling is somewhat confounded because of rapidly changing wind conditions. Nevertheless, elevated CH$_4$ mixing ratios coincide with elevated fluxes during tidal immersion. As for CH$_4$ elevated mixing ratios of atmospheric CO$_2$ coincide with periods of strong CO$_2$ emissions during tidal immersion at night. Notably on April 26th at noon the atmospheric CO$_2$ mixing ratios show a slight drop when carbon assimilation was largest. In summary the pattern of the atmospheric mixing ratios support the flux pattern observed with the chamber.
4 Discussion

4.1 Temporal flux patterns

The most striking feature of our results is the pronounced effect of the tidal cycle on the fluxes of all trace gases, which were significantly enhanced during immersion compared to air exposure periods. Additionally, strong emission peaks of CH$_4$, among other VOCs, and particularly of CO$_2$ occurred during a short transition period from air exposure to immersion.

We are aware of only one study reporting a positive correlation of CO$_2$ and CH$_4$ fluxes with the height of the water table from a brackish coastal lagoon in Japan (Yamamoto et al., 2009). The authors of this study did not come up with a conclusive explanation for this observation. They suggested either lateral transport in the sediment in combination with salinity gradients affecting the source strength and/or enhanced gas ebullition due to increased pressure from the water column. The Ria Formosa lagoon has a negligible inflow of freshwater and a year round salinity between 35 and 36 PSU. This makes salinity driven lateral changes in methanogenesis and benthic respiration implausible. Spatial variations in the source strength that might occur due to variations in the benthic communities and in the supply of substrate by litter production and root exudates are also not plausible as the benthic vegetation around the sampling site consisted almost exclusively of Z. noltii and was quite homogeneous.

Variations in the above ground biomass were clearly below a factor of 2 and thus do not support a linear change in the source strength by a factor of 6 as observed for CH$_4$ during tidal immersion. On the other hand, a negative relation between bubble ebullition and water pressure has been reported in other studies (Baird et al., 2004; Glaser et al., 2004), including the only study we are aware of that was carried out in a tidally influenced system (Chanton et al., 1989).

Most previous studies on trace gas fluxes in tidally influenced systems have reported higher fluxes during low tide than during high tide. These higher emissions during low tide were attributed to reduced gas diffusion during inundation (Heyer and Berger, 2000; Van der Nat and Middelburg, 2000) or to deep pore water circulation in tidal flats (Barnes et al. 2006, De La Paz et al. 2008, Grunwald et al., 2009, Deborde et al, 2010). Since the pioneering work of Riedl et al. (1972) there is rising evidence that advective exchange processes at the sediment-water interface strongly affect the fluxes and concentrations of trace constituents. Billerbeck et al. (2006) proposed two different pathways for pore water circulation in intertidal
sediments. The first pathway, called “body circulation”, is generated by the hydraulic gradient between sea water and pore water levels in the sediment, and leads to seepage of pore water close to the low water line at low tide. The second pathway, called “Skin circulation” (Billerbeck et al., 2006), refers to the advective exchange in surface sediments and is driven by bottom current induced pressure gradients at the sediment surface. Several studies have shown a prominent effect of advective transport processes on the exchange of organic matter and nutrients in tidal sand flats (Werner et al., 2006; Billerbeck et al., 2006; Huettel et al., 1996; Precht et al., 2004). Werner et al. (2006) found a more intense and deeper transport of oxygen into the sediment due to advective exchange during tidal immersion than during air exposure, when the exchange is presumably driven by gas diffusion. This is also supported by a study of Kim and Kim (2007), who reported total oxygen fluxes exceeding diffusive fluxes by a factor of 2 to 3 for intertidal sediments from Teaean Bay located in the Midwestern part of the Korean peninsula. Cook et al. (2007) reported a concurrent increase of total oxygen and TIC (total inorganic carbon) fluxes at the sediment surface by a factor of up to 2.5 under turbulent conditions relative to stagnant (diffusive) conditions. In our study the respiratory CO₂-fluxes during tidal immersion exceeded the respiratory CO₂ flux during air exposure by a factor of 2.4 and the methane fluxes during immersion exceeded those during air exposure by a factor of 2.9.

During measurements carried out in the back barrier area of the island of Spiekeroog (Billerbeck et al., 2006, Jansen et al., 2009), the highest oxygen penetration rates were observed immediately after high tide. In accordance Yamamoto et al. (2009) noted a concurrent increase of the redox potential of the sediment with increasing CH₄ and CO₂ fluxes during tidal inundation. The CH₄ fluxes observed in the Ria Formosa lagoon provide a mirror image of these oxygen dynamics. Given this, we deduce an overall strong effect of advective solute transport at the sediment water interface on trace gas fluxes to explain the elevated fluxes during tidal immersion. Both, the observed similarities between the flux patterns among all trace gases and the relatively constant CO₂/CH₄ ratios observed at night time, when photosynthesis was not interfering flux patterns, suggest physical forcing as the major driver of trace gas fluxes rather than the biogeochemical processes controlling their formation.

It is commonly thought that the fluxes during air exposure are most likely driven by gas evasion across the sediment-air and plant-air interface, respectively, and are hence controlled by the transfer resistance across these interfaces (Yamamoto et al., 2009 and references
therein). However, this model cannot explain the observed drop to zero of CO$_2$ and CH$_4$ fluxes for about 15 minutes when the incoming tide reached the sampling site. In waterlogged sediments trace gases have to be transported to the sites of gas diffusion, such as to a water gas interface or to the root systems of higher plants. Werner et al. (2006) observed a constant flow velocity of pore water over the entire period of air exposure and noted a decreasing flow velocity in the top 2 cm shortly before the flood current reached the sampling site and flow direction reversed. Although the chamber will certainly affect the water flow in the top sediment, this may provide a clue to explain the observed drop in the emission fluxes.

The drop in the fluxes was followed by a dramatic peak in both, CO$_2$ and CH$_4$ emissions, when floodwater reached the chamber. Thereafter, CH$_4$ fluxes dropped to increase again with tidal height. In contrast the respiratory CO$_2$ night flux showed a gradual decline. Similar flux peaks at incoming floodwater have been previously reported for biogenic sulphur compounds (Aneja et al., 1986; Cooper et al., 1987a, b) and ammonia (Falcão and Vale, 2003), being attributed to increased hydrodynamic pressure. In contrast to these observations, we did not observe a pronounced peak for any of the VOCs other than CH$_4$. However, it is possible that the peak events were not captured due to our discrete VOC sampling method.

We speculate that the peaks are caused by the sudden release of the air trapped in the sediment pore space that becomes enriched in CH$_4$ and CO$_2$ during air exposure. The release of trapped air from the sediment may be fostered by the aforementioned reversal of flow direction in tidal surface sediments reported by Werner et al. (2006). Such an emission mechanism is further supported by the fact that a similar drop in the CH$_4$ emission is also observed for the change from tidal immersion to air exposure, but not followed by an emission peak, which is simply due to the lack of air bubbles in the sediment at this stage of the tidal cycle. Furthermore, the higher fluxes during tidal inundation may impede the enrichment of trace gases in the surface sediment. The short and sharp emission peak for CH$_4$ suggests that the CH$_4$ has been accumulated close to the sediment surface or close to the roots of the seagrass from where it can be readily transferred into the atmosphere. In agreement with this, our data clearly show higher CH$_4$ emission peaks during night time than daytime, when sediment oxygenation resulting from photosynthesis favours CH$_4$ oxidation.

During night time, the respiratory CO$_2$ flux and the CH$_4$ flux show a fairly constant ratio during air exposure but evolve differently during tidal immersion. In contrast to the gradual decline of CO$_2$ after the peak at incoming tide, CH$_4$ dropped sharply after this peak to
increase again with tidal height. CH$_4$ originating from deeper sediment layers has a fairly low water solubility and thus becomes strongly enriched in the entrapped gas. Hence, the transition from a bubble ebullition driven emission, as suggested for the “CH$_4$ peak”, to an advective transport of pore water, as suggested for the period of tidal immersion results in a sharp decrease of the CH$_4$ flux. The following increase in CH$_4$ may reflect the increasing penetration depth of the advective flow with the rising water table. CO$_2$ is always close to equilibrium with the much larger pore water DIC pool. After the transition from bubble ebullition to advective transport the CO$_2$ flux is driven by the exchange of enriched pore water DIC and the observed gradual decline in the CO$_2$ flux reflects the dilution of the pore water with the overlying seawater.

While the seagrass incubations showed a continuous decline of the CO$_2$ flux during tidal immersion, the incubations at the non-vegetated sediment showed a partial recovery of the CO$_2$ flux after high tide and thus an inverse correlation with the height of the water table. As outlined before, this difference may result from the onset of photosynthetic CO$_2$ assimilation at the end of the tidal cycle at sunrise, which had a more pronounced impact within the seagrass incubations.

4.2 Magnitude of CH$_4$ fluxes

CH$_4$ emissions of Z. noltii community averaged 0.31 mmol m$^{-2}$ d$^{-1}$ with ~76% being released during tidal immersion. They are about 4 fold higher than CH$_4$ fluxes from the non-vegetated sediment community (0.07 mmol m$^{-2}$ d$^{-1}$ with ~93% being released during tidal immersion). Oremland (1975) reported CH$_4$ production rates ranging from 0.26 to 1.80 mmol d$^{-1}$ from a Thalassium testudinum bed and production rates ranging from 0.08 to 0.19 mmol d$^{-1}$ from a Syringopodium sp. Community. In a study of Deborde et al (2010) the methane production rates in the surface sediments of Z.noltii sites were generally below 0.04 mmol2 d$^{-1}$ (being the detection limit of their method. Somehow in contrast to our results they observed higher production rates in unvegetated sediments ranging from <0.04 to 0.78 mmol m2d$^{-1}$. The average sedimentary CH$_4$ flux of 0.07 mmol m2 d$^{-1}$ in our study is at the lower end of this range.

Bartlett et al. (1987) and Delaune et al. (1983) reported decreasing CH$_4$ fluxes with increasing salinity. CH$_4$ fluxes decreased from 17 to 34.2 mmol m$^{-2}$ d$^{-1}$ at salinities around 1 PSU to 0.17 to 0.85 mmol m$^{-2}$ d$^{-1}$ at salinities above 18 PSU. Though a direct comparison of these values
with our data is difficult due to the differences in salinity our data fell well into the range given for higher salinities Middelburg et al. (2002) have estimated the average CH$_4$ flux from European estuarine waters to be 0.13 mmol m$^{-2}$ d$^{-1}$, which is about twice the fluxes of the non-vegetated sediments of the Ria Formosa lagoon. Hence our data suggest that apart from body circulation (Jansen et al. 2009; Grunwald et al. 2009) skin circulation may substantially contribute to CH$_4$ fluxes in tidal flats.

A tentative upscaling using our flux data and a global seagrass coverage area of 300.000 km2 (Duarte et al. 2005) reveals a global CH$_4$ flux of \sim 0.5 Tg CH$_4$ yr$^{-1}$ from seagrass meadows. Including the data from Oremland and from Deborde global emissions may range from < 0.1 Tg CH$_4$ yr$^{-1}$ to 2.5 Tg CH$_4$ yr$^{-1}$. The worlds ocean including the productive coastal ecosystems are a minor source for atmospheric CH$_4$ contributing about 10% to the global emissions (Wuebbles and Hayhoe, 2002). Emissions including productive coastal areas have been estimated to be in the range of 11 to 18 Tg yr$^{-1}$ (Bange et al. 1994). Despite the large uncertainty in this estimate it is reasonable to suppose seagrass meadows being a minor global source of CH$_4$.

4.3 Magnitude of CO$_2$ fluxes

As outlined in the method section our method may underestimate the CO$_2$-fluxes by 20±15%. In any case it is worth to compare the results from this study with those from previous studies. During our experiment, the overall net community production (NCP) of Z. noltii was 101 mmol C m$^{-2}$ d$^{-1}$ and that of unvegetated sediments was 50 mmol C m$^{-2}$ d$^{-1}$, showing that heterotrophic metabolism was dominating in the intertidal of Ria Formosa lagoon. Santos et al. (2004) found that in July 2002, the intertidal was marginally autotrophic as the Z. noltii NCP was -5.5 mmol C m$^{-2}$ d$^{-1}$ and the unvegetated sediment NCP was -21.2 mmol C m$^{-2}$ d$^{-1}$.

To the best of our knowledge, we present here the first assessment of how the respiration of a seagrass community varies over night along with the tidal cycle. Several previous studies used punctual measurements either with dark chambers or during the night to assess the community respiration Santos et al, 2004, Silva et al., 2008, Duarte et al, 2010, Clavier et al, 2011). These punctual data were upscaled to estimate daily respiration rates and to calculate daily metabolic budgets of seagrass communities. Our data show that this practice may seriously affect the estimation of the metabolic daily budgets of seagrass communities,
particularly in the intertidal. The average net CO₂ emissions (community respiration, CR) of
Z. noltii during night were 10.2 mmol m⁻² h⁻¹ (air exposure), 23.2 mmol m⁻² h⁻¹ (tidal
immersion) and 55.0 mmol m⁻² h⁻¹ (peak event) (Table 1). With an average daylight period of
12 h and an average period of tidal inundation of 15.30 h d⁻¹, the community respiration is
estimated to 233 mmol m⁻² during night time.

The respiratory CO₂ production peaks during incoming flood tide are immediately recycled,
i.e assimilated by the seagrass community, during the day. The observed accelerated
decreases in the CO₂ flux coinciding with sunrise and the much lower CO₂ peaks observed
during the day at the transition from air exposure to inundation provide evidence for this.
Over the course of the experiment a net CO₂ assimilation occurred roughly between 9:00 am
and 6:00 pm with average net assimilation rates of 9.1 mmol m⁻² h⁻¹ during air exposure and
16.4 mmol m⁻² h⁻¹ during immersion summing up to a net CO₂ assimilation of 125 mmol m⁻²
d⁻¹. The NCP of Z. noltii during air exposure estimated here compares well to the previous
reported rates ranging from 10 to 15 mmol m⁻² h⁻¹ (Silva et al., 2005), whereas NCP during
tidal immersion significantly exceeds previously reported rates of less than 5 mmol m⁻² h⁻¹
from the Ria Formosa (Santos et al., 2004, Silva et al., 2005, 2008). These earlier studies used
static chambers prone to introduce stagnant condition. In contrast, the bubbling in our
chamber introduces turbulent mixing and hence may facilitate the transport of CO₂ across the
water leaf interface. Thus, these differences can be mainly attributed to the introduction of
advection in our chamber system. In accordance with our results Clavier et al, (2011) have
recently reported a higher NCP during submersion than under aerial conditions from a Z.
noltii bed in the Banc D’Arguin (Mauritania). In this study a benthic chamber equipped with
submersible pumps was used to maintain a turbulent water flow during submersion. They
found a NCP of about 3 mmol m⁻² h⁻¹ under aerial conditions and of about 20 mmolm⁻¹h⁻¹
under submerged conditions with the latter being derived from DIC and oxygen
measurements.. The respective gross primary production rates in the study of Clavier et al.
(2011) were 6 and 42.7 mmol m⁻² h⁻¹. From our CO₂-flux measurements we have estimated a
net community production of 9.1 mmol m⁻² h⁻¹ under aerial conditions and of 16.4 mmol m⁻²h⁻¹
under submerged conditions. As a first rough estimate of the gross community production in
our study, we can simply add the observed respiration fluxes measured during night to the net
community production resulting in an estimated gross community production of 17.5 mmolm⁻²
2h⁻¹ under aerial conditions and of 36.5 mmolm⁻²h⁻¹ under submerged conditions whereas
the peak occurring at the transition from air exposure to immersion has not been included. In
particular under submerged conditions the net and gross community production rates from
both studies agree quite well. Under aerial conditions our production rates were about three
times higher than those reported in Clavier et al. (2012) When including the carbon evolution
from the sediment we can estimate a gross primary production to 4.3 g C m\(^{-2}\) d\(^{-1}\) being close
to that (~ 5 g C m\(^{-2}\) d\(^{-1}\)) reported by Cabaço et al. (2012) for established meadows of Z. noltii
in the Ria Formosa for this time (late spring) of the year that has been computed from changes
in the living biomass. In this context it should be noted that, as already outlined in Silva et al.
(2005), the available data on the aerial versus submerged photosynthesis of Z. noltii are not
consistent. While Leuschner and Rees (1993) and Leuschner et al. (1998) measured
comparable rates of CO\(_2\) assimilation in air and water, Perez-Llorens and Niell (1994) found
CO\(_2\) uptake rates in air 10 to 20 times lower than in water. As the strength of advection in our
chamber system relative to ambient conditions is unknown we cannot currently appraise the
quality and reliability of the different chamber systems. However these differences highlight
the importance of accurately addressing the perturbations of turbulent flows in benthic flux
chambers.

4.4 VOCs

The overall focus of this section is the temporal evolution of the VOC fluxes over a tidal
cycle. A quantitative discussion of the VOC data and an assessment of potential intrinsic
sources are beyond the scope of this paper. For the halocarbons this will be done elsewhere
Weinberg et al., submitted). CS\(_2\) having a known sedimentary source (Bodenbender et al.,
1999) show a similar temporal pattern as CH\(_4\) during high tide. Thus, we conclude that the
emission of CS\(_2\) is in analogy to CH\(_4\) mainly controlled by advective transport across the
sediment water interface.

Halocarbon production in the marine environment is generally attributed to photoautotrophic
sources (Gschwend et al., 1985; Manley et al., 2006; Moore et al., 1995) though there is some
evidence of a sedimentary bacterial source for iodomethane (Amachi et al., 2001). In the
seagrass meadows halocarbons are presumably produced by the seagrass or by the
microphytobenthos. Only in the latter case porewater flow across the sedimentary interface
can directly affect the emission. However, the elevated halocarbon fluxes during tidal
immersion may reflect an enhanced transport across the leaf water interface and/ or result
from the enhanced net primary production during immersion. Sediments may also act as a
sink for monohalomethanes (Miller et al., 2001; Bill et al., 2002) and trihalomethanes are
known to be degraded by a variety of microorganisms (Alasdair and Allard, 2008). Hence, the remarkable decrease and the uptake of the halocarbons may simply reflect sedimentary degradation processes. We further noted remarkable levels of H$_2$S and methanethiol in our samples during high tide. In particular H$_2$S is a very reactive nucleophile, readily reacting with monohalomethanes (Barbash and Reinhard, 1989) and thus may additionally foster the degradation of monohalomethanes. In summary, similarly to CH$_4$ and CO$_2$, the VOC fluxes are more pronounced during tidal immersion than during air exposure but further show some differences resulting from their different sources and sinks.

5 Conclusions

We have presented flux measurements for a variety of trace gases in a tidally influenced seagrass bed (Z. noltii) using a newly developed flux dynamic chamber system that can be deployed over full tidal cycles. An unambiguous quantification of carbon fluxes in future studies requires additional measures such as pH or alkalinity to better constrain the carbonate system. Further the water exchange between the chamber and surrounding waters should be quantified. Despite this caveats our results provide new insights into the temporal flux dynamics. In particular the CO$_2$ and CH$_4$ data illustrate the need for high time resolution measurements to accurately address the fluxes and dynamics of trace gases in tidally controlled systems. For CH$_4$ we observed short emission peaks with the flood current arriving at the sampling site. In line with previous studies that have demonstrated the importance of advective transport processes for the oxygenation of sediments, our results show a general strong control of advective transport processes on trace gas fluxes in intertidal systems during submersion. We are aware of only a very few earlier studies in intertidal systems indicating elevated fluxes during tidal immersion or periods of tidal change. Contrasting to most previous flux chamber studies, our data indicate significant enhanced fluxes during tidal immersion relative to periods of air exposure for all trace gases measured in this study as previously reported for oxygen, DIC nutrients and suspended matter. Hence, our results highlight the importance of accurately addressing the perturbations of turbulent flows in flux chamber studies. If the observed flux enhancements are more than just episodic events this may have fundamental implications for our understanding of the carbon and trace gas cycling in coastal environments.
6 Acknowledgements

The authors thank the German Federal Ministry of Education and Research (BMBF) for funding (grants 03F0611E and 03F0662E). This work was partly supported by the EU FP7 Assemble research infrastructure initiative and the project "Whole-system metabolism and CO$_2$ fluxes in a coastal lagoon dominated by saltmarsh and seagrass meadows", PTDC/AAC-CLI/103348/2008. João Reis, and Bruno Fragoso (CCMAR, Universidade do Algarve) are greatly acknowledged for their extensive support during sampling site selection and sampling. Our technical staff members Sabine Beckmann and Ralf Lendt are thanked for their invaluable help.
References

Fig. 1: Scheme of the dynamic flux chamber system. During air exposure the chamber acts as a conventional dynamic flux chamber. During tidal immersion the enclosed water is continuously purged with ambient air.
Fig. 2: Diurnal variations of the CH$_4$ and CO$_2$ fluxes above a meadow of the seagrass Z. noltii. Air temperature and light intensity are also shown. The measurements were carried out from 25 to 28 April 2012. Yellow bars indicate daylight periods, green bars indicate periods of air exposure, blue bars indicate periods of tidal immersion.
Fig. 3: CH₄ and CO₂ fluxes above a bare sediment patch recorded on April 23th, 2012. The upper graph in red shows the CH₄ fluxes in µmol m⁻² h⁻¹ and the lower graph show the CO₂ fluxes in mmol m⁻² h⁻¹. Yellow bars indicate daylight periods, green bars indicate periods of air exposure and blue bars indicate periods of tidal immersion respectively.
Fig. 4: Relative enhancement of selected VOC fluxes from a tidally influenced seagrass bed. All fluxes were normalized to the respective mean fluxes during low tide. Mean and ranges are provided in Table 2.
Fig. 5a Time series of CO₂ mixing ratios at the chamber outlet and in the atmosphere along with meteorological conditions. In the upper panel the blue diamonds indicate the windspeed.
Fig. 5b Time series of CH$_4$ mixing ratios at the chamber outlet and in the atmosphere along with meteorological conditions. In the upper panel the blue diamonds indicate the windspeed.
Table 1: Averaged CO\textsubscript{2} and CH\textsubscript{4} fluxes above seagrass for different periods of the tidal cycle. The fluxes were calculated from the measurements of day 2 and 3. By definition emission fluxes are positive and deposition fluxes are negative.

<table>
<thead>
<tr>
<th>tidal stage</th>
<th>CO\textsubscript{2} (mmol m-2 h-1)</th>
<th>CH\textsubscript{4} (µmol m-2 h-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sediment seagrass</td>
<td>sediment seagrass</td>
</tr>
<tr>
<td>air exposure (day)</td>
<td>-1.1 -9.1</td>
<td>0.4 6.9</td>
</tr>
<tr>
<td>air exposure (night)</td>
<td>1.0 8.4</td>
<td>0.2 4.4</td>
</tr>
<tr>
<td>tidal inundation (day)</td>
<td>-2.0 -16.4</td>
<td>6.6 14.3</td>
</tr>
<tr>
<td>tidal inundation (night)</td>
<td>6.4 20.1</td>
<td>5.2 16.6</td>
</tr>
<tr>
<td>peak (water just arriving)</td>
<td>14.8 55.0</td>
<td>10.8 71.0</td>
</tr>
<tr>
<td>mean (time averaged)</td>
<td>2.1 4.2</td>
<td>3.0 12.8</td>
</tr>
</tbody>
</table>
Table 2: Mean trace gas fluxes (bold) obtained from seagrass meadows along the tidal cycle. Fluxes are given in nmol m² h⁻¹. Numbers in parenthesis are the range of fluxes. Fluxes during high tide are given as single values. Further details on CH₃Cl, CH₃Br, CH₃I, and CHBr₃ are given in Weinberg et al. (submitted) By definition emission fluxes are positive and deposition fluxes are negative.

<table>
<thead>
<tr>
<th>Compound</th>
<th>low tide (n=17)</th>
<th>CH₄ peak (n=5)</th>
<th>feeder current (n=6)</th>
<th>high tide (n=2)</th>
<th>ebb flow (n=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(nmol m² h⁻¹)</td>
</tr>
<tr>
<td>Halocarbons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃Cl</td>
<td>1.0 (29.6-69.0)</td>
<td>40.1 (-14.2-99.7)</td>
<td>11.4 (-14.7-36.6)</td>
<td>-18.1, -58.3</td>
<td>21.3 (-13.5-46.2)</td>
</tr>
<tr>
<td>CH₃Br</td>
<td>0.4 (-0.8-3.9)</td>
<td>2.7 (0.1-8.3)</td>
<td>1.8 (0.2-3.3)</td>
<td>-0.5, -1.6</td>
<td>2.1 (-0.1-4.4)</td>
</tr>
<tr>
<td>CH₃I</td>
<td>0.6 (-0.6-2.6)</td>
<td>3.3 (0.1-8.0)</td>
<td>1.6 (0.1-2.9)</td>
<td>0.1, 0.1</td>
<td>1.5 (0.2-3.0)</td>
</tr>
<tr>
<td>CHCl₃</td>
<td>0.3 (-0.8-2.8)</td>
<td>2.4 (0.1-6.6)</td>
<td>2.0 (0.5-3.0)</td>
<td>-0.1, -2.0</td>
<td>2.0 (-0.6-3.7)</td>
</tr>
<tr>
<td>CHBr₃</td>
<td>0.4 (-0.5-1.3)</td>
<td>2.9 (0.2-10.6)</td>
<td>2.8 (0.2-5.1)</td>
<td>0.5, -0.1</td>
<td>4.5 (-0.4-8.6)</td>
</tr>
<tr>
<td>CS₂</td>
<td>52 (-34-192)</td>
<td>216 (22-544)</td>
<td>135 (-5.5-200.0)</td>
<td>420, 398</td>
<td>129 (-13.4-230)</td>
</tr>
<tr>
<td>propene</td>
<td>56 (-26-377)</td>
<td>167 (91-331)</td>
<td>91 (-5.1-170)</td>
<td>33, 27</td>
<td>182 (3.4-407)</td>
</tr>
</tbody>
</table>

¹ Fluxes are expressed as relative enhancement to the average flux during low tide experiments.