A field-based method for simultaneous measurements of the $^{18}$O and $^{13}$C of soil CO$_2$ efflux

B. Mortazavi, J. L. Prater, and J. P. Chanton

Florida State University, Department of Oceanography, Tallahassee, FL 32306-4320, USA

Received: 11 March 2004 – Accepted: 5 May 2004 – Published: 11 May 2004

Correspondence to: B. Mortazavi (mortazavi@ocean.fsu.edu)
Abstract

Three approaches for determining the stable isotopic composition ($^{13}$C and $^{18}$O) of soil CO$_2$ efflux were compared. A new technique employed mini-towers, constructed of open topped piping, that were placed on the soil surface to collect soil-emitted CO$_2$. Samples were collected along a vertical gradient and analyzed for CO$_2$ concentration and isotopic composition. These data were then used to produce a Keeling plot to determine the $^{18}$O and $^{13}$C of CO$_2$ emitted from the soil. These results were then compared to the $^{18}$O and $^{13}$C of soil respired CO$_2$ measured with two other techniques: (1) flux chambers and (2) estimation from the application of the diffusional fractionation factor to measured values of belowground soil $^{18}$O CO$_2$ and to CO$_2$ in equilibrium with soil water $^{18}$O. Mini-tower $^{18}$O Keeling plots were linear and highly significant ($0.81<r^2<0.96$), in contrast to chamber $^{18}$O Keeling plots, which showed significant curvature, necessitating the use of a mass balance to calculate the $^{18}$O of respired CO$_2$. In the chambers, the values determined for the $^{18}$O of soil respired CO$_2$ approached the value of CO$_2$ in equilibrium with surficial soil water, and the results were significantly $^{18}$O enriched relative to the mini-tower results and the $^{18}$O of soil CO$_2$ efflux determined from soil CO$_2$. There were close agreements between the three methods for the determination of the $^{13}$C of soil efflux CO$_2$. Results suggest that the mini-towers can be effectively used in the field for determining the $^{18}$O and the $^{13}$C of soil respired CO$_2$.

1. Introduction

Stable isotopes of CO$_2$ ($^{18}$O and $^{13}$C) provide information on carbon exchange between the biosphere and the atmosphere (Francey et al., 1995; Keeling et al., 1995), and insight into the role of photosynthesis and respiration in the global carbon cycle (Yakir and Sternberg, 2000). Global budgets using the $^{18}$O of atmospheric CO$_2$ and CO$_2$ concentrations (Ciais et al., 1997; Ciais and Meijer, 1998; Peylin et al., 1999) have in-
dictated that soil and plant isotopic fluxes each contribute roughly five times more to the observed temporal variability in the atmospheric $\delta^{18}$O-CO$_2$ than do oceanic or fossil fuel burning components (Miller et al., 1999). Because the global and regional scale carbon budgets include a flux of CO$_2$ from the soil to the atmosphere the determination of the isotopic composition of soil CO$_2$ efflux remains a critical parameter to be measured in these budgets (Ciais and Meijer, 1998; Stern et al., 1999). At ecosystem and regional scales, accurate determination of the isotopic composition of soil respired CO$_2$ is necessary for partitioning ecosystem gas exchange into its components (Yakir and Wang, 1996; Bowling et al., 2003a).

Different approaches have been used for determining the isotopic composition of soil CO$_2$ efflux. In the laboratory setting, dynamic flow-through chambers have been used to estimate the $^{18}$O of soil CO$_2$ efflux (Miller et al., 1999). In the field, chambers have been used to measure the $^{18}$O (Flanagan et al., 1999; Lin et al., 1999) and the $^{13}$C of soil respired CO$_2$ (Flanagan et al., 1999; Mortazavi and Chanton, 2002a; Fessenden and Ehleringer, 2003). However, with application of chambers the CO$_2$ concentration gradient from the soil to the atmosphere is disturbed and the $^{18}$O of chamber headspace can remain constant despite addition of excess CO$_2$ by soil respiration (Mortazavi and Chanton, 2002a). Alternatively, Mortazavi and Chanton (2002a) assumed that all CO$_2$ at ground level originated from soil respiration and used a mass balance approach between daytime and nighttime CO$_2$ near the soil surface to determine the $^{18}$O of CO$_2$ added by soil respiration.

Information on soil $^{18}$O-CO$_2$ has also been used to estimate the $^{18}$O of soil CO$_2$ efflux (Mortazavi and Chanton, 2002a; Bowling et al., 2003a). Soil CO$_2$ undergoes some degree of oxygen isotope exchange with soil water during the following reversible reaction:

$$\text{CO}_2(\text{aq}) + \text{H}_2\text{O} \leftrightarrow \text{H}_2\text{CO}_3(\text{aq})$$  \hspace{1cm} (1)

In this hydration reaction and subsequent dissociation, each CO$_2$ molecule exchanges one oxygen atom with liquid water, and in this process the oxygen isotope ratio of CO$_2$
approaches that of soil water (Mills and Urey, 1940). The isotope exchange reaction is described by the following reaction:

\[ C^{16}O_2 + H_2^{18}O \leftrightarrow C^{18}O^{16}O + H_2^{16}O \]  

(2)

The laboratory data of Miller et al. (1999) suggested that the region between 5–15 cm below the soil surface has the greatest influence on the \( \delta^{18}O \) of soil-respired CO\(_2\). Below 15 cm the oxygen isotopic composition of CO\(_2\) is reset by equilibrium with H\(_2\)O as it diffuses upward. Above 5 cm CO\(_2\) transfer from the soil to the atmosphere is too rapid for CO\(_2\) to be influenced by surface soil H\(_2\)O. A diffusional fractionation factor is, therefore, applied to soil CO\(_2\) at the 5–15 cm region for determination of the \( \delta^{18}O \) of soil CO\(_2\) efflux (e.g. Mortazavi and Chanton, 2002a). In the field because of the lack of specific knowledge of the depth at which CO\(_2\) is in equilibrium with soil CO\(_2\) and the effective diffusional fractionation, the \( \delta^{18}O \) of soil CO\(_2\) efflux has been estimated by applying the maximum diffusional fraction factor to the \( \delta^{18}O \) of soil CO\(_2\) that would be in equilibrium with integrated soil water between the surface and 10 cm depth (Bowling et al., 2003a).

The correct estimate of the \( \delta^{18}O \) of soil CO\(_2\) efflux, however, will depend on (i) the extent to which CO\(_2\) diffusing out of a particular layer reaches equilibrium or will be in disequilibrium with water in that layer (Tans, 1998), and (ii) the magnitude of the \( \delta^{18}O \) fractionation factor. It is not clear if the 8.8‰ molecular diffusion fractionation factor is always fully expressed as CO\(_2\) diffuses from the soil to the atmosphere (Miller et al., 1999). Laboratory investigations (Miller et al., 1999) and modeling efforts (Stern et al., 2001) suggest that the effective diffusional fractionation factor will vary depending on the environmental conditions. Deviation from the true value of the oxygen isotopic ratio of soil respired CO\(_2\) will impact the results of studies that use the stable isotopes of CO\(_2\) to partition ecosystem gas exchange into its components (e.g. Yakir and Wang, 1996; Bowling et al., 2003a).

The \( ^{13}C \) of soil respired CO\(_2\) has also been estimated from soil CO\(_2\) concentrations and \( ^{13}C \) ratios. A fractionation factor of 4.4‰ (Cerling et al., 1991) is applied to the
soil CO$_2$ Keeling intercept to account for the lighter CO$_2$ molecules escaping faster. However, discrepancies can exist between soil CO$_2$ and chamber based estimates (Mortazavi and Chanton, 2002a). This discrepancy could result because chamber based estimates integrate the litter layer respiration whereas the soil CO$_2$ estimates ignore the contribution of surface respired material to the isotopic composition of CO$_2$ efflux.

Our objectives were to use an alternative method to static chambers and soil CO$_2$ to simultaneously determine the $^{18}$O and $^{13}$C of soil respired CO$_2$ in the field. We used open top piping (mini-towers) placed on the soil surface and collected gas samples along the height of the mini-tower as CO$_2$ diffused from the soil. A Keeling plot of the CO$_2$ concentrations and isotopic ratios of samples collected from multiple heights was used to estimate the isotopic composition of soil respired CO$_2$. Results indicate that the mini-tower approach can be used successfully to simultaneously determine the $^{18}$O and $^{13}$C of soil CO$_2$ efflux.

2. Methods

The investigation was conducted at the Apalachicola National forest (30°20.433′ N and 84°19.173′ W) near Tallahassee, FL. The site is dominated by second growth slash pine ("Pinus elliottii"). The site was visited on 2 June 2003 and on 23 June 2003. Two locations (within 50 m of each other) were sampled during each visit. Upon the second visit samples were collected within 2 m of the locations previously sampled.

2.1. Mini-tower

Towers were constructed from polyvinyl chloride (PVC) piping. The piping consists of a 7.68 cm inner diameter PVC 150 cm long connected via a reducer to a 3.84 cm PVC pipe 48 cm long (Fig. 2). The total length of the mini-tower is 202 cm. The top of the mini-tower is left open to the atmosphere. Sampling ports equipped with valves were
installed at 5, 10, 20, 40, 60, 80, 100, 120, 140, and 179 cm from the ground level. The tower’s base was beveled and could be gently placed into the soil surface. Prior to installing the mini-towers they were thoroughly flushed with background air and all the valves were closed. After a 2-min period following the installation of the mini-towers, samples were sequentially collected from the base towards the top. Samples were withdrawn with a syringe and stored in pre-evacuated glass vials (30 ml) capped with Belco® stoppers (Mortazavi and Chanton, 2002b). An in-line magnesium perchlorate was used when withdrawing samples to remove moisture. A Keeling plot was used to estimate the $^{18}\text{O}$ and $^{13}\text{C}$ of soil CO$_2$ efflux. During the 23 June 2003 sampling, after placing the tower on the soil surface an initial sample was taken at 179 cm and then we proceeded as previously described. This allowed a wider range in CO$_2$ concentration, which functioned to reduce the standard error of the intercept of the Keeling plots (Pataki et al., 2003).

2.2. Chamber measurements

The chambers have a dimension of 65 by 65 cm and are constructed from aluminum. They consist of a collar onto which the top portion can be sealed. The total volume encompassed by each chamber is 102 L. The collar is initially inserted into the ground and the chamber top, equipped with a fan to recirculate the headspace, is lowered and sealed. Replicate gas samples (125 ml) from the chamber headspace were drawn with a syringe and stored in pre-evacuated glass vials with Belco® stoppers for later analysis (Mortazavi and Chanton, 2002b). Replicate samples were collected at time 0 and every 7 min during a 21-min period for CO$_2$ concentration determination and isotopic analysis. A port was left open at the opposite side of the sampling port during sample withdrawal to minimize pressure fluctuations inside the chambers. An in-line magnesium perchlorate was used to remove water vapor during the sample collection. CO$_2$ concentration increase with time in the chamber headspace was used to determine soil respiration rates.
2.3. Soil CO₂

We collected duplicate soil gas for CO₂ concentration and isotopic analysis with a stainless steel probe (0.32 cm outer diameter) inserted at discreet depths (10, 25, 45 and 84 cm below the surface). At each depth duplicate samples were collected. Samples were gently drawn with a syringe and stored in pre-evacuated glass vials (25 ml) capped with Belco® stoppers for later analysis. An in-line magnesium perchlorate trap was used to remove moisture from the samples during sample withdrawal.

2.4. Sequence of measurements

Upon arrival, at each location, the chamber collar was gently pushed into the sandy soils. The collar was left for 0.5 h to minimize any disturbance caused by inserting the collar. Mini-towers (n=3) were placed at different location within the area encompassed by the chamber collar and height profiles collected. Next, the chamber was sealed to the collar and the chamber measurements commenced. The soil probe was inserted to the predetermined depths to collect soil CO₂ (Fig. 1).

At each site, soil samples were collected at the surface (0–2 cm) and at a depth of 10–12 cm for soil water extraction for ¹⁸O-H₂O analyses. Samples were stored in glass vials and capped and kept frozen until extraction. Surface soil and soil samples at 10, 25, 45 and 84 cm below the surface were collected for soil organic matter ¹³C determination and kept frozen until processing in the laboratory.

2.5. Analysis

The ¹⁸O and ¹³C of CO₂ for samples collected along the mini-towers and from the flux chambers were determined with a GC-IRMS (Gas Chromatograph: Hewlett Packard 5890 Series II, Isotope Ratio Mass Spectrometer: Finnigan Delta S) operating in continuous flow mode. We applied a simple modification to a commercially available GC-IRMS for rapid and precise determination of stable isotopes of CO₂ and CO₂ concen-
For a full description of the method see (Mortazavi and Chanton, 2002b). Briefly, we inserted a stainless steel sample loop (volume: 40 µl) attached to a six-port zero-dead volume Valco valve downstream of the injection port. The injector port has a split ratio of 1:20 (5% of the sample is routed to the capillary column). By inserting the sample loop downstream of the injection port, we were able to maximize the volume of a sample injected into the capillary column without affecting the integrity of the sample peak. The GC was equipped with a Chromopack (Raritan, NJ) Poroplot Q column (27.5 m long with a 2.5 m particle trap) to separate N₂O from CO₂ and was operated at an oven temperature of 25°C. Transfer of the GC effluent to the MS was through a deactivated glass capillary. The CO₂ concentration from the soil CO₂ flux chambers and the mini-towers were determined from the CO₂ voltage obtained from the GC-IRMS (Mortazavi and Chanton, 2002b). Soil CO₂¹⁸O and ¹³C were determined by direct injection of 0.2 ml samples into the GC-IRMS. Soil CO₂ concentrations were determined with a LI-COR 6200 (LI-COR Inc., Lincoln, Neb) according to the procedures described by Davidson and Trumbore (1995).

Water was extracted by cryogenic vacuum distillation from soil samples according to the procedures described by Ehleringer et al. (2000). A sub-sample of the extracted water (0.5 ml) was equilibrated in a vial with 1% CO₂ headspace and the ¹⁸O of the headspace analyzed after 48 h of incubation at 25°C for ¹⁸O on the GC-IRMS by direct injection of 0.2 ml of the headspace CO₂ (Socki et al., 1992).

Soil samples were dried at 60°C to constant mass and roots were removed. Root free soil samples were then ground with a pestle and mortar. Samples were acidified (0.5 N HCL, for 24 h) to remove carbonates (Rask and Schoenau, 1993). Samples were thoroughly washed with distilled water and dried to constant mass and ground with a pestle and mortar. Subsamples were analyzed for ¹³C in duplicate on a CHN analyzer couple to the IRMS.

Isotopic ratios data are presented in the δ notation, and are reported relative to PDB and SMOW. External precision for isotopic measurements was ±0.2 based on repeated measurements of laboratory-working standards.
2.6. Statistical considerations

The isotopic composition of soil respired CO$_2$ was determined with application of Keeling plots to the mini-tower and chamber CO$_2$ concentrations and isotopic ratios. The $^{13}$C of soil-respired CO$_2$ from soil CO$_2$ was determined by subtracting the $4.4\%$ diffusional fractionation factor (Cerling et al., 1991) from the intercept of soil CO$_2$ Keeling plots. The assumptions associated with the standard linear regression (Model I) are violated when we assume that the independent variable (1/CO$_2$) has no errors associated with it and is under the experimenter’s control (Sokal and Rohlf, 1981), and that the errors in the dependent variable ($\delta$CO$_2$) are independent of errors in the dependent variable (Sokal and Rohlf, 1981; Pataki et al., 2003). We, therefore, used a Model II regression (geometric mean regression, Sokal and Rohlf, 1981) to estimate the intercept of the Keeling plots. The standard error of the intercept of a model I regression is used to approximate the error estimate for the model II intercept (Sokal and Rohlf, 1981; Pataki et al., 2003).

3. Results and discussion

3.1. $^{18}$O of soil respired CO$_2$

CO$_2$ concentration in the mini-tower profiles increased above background values by 82.6 ppm at site 1 and by 56.7 ppm on 2 June 2003 and by 104.8 ppm at site 1 and by 59.4 ppm at site 2 on 23 June 2003 (data not shown). The mini-tower $^{18}$O Keeling plots were linear, highly significant ($p<0.01$), and had $r^2$ values ranging from 0.81 to 0.96 (Fig. 2, Table 1). Mean $\delta^{18}$CO$_2$ values for the two adjacent sites combined varied from $27.27\%\pm1.89$ (n=6, 1SD) to $28.39\%\pm1.65$ (n=6, 1SD) on 3 and 23 June 2003, respectively. There were several per mil differences in the $^{18}$O of soil CO$_2$ efflux determined with the mini-towers within the confines of the chambers collar at each location (Table 1). This difference could reflect heterogeneity in soil water or differences in the
effective diffusional fractionation factor associated with CO₂ flux from the soil to the atmosphere.

In contrast to the mini-tower Keeling plots, there was significant curvature in the chamber ¹⁸O Keeling plots during all sampling periods (Fig. 2c). Therefore, an alternative procedure was used to estimate the ¹⁸O of CO₂ added relative to background concentrations between time points. CO₂ concentration at time t (Cₜ) is a combination of CO₂ at time zero (C₀) to which a certain amount of CO₂ has been added (Cₐ) by respiration (Eq. 1). The isotopic composition of CO₂ at time t (δₜ) is a product of the combination of C₀δₒ and Cₐδₐ (Eq. 2).

\[ Cₜ = C₀ + Cₐ \]  
\[ Cₜδₜ = C₀δₒ + Cₐδₐ \]  

By measuring C₀, Cₜ, δₒ and δₜ, δₐ could be calculated between two time points. We calculated the ¹⁸O of CO₂ added by soil respiration between 0–7, 7–14 and 14–21 min in each chamber with Eqs. (1) and (2)(Table 1). There was progressive enrichment in the ¹⁸O of CO₂ in the chamber headspace with time (Table 1). The ¹⁸O of soil respired CO₂ approached a value similar to that for CO₂ in equilibrium with surface soil water (Table 2). The estimates from the chambers at even the shortest time interval (7 min) were enriched by several per mil relative to the mini-tower Keeling intercepts (Table 1).

Our time frame for chamber deployment is similar to that used by Lin et al. (1999) who used a mass balance equation to determine the ¹⁸O of respired CO₂ in a chamber headspace. The results (Table 1) indicate that the time frame considered for calculating the ¹⁸O of respired CO₂ from chamber data may be extremely important and highlight the influence of surface soil water on the estimate of the soil δ¹⁸CO₂ efflux when using chambers. Flanagan et al. (1999) used chambers over short time frames during which CO₂ concentrations build up in the chamber headspace was similar to CO₂ increases in the mini-towers. That investigations was conducted in moss covered boreal forest soil and significant ¹⁸O Keeling regressions were obtained. These authors, however, noted the importance of soil type on the ¹⁸O of soil CO₂ efflux.
The dominant factor controlling the $^{18}$O of soil CO$_2$ is equilibrium with soil water (Miller et al., 1999). However in field studies both equilibrium and disequilibrium has been reported (Hesterberg and Siegenthaler, 1991; Amundson and Wang, 1995; Mortazavi and Chanton, 2002a). At our study site, the $\delta^{18}$O of soil CO$_2$ was in close equilibrium with soil water $^{18}$O at the 10–12 cm depth (Table 2).

We determined the $^{18}$O of soil CO$_2$ efflux by applying the diffusional fractionation factor to soil CO$_2$ and to CO$_2$ in oxygen isotopic equilibrium with soil water at 10 cm (Fig. 3). Because detailed laboratory investigations are required to estimate the effective diffusional fractionation factor (Miller et al., 1999), we applied the maximum diffusional fractionation factor of 8.8‰. The $^{18}$O of soil CO$_2$ varied from 36.5‰ to 39.5‰ on 3 June 2003 and from 33.4 to 42.2‰ on 23 June 2003 (Figs. 3a, b). Estimates based on soil $^{18}$O-CO$_2$ to which the fractionation factor has been applied to determine the $^{18}$O of soil CO$_2$ efflux bracketed the mini-tower values over the two sampling dates. Calculated values were enriched relative to the value measured with the mini-towers on 3 June 2003 (Table 1). In contrast, on 23 June 2003, the $^{18}$O of soil CO$_2$ efflux estimated from soil CO$_2$ were depleted relative to the estimates from the mini-towers (Table 1).

The discrepancy between the estimates of the isotopic composition of soil CO$_2$ efflux based on soil CO$_2$ from the mini-tower could result from several factors. The results from the analytical model developed by Stern et al. (1999) suggest that although $^{18}$O of soil water dominated the $^{18}$O of soil CO$_2$, other factors such as soil respiration rates, respiration distribution within the soil, and advective transport contribute to the $^{18}$O of soil CO$_2$ efflux. Additionally, we applied the maximum diffusional fractionation factor, which could differ from the effective diffusional fractionation factor (Miller et al., 1999). The mini-tower approach provides an effective way to measure the $^{18}$O of soil respired CO$_2$ that does not involve application of assumed values for the fractionation factor.
3.2. $^{13}$C of soil respired $\text{CO}_2$

Examples from the mini-towers $^{13}$C Keeling plots are shown in Fig. 2. $^{13}$C Keeling plots from the mini-towers were highly significant (Table 3, $r^2 > 0.91$). The $^{13}$C of soil efflux determined with the mini towers were on 3 June 2003, $-26.76\%_{\text{o}} \pm 0.35$ and $26.52\%_{\text{o}} \pm 2.45$ at site 1 and 2, respectively, on 23 June 2003 were $-26.39\%_{\text{o}} \pm 0.82$ and $-25.64\%_{\text{o}} \pm 1.81$ at site 1 and 2, respectively (Table 3). The standard errors of the Keeling intercepts of the mini-towers were greater than that for the chambers (Table 3) due to the shorter duration of the mini-tower experiments (2 min). The standard error of the Keeling intercepts declined with increasing range in $\text{CO}_2$ concentrations for each set of flasks used in the regression (Fig. 4), a trend similar to that reported for canopy scale Keeling plots (Bowling et al., 2003b; Pataki et al., 2003).

$\text{CO}_2$ concentrations increased linearly during the chamber incubation on all attempts ($r^2 = 0.99$, data not shown) and were used to estimate soil respiration rates. Respiration rates were greater at site 1 compared to site 2 by 75% and 21% on 3 June 2003 and 23 June 2003, respectively (data not shown). $^{13}$C Keeling plots for the chamber data (Fig. 2, Table 3) were highly significant and had mean intercepts ($n = 2$) of $-25.8\%_{\text{o}}$ and $-26.1\%_{\text{o}}$ on 2 and 23 June 2003, respectively (Table 3).

The $^{13}$C of soil $\text{CO}_2$ efflux was also determined from soil $\text{CO}_2$ profiles (Figs. 3c, d). The range of $\text{CO}_2$ concentrations varied from 3475 to 7530 ppm on 3 June 2003 and from 2243 to 8345 ppm on 23 June 2003 (Fig. 3e, f). $\delta^{13}$C of soil $\text{CO}_2$ decreased with increasing depth and varied from $-19.2$ to $-21.53\%_{\text{o}}$ on 3 June 2003 and from $-20.2$ to $-22\%_{\text{o}}$ on 23 June 2003 (Fig. 3). The $^{13}$C Keeling plots were highly significant and yielded intercepts that varied by less than 0.7% between the two sites during each visit (Table 3). There was a slight enrichment in the $^{13}$C of soil $\text{CO}_2$ flux based on soil $\text{CO}_2$ profiles on 23 June 2003 ($-27.19\%_{\text{o}} \pm 0.34$ and $27.30\%_{\text{o}} \pm 0.30$ for site 1 and 2 respectively, Table 3) compared to 3 June 2003 ($-26.06\%_{\text{o}} \pm 0.26$ and $-26.75\%_{\text{o}} \pm 0.18$, for site 1 and 2 respectively, Table 3).

Estimates of soil $^{13}$C-$\text{CO}_2$ efflux determined with from soil Keeling plots were de-
pleted relative to the chamber Keeling intercepts on 3 June 2003 by 1.4‰, but showed a remarkable similarity on 23 June 2003 (Table 3). On 3 June 2003 mini-tower Keeling intercepts were depleted relative to the values from the chamber Keeling intercepts by approximately 1‰, but similar estimates based on the mini-towers and the chambers were observed 23 June 2003 (Table 3). Chamber based estimates of the $^{13}$C of soil respired CO$_2$ were found to be consistently enriched relative to values determined by applying the diffusional fractionation factor to soil CO$_2$ Keeling plots (Mortazavi and Chanton, 2002a). This discrepancy could result from transport of $^{13}$C enriched soil CO$_2$ by advective rather than diffusive transport to the chamber headspace.

Mini-tower and chamber-based measurements of the $^{13}$C of soil-respired CO$_2$ have two advantages over estimates obtained from soil CO$_2$ profiles. First, in contrast to estimates based on soil CO$_2$ profiles that are generated from samples collected below the surface soil layer, mini-tower and chamber based estimates include the influence of litter respiration and the first few centimeters of the surface soil layer on the $^{13}$C of soil-respired CO$_2$. Second, estimates of the $^{13}$C of soil CO$_2$ efflux based on the chambers and the mini-towers do not require the application of a fractionation factor for CO$_2$ diffusion.

The $^{13}$C of soil respired CO$_2$ results from a combination of heterotrophic and autotrophic respiration. A profile of soil organic matter $^{13}$C demonstrates a progressive enrichment in $^{13}$C from a value of $-26.2\pm 0.5$ (1 SD, n=4) at the surface to a value of $-22.4\pm 2.8$ (1SD, n=4) at 84 cm (Fig. 5). The mean value of the mini-tower Keeling intercepts ($-26.3\%$, n=12) was remarkably close to the value of surface soil organic matter at this site (Fig. 5). While the $^{13}$C associated with heterotrophic respiration is assumed to remain constant on seasonal time scales (Trumbore, 2000) that of autotrophic respiration will vary in response to changes in environmental conditions (Ekblad and Högb erg, 2001). Therefore, despite the similarity in the $^{13}$C of soil CO$_2$ efflux and the $^{13}$C of SOM (Fig. 5), the isotopic composition of soil organic matter is a poor predictor of the $^{13}$C of soil resired CO$_2$. 
4. Conclusions

The data suggests that chamber and soil CO$_2$ based estimates for determining the $^{18}$O of soil CO$_2$ efflux are biased, but that the mini-towers provide effective means for estimating the $^{18}$O of soil respired CO$_2$. In contrast to the $^{18}$O results, there were close agreements in the $^{13}$C of soil CO$_2$ efflux measured with the different techniques. Investigations using the $^{18}$O of CO$_2$ for partitioning ecosystem CO$_2$ exchange into its components rely on accurate knowledge of the oxygen isotopic composition of soil respired CO$_2$. The mini-tower approach is cost effective and provides a rapid means for determining the $^{18}$O and $^{13}$C of soil respired CO$_2$.

Acknowledgements. We would like to thank the assistance of K. Peeler in the field. Financial support was provided by the Biological and Environmental Research (BER) Program, US Department of Energy, through the Southeast Regional Center (SERC) of the National Institute for Global Environmental Change (NIGEC), through the Terrestrial Carbon Processes Program (TCP, DE-FG02-00ER63016) and by the National Science Foundation (NSF).

References


A field-based method for simultaneous measurements of the $^{18}$O and $^{13}$C of soil CO$_2$ efflux

B. Mortazavi et al.
A field-based method for simultaneous measurements of the $^{18}$O and $^{13}$C of soil CO$_2$ efflux

B. Mortazavi et al.


Yakir, D. and Sternberg, L. D.: The use of stable isotopes to study ecosystem gas exchange,
A field-based method for simultaneous measurements of the $^{18}$O and $^{13}$C of soil CO$_2$ efflux

B. Mortazavi et al.
Table 1. $^{18}$O of soil CO$_2$ (‰) efflux in Apalachicola National Forest. For the chambers a mass balance was used to calculate the $^{18}$O of soil CO$_2$ efflux between $^1$0 and 7 min, between $^2$7 and 14 min, and between $^3$14 and 21 min. $^4$An 8.8‰ fractionation factor was applied to soil CO$_2$ at 10 cm to calculate the $^{18}$O of soil CO$_2$ efflux. The error corresponds to half the range of variability of duplicate soil $^{18}$O-CO$_2$ samples. $^5$An 8.8‰ fractionation factor was applied to the $^{18}$O of CO$_2$ assumed in equilibrium with soil water extracted from soil samples collected at 10–12 cm depth (mean ± standard deviation of triplicate samples) to calculate the $^{18}$O of soil CO$_2$ efflux. The numbers in the parenthesis indicate the sample numbers used in the regression and the $r^2$, respectively.

<table>
<thead>
<tr>
<th>Date</th>
<th>Method</th>
<th>Site 1</th>
<th>Site 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 June 2003</td>
<td>Mini-tower #1</td>
<td>27.32±0.65 (10, 0.94)</td>
<td>25.83±2.28 (10, 0.75)</td>
</tr>
<tr>
<td>2 June 2003</td>
<td>Mini-tower #2</td>
<td>27.91±0.98 (10, 0.98)</td>
<td>29.24±0.87 (10, 0.96)</td>
</tr>
<tr>
<td>2 June 2003</td>
<td>Mini-tower #3</td>
<td>28.97±0.63 (10, 0.93)</td>
<td>24.33±1.96 (10, 0.89)</td>
</tr>
<tr>
<td>2 June 2003</td>
<td>Mean Mini-tower</td>
<td>28.07±0.84</td>
<td>26.47±2.52</td>
</tr>
<tr>
<td>2 June 2003</td>
<td>Chamber</td>
<td>34.06$^1$, 36.59$^2$, 38.72$^3$</td>
<td>31.44$^1$, 34.22$^2$, 36.15$^3$</td>
</tr>
<tr>
<td>2 June 2003</td>
<td>Soil CO$_2$</td>
<td>31.00±0.00$^4$</td>
<td>28.49±0.10$^4$</td>
</tr>
<tr>
<td>2 June 2003</td>
<td>Soil Water</td>
<td>31.88±0.08$^5$</td>
<td>28.78±0.30$^5$</td>
</tr>
<tr>
<td>23 June 2003</td>
<td>Mini-tower #1</td>
<td>27.68±0.99 (11, 0.94)</td>
<td>29.52±1.61 (11, 0.81)</td>
</tr>
<tr>
<td>23 June 2003</td>
<td>Mini-tower #2</td>
<td>28.92±0.52 (11, 0.98)</td>
<td>27.53±1.29 (11, 0.97)</td>
</tr>
<tr>
<td>23 June 2003</td>
<td>Mini-tower #3</td>
<td>26.00±1.19 (11, 0.93)</td>
<td>30.68±1.13 (11, 0.88)</td>
</tr>
<tr>
<td>23 June 2003</td>
<td>Mean Mini-tower</td>
<td>27.52±1.46</td>
<td>29.25±1.60</td>
</tr>
<tr>
<td>23 June 2003</td>
<td>Chamber</td>
<td>32.78$^1$, 35.84$^2$, 36.87$^3$</td>
<td>32.07$^1$, 35.01$^2$, 36.70$^3$</td>
</tr>
<tr>
<td>23 June 2003</td>
<td>Soil CO$_2$</td>
<td>25.20±0.00$^4$</td>
<td>25.37±0.80$^4$</td>
</tr>
<tr>
<td>23 June 2003</td>
<td>Soil Water</td>
<td>24.92±0.30$^5$</td>
<td>25.89±0.19$^5$</td>
</tr>
</tbody>
</table>
Table 2. The $^{18}$O of CO$_2$ (‰) at equilibrium with surficial soil water (0–2 cm depth) and soil water at 10–12 cm depth. The error corresponds to the standard deviation of triplicate soil water samples. *For comparison the measured value of soil $\delta^{18}$CO$_2$ collected at 10 cm is also shown (mean $\pm$ 1 range of duplicate measurements).

<table>
<thead>
<tr>
<th>Date</th>
<th>Site 1</th>
<th>Site 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0–2 cm</td>
<td>10–12 cm</td>
</tr>
<tr>
<td>2 June 2003</td>
<td>41.29±0.30</td>
<td>40.69±0.08</td>
</tr>
<tr>
<td></td>
<td>39.50±0.00 *</td>
<td></td>
</tr>
<tr>
<td>23 June 2003</td>
<td>35.93±0.60</td>
<td>33.72±0.30</td>
</tr>
<tr>
<td></td>
<td>34.00±0.00 *</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. $^{13}$C of soil CO$_2$ (‰) efflux in Apalachicola National Forest. *A 4.2‰ fractionation factor has been applied to the intercept of soil Keeling plot to determine the $^{13}$C of soil CO$_2$ efflux. *An outlier was excluded from the regression (see Fig. 3f). The numbers in the parenthesis indicate the sample numbers used in the regression and the $r^2$, respectively.

<table>
<thead>
<tr>
<th>Date</th>
<th>Method</th>
<th>Site 1</th>
<th>Site 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 June 2003</td>
<td>Mini-tower #1</td>
<td>$-27.16\pm1.17$ (10, 0.96)</td>
<td>$-28.94\pm2.02$ (10, 0.92)</td>
</tr>
<tr>
<td>2 June 2003</td>
<td>Mini-tower #2</td>
<td>$-26.57\pm1.25$ (10, 0.95)</td>
<td>$-24.04\pm0.83$ (10, 0.98)</td>
</tr>
<tr>
<td>2 June 2003</td>
<td>Mini-tower #3</td>
<td>$-26.54\pm1.16$ (10, 0.96)</td>
<td>$-26.59\pm1.85$ (10, 0.91)</td>
</tr>
<tr>
<td><strong>2 June 2003</strong></td>
<td><strong>Mean Mini-tower</strong></td>
<td><strong>$-26.76\pm0.35$</strong></td>
<td><strong>$-26.52\pm2.45$</strong></td>
</tr>
<tr>
<td>2 June 2003</td>
<td>Chamber</td>
<td>$-25.73\pm0.11$ (8, 0.99)</td>
<td>$-25.89\pm0.30$ (8, 0.99)</td>
</tr>
<tr>
<td>2 June 2003</td>
<td>Soil CO$_2$</td>
<td>$-27.19\pm0.34^*$ (8, 0.82)</td>
<td>$-27.30\pm0.30$ (8, 0.93)</td>
</tr>
<tr>
<td>23 June 2003</td>
<td>Mini-tower #1</td>
<td>$-26.80\pm0.64$ (11, 0.99)</td>
<td>$-26.30\pm1.14$ (11, 0.96)</td>
</tr>
<tr>
<td>23 June 2003</td>
<td>Mini-tower #2</td>
<td>$-25.45\pm0.50$ (11, 0.99)</td>
<td>$-27.04\pm1.37$ (11, 0.095)</td>
</tr>
<tr>
<td>23 June 2003</td>
<td>Mini-tower #3</td>
<td>$-26.93\pm0.74$ (11, 0.98)</td>
<td>$-23.60\pm0.91$ (11, 0.96)</td>
</tr>
<tr>
<td><strong>23 June 2003</strong></td>
<td><strong>Mean Mini-tower</strong></td>
<td><strong>$-26.39\pm0.82$</strong></td>
<td><strong>$-25.64\pm1.81$</strong></td>
</tr>
<tr>
<td>23 June 2003</td>
<td>Chamber</td>
<td>$-26.05\pm0.18$ (8, 0.99)</td>
<td>$-26.15\pm0.31$ (8, 0.99)</td>
</tr>
<tr>
<td>23 June 2003</td>
<td>Soil CO$_2$</td>
<td>$-26.06\pm0.26^*$ (7, 0.76)$^{**}$</td>
<td>$-26.75\pm0.18$ (8, 0.88)</td>
</tr>
</tbody>
</table>
Fig. 1. Schematic of the different approaches used to measure CO$_2$ efflux. The chamber collar is inserted into the soil surface. Mini-towers are place within the confines of the collar and after 2 min soil CO$_2$ is collected at multiple heights along the towers. The mini-towers are removed and then the chamber is then sealed and headspace is collected over a 21-min time interval. Finally a soil probe is inserted into predetermined depths for collecting soil CO$_2$. 
Fig. 2. Example of $^{18}$O and $^{13}$C Keeling plots for mini-towers and chambers. (a) $^{18}$O Keeling plot for mini-tower #3 site 1 on 2 June 2003. (b) $^{18}$O Keeling plot for mini-tower #2 site 1 on 23 June 2003. (c) $^{18}$O of CO$_2$ versus its respective 1/CO$_2$ concentration for chamber 1 site 1 on 2 June 2003. The fitted line is a second order polynomial. (d) $^{13}$C Keeling plot for mini-tower #3 at site 1 on 2 June 2003. (e) $^{13}$C Keeling plot for mini-tower #2 at site 1 on 23 June 2003. (f) $^{13}$C Keeling plot for chamber 1 site 1 on 2 June 2003.
Fig. 3. Depth profiles of soil CO$_2$ concentration on (a) 2 June 2003 and (b) 23 June 2003. Depth profiles of soil $^{18}$O-CO$_2$ isotopic profiles (c) 2 June 2003 and (d) 23 June 2003. Depth profiles of soil $^{13}$C-CO$_2$ isotopic on (e) 2 June 2003 and (f) 23 June 2003. The closed symbol was excluded form the regression of the $^{13}$C Keeling plot (Table 2).
Fig. 4. Standard error of the $^{13}$C Keeling intercepts as a function of the range in CO$_2$ concentrations for each set of flasks used in the regression.
Fig. 5. The $^{13}$C of root free soil samples. The arrow on the x-axis indicates the mean (n=12) of the $^{13}$C of soil CO$_2$ flux determined from the mini-tower intercepts.