Different methanotrophic potentials in stratified polar fjord waters (Storfjorden, Spitsbergen) identified by using a combination of methane oxidation techniques

S. Mau¹,², J. Blees³, E. Helmke², H. Niemann³, and E. Damm²

¹Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
²Alfred-Wegener-Institute for Marine and Polar Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
³Department of Environmental Sciences, University of Basel, Bernoullistrasse 30, 4056 Basel, Switzerland

Received: 7 March 2013 – Accepted: 25 March 2013 – Published: 8 April 2013

Correspondence to: H. Niemann (helge.niemann@unibas.ch)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

The bacterially mediated aerobic methane oxidation (MOx) is a key mechanism in controlling methane (CH\(_4\)) emissions from the world's oceans to the atmosphere. In this study, we investigated MOx in the Arctic fjord Storfjorden (Spitsbergen) by applying a combination of radio-tracer based incubation assays (\(^3\)H-CH\(_4\) and \(^{14}\)C-CH\(_4\)), stable C-CH\(_4\) isotope measurements, and molecular tools (16S rRNA DGGE-fingerprinting, pmoA- and mxaF gene analyses). Storfjorden is stratified in the summertime with melt water (MW) in the upper 60 m of the water column, Arctic water (ArW) between 60–100 m and brine-enriched shelf water (BSW) down to 140 m. CH\(_4\) concentrations were supersaturated with respect to the atmospheric equilibrium (∼3 nM) throughout the water column, increasing from ∼20 nM at the surface to a maximum of 72 nM at 60 m and decreasing below. MOx rate measurements at near in situ CH\(_4\) concentrations (here measured with \(^3\)H-CH\(_4\) raising the ambient CH\(_4\) pool by <2 nM) showed a similar trend: low rates at the sea surface increasing to a maximum of ∼2.3 nM d\(^{-1}\) at 60 m followed by a decrease in the deeper ArW/BSW. In contrast, rate measurements with \(^{14}\)C-CH\(_4\) at elevated CH\(_4\) concentrations (incubations were spiked with ∼450 nM of \(^{14}\)C-CH\(_4\), providing an estimate of the CH\(_4\) oxidation potential) showed comparably low turnover rates (<1 nM d\(^{-1}\)) at 60 m, but peaked in ArW/BSW at ∼100 m water depth, concomitant with increasing \(^{14}\)C-values in the residual CH\(_4\) pool. Our results indicate that the MOx community in the surface MW is adapted to relatively low CH\(_4\) concentrations. In contrast, the activity of the deep water MOx community is relatively low at the ambient, summertime CH\(_4\) concentrations but has the potential to increase rapidly in response to CH\(_4\) availability. A similar distinction between surface and deep water MOx is also suggested by our molecular analyses. Although, we found pmoA and maxF gene sequences throughout the water column attesting the ubiquitous presence of MOx communities in Storfjorden, deep water amplicons of pmoA and maxF were unusually long. Also a DGGE band related to the known Type I MOx Methylosphera was observed in deep BWS, but absent in surface MW. Apparently, different
MOx communities have developed in the stratified water masses in Storfjorden, which is possibly related to the spatiotemporal variability in CH$_4$ supply to the distinct water masses.

1 Introduction

Methane (CH$_4$) is a potent greenhouse gas with a global warming potential that exceeds carbon dioxide (CO$_2$) 23-fold over a 100 yr timescale and is, after water vapour and CO$_2$, the most important greenhouse gas (IPCC, 2007). Substantial research efforts have consequently been made to understand its sources and sinks. A large part of oceanic CH$_4$ is generated under reduced conditions in anoxic marine sediments, dominantly through microbially mediated carbonate reduction and disproportionation of methylated substrates (Whiticar, 1999; Hinrichs and Boetius, 2002; Formolo, 2010). Sedimentary CH$_4$ is also formed by thermal breakdown of organic matter and, although of lesser importance, the Fischer–Tropsch reaction, both occurring at high temperature and pressure. In addition, conspicuous CH$_4$ concentrations maxima in oxic water layers provided indications for CH$_4$ production under oxic conditions possibly mediated by yet unknown microbes using dimethylsulfiniopropionate (DMSP) (Damm et al., 2010) or methylphosphonic acid (Karl et al., 2008; Metcalf et al., 2012) as substrate. However, despite the apparent ubiquity of methanogenesis in marine systems and the large area covered by oceans, comparably little CH$_4$ is liberated from the oceans into the atmosphere as a result of microbial consumption (Reeburgh, 2007; IPCC, 2007). About 80% of sedimentary CH$_4$ is consumed in reduced sediments as a result of the anaerobic oxidation of methane (AOM) with sulphate as the terminal electron acceptor (Reeburgh, 2007; Knittel and Boetius, 2009). Finally, aerobic CH$_4$-oxidising bacteria at the sediment surface and/or in the water column (belonging to the alpha (Type II) or gamma (Type I and Type X) subdivision of the Proteobacteria) consume CH$_4$ that has
by-passed the anaerobic microbial filter (Hanson and Hanson, 1996) according to the following reaction:

\[\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O} \]

(R1)

Several techniques have been used to quantify aerobic methane oxidation (MOx) rates (Reeburgh, 2007). A common method is to incubate of water column or sediment samples with radio-labelled tracers such as \(^{14}\text{C}\)-CH\(_4\) or \(^3\text{H}\)-CH\(_4\) (Reeburgh et al., 1991; Valentine et al., 2001; Niemann et al., 2006; Mau et al., 2012), which has been proven highly sensitive. During the incubation, \(^{14}\text{C}\)-CH\(_4\) or \(^3\text{H}\)-CH\(_4\) are converted at the same rate as the natural, non-labelled CH\(_4\) to \(^{14}\text{CO}_2\) and \(^{14}\text{C}\)-biomass or \(^3\text{H}_2\text{O}\). Despite the importance of water column MOx controlling oceanic CH\(_4\) emission to the atmosphere, only a small number of water column MOx rate measurements exists, which is particularly true for high latitude environments (Ward and Kilpatrick, 1990; Griffiths et al., 1982). The available data show a large scatter of rates over several orders of magnitude (Fig. 1), but factors controlling MOx activity such as temporal variations in CH\(_4\) availability (e.g. Mau et al., 2007a, b; Damm et al., 2007) and the rate potential, i.e. the maximum uptake rate, of the present MOx community are not well constrained.

Our aims for this study were to investigate MOx rates and rate potentials as well as the key MOx community in response to different CH\(_4\) concentrations in a natural marine environment. As a model system, we choose the fjord Storfjorden (Svalbard), which is characterised by seasonal stratification, separating distinct water masses with different CH\(_4\) sources during summer time.

2 Material and methods

2.1 Study site

Storfjorden is located in the Svalbard Archipelago between the islands Spitsbergen, Barentsøya, and Edgeøya (Fig. 2). CH\(_4\) concentrations in the fjord water exceed
atmospheric equilibrium concentration throughout the water column by a factor of 2–16, although surface waters CH$_4$ is of a different origin compared to the CH$_4$ in subsurface waters (Damm et al., 2008). Surface waters contain recently produced, 14C-depleted CH$_4$, which was proposed to result from a summer phytoplankton bloom producing methylated compounds such as DMSP, which is a potential substrate for methylotrophic methanogenesis. A CH$_4$ production-removal cycle appears to be established in the surface water as reflected by varying CH$_4$ concentrations and 13C-CH$_4$ values (Damm et al., 2008). In contrast, deeper water contains CH$_4$ that is mixed into the bottom water as a result of brine-enriched shelf water (BSW) formation during wintertime causing enhanced turbulence and repeatedly occurring re-suspension of sediments releasing CH$_4$ (Damm et al., 2007). The winter-released CH$_4$ is then trapped by increasing water stratification during warmer seasons and on-going CH$_4$ consumption leads to a 13C-enriched isotopic signature of the residual CH$_4$. During summer time the water column is stratified where surface melt water (MW) and intermediate Arctic water (ArW) occupy the upper water column, whereas denser BSW is restricted to deep basins (Loeng, 1991). The residence time of the high-salinity water is longer in deeper layers (90–246 d) compared to the fjord’s surface waters (51–141 d) (Geyer et al., 2009).

2.2 Sampling

Water samples were collected from nine stations in Storfjorden and at one open ocean station (70° 35.913′ N and 10° 51.591′ E) during a cruise with RV Heincke in August 2010 (Fig. 2, Table 1). The Storfjorden stations were aligned along the cyclonic coastal current flowing into Storfjorden along Edgeøya and out along Spitsbergen (Loeng, 1991; Skogseth et al., 2005) (Fig. 2). We intended to sample and compare the fjord’s upper and lower water column because of the different CH$_4$ sources and water residence times. We sampled vertical profiles throughout the water column thus recovering samples from MW, ArW, and BSW. All water masses were subsampled for chemical/biogeochemical analyses (method 2.3 and 2.4), but we focused on the MW and
BSW for molecular analyses (method 2.5). Specific water depths were sampled with a CTD/rosette sampler equipped with 12 five-litre Niskin bottles, a Seabird SBE 911 plus CTD and an SBE 43 oxygen sensor for online monitoring of salinity, temperature, pressure and dissolved oxygen.

2.3 CH₄ concentrations and stable isotope composition

Aliquots of sea water were immediately subsampled from the Niskin bottles using 1 L glass bottles for CH₄ concentration measurements. CH₄ was extracted from the water by vacuum-ultrasonic treatment within a few hours after sampling (Schmitt et al., 1991). Hydrocarbon concentrations were measured with a Chrompack 9003 gas chromatograph (GC) equipped with a flame ionization detector (FID). Duplicate analyses indicate an error of 5–10% (Lammers and Suess, 1994). After GC analyses, an aliquot of the extracted CH₄ gas was transferred into pre-evacuated glass containers for stable carbon isotope analysis performed with an isotope ratio mass spectrometer (IRMS; Finnigan Delta XP plus) in our onshore laboratories. The extracted gas was purged and trapped with PreCon equipment (Finnigan) to pre-concentrate the sample. All isotopic ratios have an analytical error ≤ 1‰ and are presented in the δ-notation against the Vienna Pee Dee Belemnite (VPDB) standard.

2.4 Methane oxidation rates

MOx rates were determined from ex situ incubations of water samples in 100 mL serum vials. The vials were filled bubble-free from Niskin bottles and crimped with rubber stoppers (halogenated butyl elastomer). One set of samples was then incubated with 50 µl gas mixture comprised of ³H-labelled CH₄ (160–210 kBq) and a second set was incubated with 10 µl of ¹⁴C-labelled CH₄ (12–15 kBq). ³H-CH₄ tracer addition raised ambient CH₄ concentrations by 1–2 nM and ¹⁴C-CH₄ addition by 440–540 nM. The samples were subsequently shaken for ~10 min on an orbital shaker to facilitate tracer dissolution and then incubated in the dark at 2°C. CH₄ oxidation rates (rˌox) were calculated
assuming first order kinetics (Reeburgh et al., 1991; Valentine et al., 2001):

\[r_{\text{ox}} = k'[\text{CH}_4] \]

(1)

where \(k' \) is the effective first order rate constant calculated as the fraction of labelled CH\(_4\) oxidised per unit time and \([\text{CH}_4]\) is the ambient CH\(_4\) concentration.

In order to determine a suitable incubation time period, we performed parallel time series incubations with samples collected from the fjord (Station 2 and 18) and from an open water station (reference station – RS). During each incubation series, tracer consumption was measured in duplicates after 0.5, 1, 2, 3 and 4 or 5 days. In the CH\(_4\) rich waters of the fjord, our results showed a linear tracer consumption of about 5–15% over the first 3 days of incubation (Fig. 3). A potential bias due to substrate limitation and/or variations in reaction velocity thus seems negligible at least over a time period, of 3 days, which we chose for our ex situ incubations. Just as the time series incubations, vertical distribution of MOx was determined in duplicates.

Incubations with \(^3\text{H}-\text{CH}_4\) and measurements of \(^3\text{H}-\text{CH}_4\) and \(^3\text{H}-\text{H}_2\text{O}\) was carried out according to Valentine et al. (2001) and Mau et al. (2012). Briefly, total activity (\(^3\text{H}-\text{CH}_4 \text{ + } ^3\text{H}-\text{H}_2\text{O}\)) was measured in 1 mL of sample aliquot by wet scintillation counting and activity of \(^3\text{H}-\text{H}_2\text{O}\) was measured after sparging the sample for \(\geq 30\) min with nitrogen gas to remove remaining \(^3\text{H}-\text{CH}_4\).

Incubations with \(^{14}\text{C}-\text{CH}_4\) were terminated by injecting 0.5 mL of 10 M NaOH and adding a 5 mL headspace so that the remaining \(^{14}\text{C}-\text{CH}_4\) accumulated in the headspace and the produced \(^{14}\text{C}-\text{CO}_2^-\) and \(^{14}\text{C}-\text{biomass}\) was trapped in the aqueous NaOH solution. Separation and activity measurement of \(^{14}\text{C}-\text{CH}_4\) and \(^{14}\text{C}-\text{CO}_2^-\) were carried out analogous to previous measurements of CH\(_4\) turnover in sediments (Treude et al., 2003; Niemann et al., 2005). In short, \(^{14}\text{C}-\text{CH}_4\) in the headspace was combusted to \(^{14}\text{C}-\text{CO}_2\), while \(^{14}\text{C}-\text{CO}_2^-\) was converted to \(^{14}\text{C}-\text{CO}_2\) through acidification with HCl. In either case, \(^{14}\text{C}-\text{CO}_2\) was then trapped in a solution of methoxyethanol:penylethylamine and the radioactivity was measured by
wet scintillation counting. We also measured remaining radioactivity (presumably org. 14C) in the sample after 14C-CH$_4$ and 14CO$_3^{2-}$ removal.

2.5 Diversity of MOx community

The diversity of the natural bacterioplankton assemblages was examined by denaturing gradient gel electrophoresis (DGGE) based on the 16S rRNA gene. Immediately after sampling, bacterial cells were concentrated on nuclepore filters (0.2 µm pore size) and the filters were stored frozen at −20 °C until DNA extraction. Total community DNA was extracted using the Ultraclean soil DNA kit (MoBio Laboratories, USA). 1–5 µL DNA extract was applied as template in the 16S rRNA gene specific PCR with GM5 plus GC-clamp as forward primer and 907RM as reverse primer (Muyzer et al., 1993). PCR conditions were as described by Gerdes et al. (2005). PCR-products (ca. 500 bp) were analysed by DGGE, based on the protocol of Muyzer et al. (1993) using a gradient-chamber. Clearly visible bands of the DGGE-pattern were excised from the gel and re-amplified by PCR as described by Gerdes et al. (2005) and sequenced. The 16S rDNA gene sequences were then assigned to the new higher-order taxonomy proposed in Bergey’s taxonomic outline of the “Prokaryotes” by the “Ribosomal Database Project (RDP) Classifier” (Wang et al., 2007). The sequences were further compared with those deposited in GenBank using the BLAST algorithm.

The presence of CH$_4$ oxidising bacteria in the communities was screened by two functional primer sets “pmoA” and “mxaF”, targeting the genes encoding subunits of the particulate methane monooxygenase (pMMO) and the methanol dehydrogenase (MDH), respectively. Both enzymes are key enzymes for methanotrophs (e.g. McDonald et al., 2008). However, the mxaF gene is also present in almost all other methylotrophic bacteria. The primer sets and amplification conditions employed in the gene specific PCR-reaction are described in Holmes et al. (1995) and McDonald and Murrell (1997), respectively.
3 Results

3.1 Water column biogeochemistry

According to Skogseth et al. (2005), we could identify three distinct water masses: melt water – MW (T: > 0.0 °C, S: < 34.2), Arctic water – ArW (T: < 0.0 °C, S: 34.3–34.8), and brine-enriched shelf water – BSW (T: < −1.5 °C, S: > 34.8) (Fig. 4d).

The MW extended from the surface to ~60 m water depth; this is the depth range where the thermocline is located and temperature decreased by ~4 °C (Fig. 4a). In the MW, CH$_4$ concentrations increased from ~20 nM at the surface to 72.3 nM at 60 m water depth (Fig. 5a). All concentrations were high and oversaturated with respect to the atmospheric equilibrium concentration of 3.3–3.9 nM (at the relevant T/S conditions, Wiesenburg and Guinasso, 1979). Similar to concentrations, microbial oxidation rates determined with 3H- and 14C-tracer increased with depth to 2.3 nM d$^{-1}$ and 0.77 nM d$^{-1}$, respectively (Fig. 5b and c). In the MW, rates measured with 14C-tracer were consistently lower than those determined with 3H-tracer. 13C-CH$_4$ values in this water mass ranged between −43.5 and −53.6 ‰ (Fig. 5d).

In the ArW, (60 to ~100 m water depth) oxygen concentrations decreased from 350 to 320 µM (Fig. 4c) and CH$_4$ concentrations from 42 to 6.5 nM (Fig. 5a). Both, MOx rates determined with 3H and 14C-tracer show a maximum at ~80 m in this water mass (Fig. 5b and c). The stable carbon isotopic signature of CH$_4$ showed a strong shift from −46 ‰ to about −32 ‰ at the MW/ArW interface (80 m, Fig. 5d).

The BSW (> 100 m water depth) was characterised by oxygen concentrations below 320 µM (Fig. 4c). CH$_4$ concentrations decreased slightly with depth, but were stable below 120 m (8–9 nM, Fig. 5a). MOx rates determined with 3H-labelled CH$_4$ show a similar trend as the CH$_4$ concentrations. However, while 3H-MOx rates were low, rates determined with 14C-labelled CH$_4$ were comparably higher with a maximum of 1.9 nM d$^{-1}$ at ~100 m water depth (Fig. 5b and c). The carbon isotopic signature of
the CH$_4$ decreased steadily from its maximum of -30% at 100 m to -39% in the lowermost sample (136 m, Fig. 5d).

3.2 Microbial communities

3.2.1 DGGE of 16S rDNA

Similar to the biogeochemical results, the MW and BSW at the studied stations (St. 2, 5, 12, 18, 19) showed DGGE banding patterns (Fig. 6, Table 2) indicating that surface- and deep-water were populated by different microbial communities.

The MW samples showed strong DGGE-bands that we could assign to eukaryotic-chloroplast DNA (#3, #4) and to Alphaproteobacteria of the genera *Phaeobacter* and *Sulfitobacter* (# 7, #8). The affiliation to the genus *Phaeobacter* was, however, relatively weak (0.51 confidence value, Table 2) indicating a possibly yet undescribed bacteria type. Additional bands (#5, #9, and #11) could be assigned to the genera *Flavicola* within the phylum *Bacteroidetes*, *Haliea* within the *Gammaproteobacteria*, and *Ilumatabacter* within the phylum *Actinobacteria*. Although we could measure CH$_4$ oxidation in the surface waters the DGGE based on the 16S rRNA gene did not reveal known methanotrophs.

In contrast to the diverse MW community, all deep-water samples (Sta. 12, 127 m, Sta. 2, 138 m, Sta. 18, 136 m) showed a quite low diversity with only two strong (# 6 and #7) and one weaker DGGE band (#10) (Fig. 6). Band #7 was also common in the upper water masses while band #6 was only found in the BSW samples. This band could be affiliated to *Methylsphaera*, which is a known type I aerobic methanotrophic bacterium (Bowman et al., 1997). However, the confidence value of 0.38 (Table 2) was relatively low. The deep water specific band #10 could be assigned to the sulphate-reducer *Desulfbacca*, also with a relatively low confidence level (0.19, Table 2).
3.2.2 Molecular marker genes of methanotrophs

The pmoA gene that encodes the alpha subunit of the particulate methane monoxygenase is a molecular marker gene of methanotrophs (McDonald et al., 1997). In contrast to the 16S rRNA based survey, the pmoA based PCR yielded amplicons within all surface- and deep-water samples (Fig. 7) attesting the ubiquitous presence of MOx communities in waters of Storfjorden. However, besides the expected product of 530 bp, all deep-water samples showed a further, longer amplicon. Nevertheless, the sequences of all these amplicons could not be affiliated to known pmoA genes. A similar distinction of the water masses was also apparent from the distribution of the mxaF gene (Fig. 7) that encodes the enzyme methanol dehydrogenase, which catalyses the second step in CH$_4$ oxidation. The mxaF gene was also found in all samples, but deep water samples showed several additional, weak, and shorter mxaF bands.

4 Discussion

4.1 Water column stratification and methane sources

Storfjorden water column mixing regimes were the subject of several previous publications (e.g. Haarpaintner et al., 2001; Skogseth et al., 2005; Fer, 2006). The fjord is a deep semi-enclosed basin in the Svalbard archipelago characterised by brine formation as a result of ice formation in latent heat polynyas during wintertime (Haarpaintner et al., 2001). Descending brines induce strong vertical mixing (Jardon et al., 2011) and turbulence at the sediment – water interface. However, accumulation of brine in bottom waters also leads to a stabilisation of the water column, which is further enhanced through a ~60 m thick surface layer of relatively ion-depleted MW in summertime (Fig. 4). The residence time of the deep BSW is with 90–246 d relatively long compared to 51–141 d of the surface water (Geyer et al., 2009), so that on-going oxygen
consumption leads to the comparably low oxygen levels that were detected previously (Anderson et al., 1988) and in this study.

CH$_4$ concentrations in Storfjorden are generally high with 6–72 nM. These elevated concentrations originate from microbial methanogenesis in the sediments and enhanced transport from sediments into the water column as a result of the descending brines inducing turbulence at the sediment – water interface (Damm et al., 2007). However, CH$_4$ concentrations indicate a second CH$_4$ source at 40–60 m water depth (Fig. 5a). Here O$_2$ concentrations were high as well (Fig. 4c), possibly indicating a maximum of phytoplankton. The second CH$_4$ source is probably related to water column in situ production by yet unidentified microorganisms utilising the phytoplankton metabolite DMSP as a carbon source (Damm et al., 2008). While a significant fraction of the CH$_4$ is consumed (see Sect. 4.2), Storfjorden is apparently a CH$_4$ source to the atmosphere (Damm et al., 2007) as indicated by CH$_4$ concentrations of up to 30 nM in the well mixed surface layer. These concentrations are highly supersaturated with respect to the atmospheric equilibrium (3.3–3.9 nM, Wiesenburg and Guinasso, 1979).

4.2 Vertical distribution of methane oxidation

Our results indicate two regimes of CH$_4$ oxidation when comparing deep BSW (> 100 m) and surface MW (< 60 m). The ArW (60–100 m) appears to be an intermediate between the two regimes. This distinction is apparent from the vertical distribution of MOx rates (Fig. 5b and c). We incubated parallel samples with 3H- and 14C-labelled CH$_4$. While absolute rate measurements with 3H-CH$_4$ were moderate in ArW and BSW, rates with 14C-CH$_4$ were elevated in these water masses. We suggest that this is related to the different amounts of CH$_4$ that were added as a result of 3H-CH$_4$ compared to 14C-CH$_4$ application. While in incubations with 3H-CH$_4$, the final CH$_4$ concentrations were only raised by < 2 nM, 14C-CH$_4$ amendments lead to a CH$_4$ increase of ~450 nM. It is therefore reasonable to assume that the activity of the deep water MOx community was stimulated as a result of elevated CH$_4$ concentrations (Pack et al., 2011). This is
most likely related to enzyme kinetics (Ward and Kilpatrick, 1990; Bender and Conrad, 1993; Smith et al., 1997), which can be described with the Michaelis-Menten model (Button, 1985; Translation of the 1913 Michaelis-Menten paper; Johnson and Goody, 2011). The Michaelis-Menten relation shows that enzyme activity, expressed by the reaction rate, increases hyperbolically with substrate concentration but levels off once the enzymatic machinery involved in the metabolic pathway is saturated with substrate. Similar relations were found between cell- or community-specific rates and substrate concentrations (Button, 2010 and references therein). For a stable community, a maximum rate thus exists, which may only increase as a result of enzyme concentration increase (e.g. population growth) and/or optimisation of cytoarchitectural components relevant for substrate metabolism (e.g. transporter system). We could show that substrate turnover rates were linear over the incubation time of 3 d (Fig. 3), so that it seems unlikely that the CH₄ amendments induced an increase in enzyme concentration or optimisation of other parameters relevant for substrate metabolism, at least over the time period of our incubation experiments.

The derivative of the Michaelis-Menten function (for low substrate concentrations) yields the first order rate constant \(k' \), which, multiplied with the substrate concentration, defines the actual rate \(r_{ox} \); see Eq. 1). Consequently, under substrate limiting conditions, \(k' \)-values are high but decrease if substrate concentrations approach enzyme saturation level. This relationship is depicted in Fig. 8. In MW (the fjord’s surface layers) \(k' \)-values were high during \(^{3}\text{H-CH}_4\) incubations, i.e. without substantial CH₄ amendments, but the addition of CH₄ in the \(^{14}\text{C-CH}_4\) incubations led to a substantial decrease (5–10 fold) in \(k' \), which suggests enzyme saturation. On the other hand, the deep water community in ArW and particularly in BSW appeared to operate at CH₄ concentrations below saturation because the addition of CH₄ through \(^{14}\text{C-CH}_4\) tracer application led to an increase in \(k' \) compared to parallel incubations with \(^{3}\text{H-CH}_4\).

The question remains as to why the MOx communities in deep and surface waters were apparently adapted to high and low CH₄ concentrations, respectively. Relatively low CH₄ concentrations in deeper water layers seem to be a regular feature of
Storfjorden, at least during summertime (Damm et al., 2008). However, during winter time, CH$_4$ export from the sediments is enhanced leading to strongly elevated CH$_4$ concentration of up to ∼60 nM with a 14C-signature of −40 to −50 ‰ in deeper water layers of Storfjorden (Damm et al., 2007). It thus appears reasonable to assume that the deep-water community is adapted to comparably high wintertime CH$_4$ concentrations. In summertime, on-going CH$_4$ oxidation leads to decreasing CH$_4$ concentrations and an increase in 13C in the residual CH$_4$ (Fig. 5). In contrast, surface CH$_4$ seems only to increase strongly during summer (to ∼50 nM), potentially as a result of phytoplankton induced DMSP production, which fuels methanogenesis in the oxic water column (Damm et al., 2008). However, we cannot explain why surface-water methanotrophs appear not to have adapted to the high summertime CH$_4$ concentrations or possibly lack the ability to adapt.

4.3 Microbial community

Similar to the MOx regimes, the diversity of the bacterial assemblage was different when comparing surface MW to the deep BSW. Our DGGE analyses indicate a higher microbial diversity in surface- compared to the deep water (Fig. 6, Table 2). Nevertheless, we only found one band in the surface water (#9) and one band in the deep water (#6) that could be related to CH$_4$ oxidisers. Band #9 could be affiliated to the genus Haliea of which novel isolates were found to oxidize ethylene and to possess genes similar to particulate methane monooxygenases (pMMO) (Suzuki et al., 2012). Band #6 could be assigned to a known aerobic methanotroph of the genus Methylosphaera (yet with a relatively low confidence value of 0.38). Species of the order Methylosphaera were previously found in Antarctic marine-salinity, meromictic lakes (Bowman et al., 1997). The different patterns of MOx-related bands in surface- and deep water thus indicate the presents of different MOx-communities in these water masses.

Similar to the 16S rRNA based survey, the pmoA and mxaF gene analyses indicated differences between surface- and deep water masses (Fig. 7). Although, both genes
were detected in all samples analysed (attesting an ubiquitous presence of MOx communities in Strofjorden), the deep water samples showed an additional, longer pmoA band and several weak, shorter mxaF bands suggesting the presence of different pmoA and mxaF related gene sequences. In addition to the 16S banding pattern and rate potentials, this further indicates that surface- and deep waters comprise different MOx communities.

The question remains as to what are the driving mechanisms for the development of the MOx communities in the different water masses. Here, we suggest that resuspension of sediments as a result of turbulent mixing during wintertime could have inoculated the deeper water masses with sediment microbes including benthic MOx communities. These are often distinct from planktonic communities (Bowman et al., 1997; He et al., 2012; Tavormina et al., 2008) and probably adapted to higher CH₄ concentrations. This scenario would also explain the presence of the sulphate reducer Desulfobacca in the oxic deep waters. Sulphate reducing bacteria are usually adapted to an anoxic environment (e.g. sediments) and may tolerate only low O₂ levels, yet resting cells of sulphate reducers were also found in fully oxygenated waters (Hastings and Emerson, 1988; Teske et al., 1996). The comparably short residence time of surface waters and the rather rapid exchange with the Barents Sea argues for a planktonic source of MOx communities in this water mass.

5 Conclusions

Incubation experiments with different substrate levels (here we used different tracers) are useful to identify distinct methanotrophic potentials in different water masses. With respect to the natural CH₄ concentrations of our study site (< 80 nM, Fig. 5), we used ³H-CH₄ amendments, which hardly altered absolute CH₄ concentrations, and ¹⁴C-CH₄ amendments, which in contrast increased CH₄ concentrations by ~1 order of magnitude. The ³H-CH₄ ex situ tracer incubations thus yield rates that may be similar to in situ rates. ¹⁴C-CH₄ ex situ rates were within the same order of magnitude as those
determined with 3H-CH$_4$. Yet, because of the high CH$_4$ concentration increase during our incubations with 14C-CH$_4$, these ex situ rates rather provide an estimate for the rate potential of the MOx community. Rate measurements typically provide a temporal snapshot, which is difficult to upscale particularly in environments with spatiotemporal varying CH$_4$ fluxes. Knowledge on the MOx rate potential, on the other hand, provides a mean to estimate the response in MOx activity in relation to changing CH$_4$ fluxes.

Acknowledgements. We are indebted to the captain, crew, and scientific research party of the research vessel Heincke (cruise HE-333), especially to the organiser and chief scientist Michael Schlüter. We like to thank Antje Boetius, Gabriele Schütter, and Gunter Wegener from the Max Planck institute for Marine Microbiology (Bremen, Germany) for providing scientific equipment and laboratory support. We are grateful to Jutta Jürgens from Alfred-Wegener-Institute for Marine and Polar Research (Bremerhaven, Germany), who implemented the microbial analyses. Susan Mau was funded through a Marie Curie Outgoing International Fellowship (MOIF-CT-2006-021604) of the European Community. Jan Blees was funded through a COST Short Time Scientific Mission (COST-STSM-ES0902-6596) and the Swiss National Science Foundation (SNF grant 121861).

The service charges for this open access publication have been covered by the Max Planck Society.

References

Different methanotrophic potentials in stratified polar fjord waters

S. Mau et al.

Hanson, R. S. and Hanson, T. E.: Methanotrophic bacteria, Microbiol. Rev., 60, 439–471, 1996.

6477

Different methanotrophic potentials in stratified polar fjord waters
S. Mau et al.

Table 1. Locations of stations and performed analyses.

<table>
<thead>
<tr>
<th>Station</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>77° N 05.64’</td>
<td>18° E 52.67’</td>
<td>[CH$_4$], MOx-rates, 13C–CH$_4$</td>
</tr>
<tr>
<td>2</td>
<td>77° N 05.23’</td>
<td>19° E 29.69’</td>
<td>MOx-rates time series, DGGE, pmoA, mxaF</td>
</tr>
<tr>
<td>5</td>
<td>77° N 04.54’</td>
<td>21° E 52.25’</td>
<td>[CH$_4$], MOx-rates, 13C–CH$_4$, DGGE, pmoA, mxaF</td>
</tr>
<tr>
<td>8</td>
<td>77° N 22.80’</td>
<td>21° E 35.43’</td>
<td>[CH$_4$], MOx-rates, 13C–CH$_4$</td>
</tr>
<tr>
<td>12</td>
<td>77° N 41.91’</td>
<td>19° E 14.49’</td>
<td>[CH$_4$], MOx-rates, 13C–CH$_4$, DGGE, pmoA, mxaF</td>
</tr>
<tr>
<td>15</td>
<td>77° N 41.45’</td>
<td>19° E 00.16’</td>
<td>[CH$_4$], MOx-rates, 13C–CH$_4$</td>
</tr>
<tr>
<td>18</td>
<td>78° N 15.29’</td>
<td>19° E 29.07’</td>
<td>[CH$_4$], MOx-rates, 13CH$_4$ MOx-time series, DGGE, pmoA, mxaF</td>
</tr>
<tr>
<td>19</td>
<td>78° N 15.41’</td>
<td>20° E 20.14’</td>
<td>DGGE, pmoA, mxaF</td>
</tr>
<tr>
<td>28</td>
<td>76° N 34.95’</td>
<td>19° E 02.41’</td>
<td>DGGE, pmoA, mxaF</td>
</tr>
<tr>
<td>RS</td>
<td>70° N 35.91’</td>
<td>10° E 51.59’</td>
<td>MOx-rates time series</td>
</tr>
</tbody>
</table>
Table 2. Classification of partial 16S rRNA sequences to bacterial taxa performed with the RDP Classifier (Wang et al., 2007). The confidence value (0–1) for assignment at the level of class and genus is given in brackets.

<table>
<thead>
<tr>
<th>No.</th>
<th>Class</th>
<th>Genus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alphaproteobacteria (1)</td>
<td>Pelagibacter (1)</td>
</tr>
<tr>
<td>2</td>
<td>Flavobacteria (1)</td>
<td>Polaribacter (1)</td>
</tr>
<tr>
<td>3</td>
<td>*Cyanobacteri (1)</td>
<td>Chlorophyta (0.98)</td>
</tr>
<tr>
<td>4</td>
<td>*Cyanobacteri (1)</td>
<td>Chlorophyta (1)</td>
</tr>
<tr>
<td>5</td>
<td>Flavobacteria (1)</td>
<td>Fluvicola (0.81)</td>
</tr>
<tr>
<td>6</td>
<td>Gammaproteobacteria (1)</td>
<td>Methylosphaera (0.38)</td>
</tr>
<tr>
<td>7</td>
<td>Alphaproteobacteria (1)</td>
<td>Phaeobacter (0.51)</td>
</tr>
<tr>
<td>8</td>
<td>Alphaproteobacteria (1)</td>
<td>Sulfitobacter (0.97)</td>
</tr>
<tr>
<td>9</td>
<td>Gammaproteobacteria (1)</td>
<td>Haliea (1)</td>
</tr>
<tr>
<td>10</td>
<td>Deltaproteobacteria (0.27)</td>
<td>Desulfobacca (0.19)</td>
</tr>
<tr>
<td>11</td>
<td>Actinobacteria (1)</td>
<td>Ilumatobacter (1)</td>
</tr>
</tbody>
</table>
Fig. 1. Range of methane oxidation rates measured at different locations in the ocean water column derived from tracer incubations using 3H-CH$_4$ (Reeburgh et al., 1991; Valentine et al., 2001) or 14C-CH$_4$ (all others). Pack et al., (2011) compared incubations with 3H-CH$_4$ (*1) and incubations with low-level 14C-CH$_4$ (*2) that were measured with accelerator mass spectrometry. In this study we compared incubations with 3H-CH$_4$ (*3) and incubations with 14C-CH$_4$ (*4).
Fig. 2. Locations of the stations in Storfjorden. Stations are marked by blue dots and station numbers. Contours are drawn every 100 m until 1000 m water depth.
Fig. 3. Time series collected at station 2 (77° 5.226' N and 19° 29.694' E) at 135 m water depth, at station 18 (78° 15.288' N and 19° 29.070' E) at 50 m water depth, and at a reference station (RS, 70° 36.117' N and 10° 51.454' E) at 101 m water depth. 14C-CH$_4$ and 3H-CH$_4$ results are shown as black and gray circles, respectively.
Fig. 4. Depth profiles of temperature (A), salinity (B), and oxygen concentrations (C) as well as a temperature–salinity graph with temperature–salinity ranges of the dominant water masses in Storfjorden (D). Stations 5 and 8 are less than 20 m deep and appear as dots in the temperature–salinity graph.
Fig. 5. Depth profiles of CH$_4$ concentrations (A), oxidation rates derived by 3H-CH$_4$- (B) and 14C-CH$_4$-tracer (C), and isotopic C-CH$_4$ ratio (14C values, D). Samples are color-coded according to the water masses (Fig. 4).
Fig. 6. DGGE profile of 16S rRNA gene fragments of MW and BSW samples from different stations in the Storfjorden. Numbers on the left hand side of the lanes indicates excised and successfully sequenced DGGE bands whose phylogenetic assignment is listed in Table 2. MW and BSW samples are framed by a light blue and dark blue rectangle, respectively. Dendrogram derived from UPGMA cluster analysis with the similarity coefficient of Jaccard.
Fig. 7. Agarose-electrophoresis gels of PCR-products of the *pmoA* and *mxaF* genes obtained from surface MW and deep BSW water samples of different stations in Storfjorden. MW and BSW samples are framed by a light blue and dark blue rectangle, respectively.
Fig. 8. Comparison of rate constants \((k')\) determined with \(^3\)H-CH\(_4\) and \(^{14}\)C-CH\(_4\)-tracer. Straight line shows the 1 : 1 fit, i.e. if \(k'\) derived from both tracers would be equal. Samples from surface melt water fall above this line (\(k'\) determined by \(^3\)H-CH\(_4\) is higher than \(k'\) derived by \(^{14}\)C-CH\(_4\)) and samples from the deep brine-enriched shelf water mainly fall below this line (\(k'\) determined by \(^{14}\)C-CH\(_4\) is higher than \(k'\) derived by \(^3\)H-CH\(_4\)).