Interactive comment on “Rapid increasing trend of CO₂ and ocean acidification in the surface water of the Ulleung Basin, East/Japan Sea inferred from the observations from 1995 to 2004” by J.-Y. Kim et al.

Anonymous Referee #1

Received and published: 31 July 2013

This paper describes the trend of ocean acidification in surface water of the Ulleung basin in the southwest East/Japan Sea on the basis of the datasets of ICO2 acquired between 1995 and 2004. The authors claim that the rate of long-term ICO2 increase in this region is 3.36 uatm/yr. This is about twice as fast as that expected from the rate of atmospheric CO2 increase. However, the way of analyzing the rate, i.e. a simple application of linear regression for ICO2 data that are distributed unevenly in both space and season, is too rough to believe the rate that authors claim. In addition, no possible cause of the faster pCO2 increase than in the atmosphere has been discussed in this paper, in spite that it might have an important implication for the change in the carbon cycle in the marginal sea. In summary, I think this paper needs major revisions before accepting for publication. Specific comments and questions are given below.

(1) Introduction: page 9575, lines 1-3: I don’t understand why “atmospheric CO2 is constantly increasing at an unprecedented rate” disturbs “the carbonate system in ways that will make air-sea exchange difficult”.

(2) Section 2.1: page 9577, lines 15-20: How were the measurements of TA and pH standardized?

(3) Section 3.1: Fitting of seasonally-varying time-series data to the combination of harmonic and exponential (or linear) functions has been made in analyzing the observed atmospheric CO2 concentrations (e.g., Keeling et al., 1989: Geophysical Monograph, 5, 165-221). The residuals of data from fitting curve give the information on interannual variability. In using harmonic function like Eq.(2) to evaluate the long-term change, it is appropriate to add the term of long-term (linear) change $C\Delta t$ (t denotes time and C denotes coefficient that represents the rate of linear increase). However the number of data points (12) appears not enough to determine the rate of increase with small uncertainty. Authors need to provide the uncertainty of the rate they determined. I would also suggest authors to try multi-linear regression for fCO2 as a function of time and SST (and some other variables) to evaluate the rate of fCO2 increase as has been done by Inoue et al., 1995 (Tellus, 47B, 391-413), too, and compare its result with that from the fitting to a harmonic function.

(4) Page 9582, line 17: Where did the coefficient 0.0376 come from?

(5) Page 9583, line 25: Fugacity has been used for the data from UB but partial pressure has been used for the data from Gosan. Are there any reasons for this difference?

(6) Section 3.4. Re-evaluate the rate of fCO2 change as mentioned in the comment (1). If the rate of fCO2sea change re-evaluated still differs significantly from the rate
of fCO2air increase, discuss on the reason for the difference. One of the working hypotheses could be the long-term change in the ocean circulation. Strengthening of intrusion of subtropical water through Korea Strait may cause warming and annual mean fCO2 rise together.

(7) Table 1 and Section 3.4: Give salinity value in Table 1. Since total alkalinity is largely affected by precipitation and evaporation (dilution and concentration), authors need to examine the relationship between total alkalinity and salinity. Total alkalinity in the studied region may have been changing with the change in vertical mixing or circulation change. I would suggest authors to try to derive empirical equations for total alkalinity as has been done by Lee et al., 2006 for open oceans.

(8) Page 9584, lines 26-27: Show plots of calculated pH value versus measure ones.

(9) Discuss also on the rate of change in carbonate saturation index Omega for aragonite and calcite that are important for the growth of sea shells.

Interactive comment on Biogeosciences Discuss., 10, 9573, 2013.