Interactive comment on “The full greenhouse gases budget of Africa: synthesis, uncertainties and vulnerabilities” by R. Valentini et al.

R. Valentini et al.

rik@unitus.it

Received and published: 19 October 2013

We have replied into two separate files to the comments of both referees. Here you can find attached the following files, updated in order to respond to the referees’ requests:
- the updated manuscript
- the updated tables
- the updated Figures 2, 3 and 5

Interactive comment on Biogeosciences Discuss., 10, 8343, 2013.
Natural CO₂ fluxes: yearly means

Fig. 1.

Jena_s99_v3.3 Jena_s96_v3.3
LSCE_var_v1.0 LSCE_an_v2.1
CarbonTracker_CTE2008
Natural CO₂ fluxes (2001-2004 mean)

Mean across all inversions

Standard deviation across all inversions

Fig. 2.
Fig. 3.
Table 1. GHGs emission sources for five different African Regions.

<table>
<thead>
<tr>
<th>Region</th>
<th>Anthropogenic fossil fuel emissions</th>
<th>Per capita emissions (\text{PgCO}_2\text{-eq})</th>
<th>Agriculture</th>
<th>LUCF</th>
<th>Total Emissions</th>
<th>Removals</th>
<th>Net Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORTH AFRICA</td>
<td>0.34 (\text{PgCO}_2\text{-eq})</td>
<td>2.1</td>
<td>0.13 (\text{PgCO}_2\text{-eq})</td>
<td>0.87</td>
<td>0.15 (\text{PgCO}_2\text{-eq})</td>
<td>0.03 (\text{PgCO}_2\text{-eq})</td>
<td>0.02 (\text{PgCO}_2\text{-eq})</td>
</tr>
<tr>
<td>EASTERN AFRICA</td>
<td>0.15 (\text{PgCO}_2\text{-eq})</td>
<td>0.8</td>
<td>0.27 (\text{PgCO}_2\text{-eq})</td>
<td>0.20</td>
<td>0.04 (\text{PgCO}_2\text{-eq})</td>
<td>0.02 (\text{PgCO}_2\text{-eq})</td>
<td>0.02 (\text{PgCO}_2\text{-eq})</td>
</tr>
<tr>
<td>WESTERN AFRICA</td>
<td>0.28 (\text{PgCO}_2\text{-eq})</td>
<td>1.3</td>
<td>0.30 (\text{PgCO}_2\text{-eq})</td>
<td>0.06</td>
<td>0.30 (\text{PgCO}_2\text{-eq})</td>
<td>0.51 (\text{PgCO}_2\text{-eq})</td>
<td>0.45 (\text{PgCO}_2\text{-eq})</td>
</tr>
<tr>
<td>CENTRAL AFRICA</td>
<td>0.07 (\text{PgCO}_2\text{-eq})</td>
<td>0.5</td>
<td>0.56 (\text{PgCO}_2\text{-eq})</td>
<td>0.49</td>
<td>0.55 (\text{PgCO}_2\text{-eq})</td>
<td>1.18 (\text{PgCO}_2\text{-eq})</td>
<td>0.52 (\text{PgCO}_2\text{-eq})</td>
</tr>
<tr>
<td>SOUTHERN AFRICA</td>
<td>0.47 (\text{PgCO}_2\text{-eq})</td>
<td>3.1</td>
<td>0.04 (\text{PgCO}_2\text{-eq})</td>
<td>0.01</td>
<td>0.00 (\text{PgCO}_2\text{-eq})</td>
<td>0.00 (\text{PgCO}_2\text{-eq})</td>
<td>0.00 (\text{PgCO}_2\text{-eq})</td>
</tr>
<tr>
<td>Total</td>
<td>1.29 (\text{PgCO}_2\text{-eq})</td>
<td>8.2</td>
<td>8.54 (\text{PgCO}_2\text{-eq})</td>
<td>8.54</td>
<td>3.19 (\text{PgCO}_2\text{-eq})</td>
<td>2.23 (\text{PgCO}_2\text{-eq})</td>
<td>0.95 (\text{PgCO}_2\text{-eq})</td>
</tr>
<tr>
<td>Total by Bombelli et al.</td>
<td>0.938</td>
<td>8.465</td>
<td>4.453</td>
<td>2.968</td>
<td>2.365</td>
<td>0.359</td>
<td></td>
</tr>
</tbody>
</table>

a According to the United Nations geographical sub-regions for Africa, from the United Nations Statistics Division, applications of the methodology for developing the data.

b Per capita values are estimated on the basis of UN World population prospects, the 2010 revision [2011].
The full greenhouse gases budget of Africa: synthesis, uncertainties and vulnerabilities

[1] Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, via S. Camillo de Lellis, 01100 Viterbo, Italy
[2] Euro-Mediterranean Center on Climate Change (CMCC), Via Augusto Imperatore 16, 73100 Lecce, Italy
[3] Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Kreuzkirchstrasse 10, 82467 Garmisch-Partenkirchen, Germany
[4] Department of Science Ambientali, Biologiche e Farmaceutiche (DISTABIF), Seconda Università di Napoli, via Vivaldi 43, 81100 Caserta, Italy
[5] LSCE, CEA-CNRS-UVSQ, L’Orme des Merisiers, Bat. 701, 91914 Gif-sur-Yvette, France
[6] Institute for Biogeochemistry and Marine Chemistry, 20146 Hamburg, Germany
[7] FAO, Forestry Department, UN-Biodiversity Programme, Viale delle terme di Caracalla 1, 00153 Rome, Italy
[8] Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540, USA
[9] Biogeochemical Model Data Integration Group, Max Planck Institute for Biogeochemistry, Hans-Klotz Str. 10, 07745 Jena, Germany
[10] Themen Institute for Climate-smart Agriculture, Bundesallee 50, 38116 Braunschweig, Germany
[12] Applied Physics Laboratory, University of Washington, Seattle, USA
[13] Department of Environmental Systems Science, Institute of Agricultural Sciences SAS, ETH Zurich, 8092, Zurich, Switzerland
[14] Yale School of Forestry and Environmental Studies, 195 Prospect St, New Haven, CT 06511, USA
[15] University of Exeter, Penrose Drive, Exeter EX4 4RL, UK
[16] Department of Civil Engineering and Computer Science Engineering, University of Toronto, Rome, Italy
[17] Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
[18] Graduate School of Geography, Clark University, Worcester, Massachusetts, USA
[19] Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001 South Africa

Abstract

This paper, developed under the framework of the RECCAP initiative, aims at providing improved estimates of the carbon and GHG (CO$_2$, CH$_4$ and N$_2$O) balance of continental Africa. The various components and processes of the African carbon and GHG budget are considered, existing data are reviewed and new and unpublished data are presented from different methodologies (inventories, ecosystem flux measurements, models, and atmospheric inversion). The results and uncertainties are quantified and current gaps and weaknesses in knowledge and in the monitoring systems are identified. In order to respond to those requirements, the data and models need to be improved and gaps need to be filled. The results are summarized in the following way: (i) Africa is a small sink of carbon on an annual scale, with an average value of ~0.6 ± 0.5 Pg C yr$^{-1}$. Nevertheless the emissions of CH$_4$ and N$_2$O may turn Africa into a net source of radiative forcing (in terms of CO$_2$ equivalent terms. At sub-regional level there is significant spatial variability in both sources and sinks. South Africa is the main source region and central Africa, with its evergreen tropical forests, is the main sink. Emissions...