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Abstract

Here we analyse radiocarbon-dated Quercus leaf assemblages from northern Spain
to obtain past atmospheric CO2 mixing ratios for the time period 9000–1100 cal BP
by means of stomatal frequency analysis. Normalized, stomata based CO2 records
show fluctuations of 20 ppmv during the Holocene that parallel Northern Hemisphere5

palaeotemperature reconstructions. The calculated radiative forcing of CO2 indicates
a CO2 contribution of +0.1◦C to the Holocene Thermal Maximum from 7 to 5 kyr BP,
and −0.05◦C to the Neoglacial cooling around 4 kyr BP. Derived northern hemispheric
air-temperature anomalies forced by atmospheric CO2 variation suggest an active role
of this trace gas as an amplifier of initial orbital forcing of Holocene climate.10

1 Introduction

Earth’s orbital variation is considered the fundamental cause of climate change during
the Holocene through precession and obliquity changes that drove the northern hemi-
spheric (NH) insolation decrease during this period (Crucifix et al., 2002). However, in-
solation changes cannot completely explain the millennial scale climate evolution from15

the Holocene Thermal Maximum (HTM) to the Neoglaciation (Kaufman et al., 2004) ob-
served in an extensive number of mid- to late-Holocene terrestrial and marine records
in the Northern Hemisphere (Marchal et al., 2002; Seppä et al., 2005; Ojala et al.,
2008). Internal feedback mechanisms of the climate system that may have contributed
to the climate evolution of the Holocene are not yet understood and often controversial.20

With complex links to various parts of the climate system, changing atmospheric
CO2 remains one of the most important driving force behind climate change (Raynaud
et al., 1993). However, the Antarctic ice core CO2 records for the last 10 000 years
show little CO2 trace gas variation during the Holocene. A continuous CO2 increase
after minimum values around 8000 cal BP to pre-industrial times (Monnin et al., 2004;25

Indermühle et al., 1999) does not support a role of this trace gas in millennial-scale
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mid- to late-Holocene climate evolution.
In contrast, atmospheric CO2 reconstructions based on stomatal frequency anal-

ysis of common tree species detected a close link between global temperature and
atmospheric CO2 concentrations on centennial to decades time scales throughout the
Holocene (van Hoof et al., 2005; Kouwenberg et al., 2005; Wagner et al., 2004; Jessen5

et al., 2005). The majority of these studies however focus on high resolution recon-
structions of century-scale climate oscillations and only one record spanning major
parts of the Holocene with highest data coverage from 5000 cal BP onwards is avail-
able so far (Rundgren and Björck, 2003). Although some features of this record are in
agreement with the ice based CO2 record for the Holocene, large discrepancies remain10

in the amplitude and magnitude of the reconstructed CO2 levels. The high variability
in the data set and the relatively low data coverage during the early- to mid-Holocene
hamper a detailed analysis of the potential role of CO2 during this period.

Here we present a stomatal based CO2 record from well-preserved fossil Q. robur
leaf assemblages, recovered from road cuts and sea-eroded cliffs in northern Spain.15

The multiple site study covers the early- to mid-Holocene, with one additional point in
the late Holocene.

From the calculated radiative forcing of the reconstructed CO2 fluctuations between
9000 cal BP and 1000 cal BP, potential temperature anomalies are derived. This pro-
cedure enables a direct comparison with existing proxy-based NH temperature records20

and allows an evaluation of the potential role of CO2 as amplifying mechanism of inso-
lation induced temperature anomalies observed throughout the Holocene.

2 Study area

Holocene leaf assemblages were collected at three locations, Villaviciosa, Pravia and
Merón, located on the Cantabrian coast of the Iberian Peninsula (Fig. 1, Table 1). The25

Villaviciosa and Pravia estuaries are narrow incisions on a Jurassic basement filled by
fluvial-marine Holocene sediments. The Villaviciosa lithology changes from gravels at
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the basements to sandy matrix with rich organic matter intercalations, silty clays with
plant remains and podzol with roots at the top. These successions are shown to cor-
respond to high energy fluvial channels, intertidal flats and marshes, and recent forest
soil, respectively (Pagés et al., 2003). The sixteen available cores drilled in Pravia
show a similar stratigraphic pattern to the Villaviciosa estuary. In Villaviciosa, road5

works exposed more than 10 m deep outcrops, allowing 200 m cross section sampling.
Leaves and other plant macro-remains were in situ collected in 2003. At the Pravia
site, rich fossil leaf assemblages from various depths were recovered from two cores
from the Cantabrian motorway pillar-basements drilling in 2005.

At the third sampling site, Merón (Fig. 1), peat deposits and clay sediments with plant10

remains are exposed in an eroded cliff section, that are infills of a hydrologic incision in
the Pleistocene beach basement. The abundant plant remains, including rich leaf as-
semblages originate from the surrounding forests drowned during the Flandrian water
table increase ∼6000–7000 BP (Garzón et al., 1996).

3 Methods15

The age assessment for the nine studied leaf assemblages is based on conventional
14C dating of fossil wood collected from each layer or core sampled, undertaken
by Beta Analytic Inc. (Miami, USA). Conventional radiocarbon ages were converted
into cal BP using Oxcal 3.10 software (Bronk Ramsey, 2005) and employing a den-
drochronological database (Reimer et al., 2004).20

All sediment samples were sieved with 50 g/l tetra-sodium pyrophosphate (Na4P2O7
10H2O) to dilute the clay. Q. robur leaf fragments were extracted and identified by the
morphological and anatomical characters (Castroviejo et al., 1986–2004; Westerkamp
and Demmelmeyer, 1997). To exclude leaf fragments from hybrids with otherQuercus
species, only leaf remains with simple glandulate trichomes were analysed (Peñas25

et al., 1994; Uzunova et al., 1997). Q. robur leaf fragments were carefully brushed
and, where necessary, immersed in 50% fluoric acid (HF) to remove remaining silica.
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Samples of approximately 5×5 mm from the central part of the leaves, where stom-
atal and epidermal parameters are more stable (Poole et al., 1996), were bleached in
4% sodium hypochlorite (NaH ClO2) for 30 s. After rinsing them for 5 min, they were
mounted on microscopic slides with glycerine jelly to be measured on a Leica Quan-
timet 500C/500+Image Analysis System.5

Ten leaf fragments of each horizon were taken to obtain stomatal and epidermal
cell parameters as described in Garcı́a-Amorena et al. (2006). On each leaf fragment
stomatal density (SD [mm−2]) and epidermal cell density (ED [mm−2]) were measured
on ten different and randomised areas of 0.0245 mm2 within the alveoles. For the stom-
atal length (SL [µm]), pore length (PL [µm]), epidermal cell circumference (CC [µm])10

and epidermal cell area (CA [µm2]) measurements, ten different stomata or epider-
mal cells per leaf fragment were randomly selected. From the measured parameters,
the stomatal index [SI [%]=100×SD/(SD+ED); Salisbury, 1927] and undulation index
[UI=CC/2π

√
(CA/π); Kürschner, 1997] were calculated.

All measurements were made on sun morphotypes to avoid the effect of canopy15

variations in light, humidity and CO2 on the leaf morphology (Lockheart et al., 1998;
Bazzaz and Williams, 1991; Kürschner, 1996; Poole et al., 1996); sun leaves were
determined by the periclinal wall undulation analysis (UI<1.5) (Garcı́a-Amorena et al.,
2006; Kürschner, 1997).

Atmospheric CO2 concentrations (ppmv) were calculated for each sample by con-20

verting the SI average and 1×standard deviation with the CO2 inference model
[CO2[ppmv]=−6.25×(SI-71.09); Garcia-Amorena et al., 2006], specifically developed
for Q. robur grown within the range of 0 to 1000 m a.s.l. in mid- to low-latitudes. Varia-
tion in radiative forcing (dF [W/m2]) induced by the inferred CO2 shifts were calculated
from the following approach proposed by Myhre et al. (1998):25

dF=α· ln
[

C
CO

]
Where α=5.35, CO represents the unperturbed CO2 base level of 278 ppmv as rec-
ommended by the IPCC (2001), and C is the CO2 mixing radios (ppmv) here taken as
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the reconstructed normalised CO2 superimposed to the 278 ppmv base level.
The global temperature response to the calculated variations in radiative forcing were

assessed based on calculations derived from the coupled ocean-atmospheric climate
model; ECBilt-CLIO (Goosse and Fichefet, 1999; Opsteegh et al., 1998).

4 Results5

14C age assessments show that the Villaviciosa estuary records a large part of the
Holocene, and is complimented by Merón and Pravia older Holocene sediments (Ta-
ble 1). The collected fossil leaf assemblages accordingly cover the time period from
9300 to 1130 cal BP.

The measured SI data are shown in Fig. 2a, from which the atmospheric CO2 mixing10

ratios were inferred (Table 1). Early Holocene values are characterized by high SI
averages of 19.5% to 19.2%. A continuous SI decrease reaches a minimum of mean
16.4% (342 ppmv CO2) at 5860 cal BP. Following a SI rise to 19% (326 ppmv CO2) at
4110 cal BP, SI decreases to mean 17.9% (333 ppmv CO2) at 3950 cal BP. Measured
SI shows similar values of 17.8% (333 ppmv CO2) at 1130 cal BP.15

Reconstructed CO2 levels are normalized in Fig. 2b in order to facilitate comparison
of trends in atmospheric CO2 observed in CO2 records based on other reconstruction
techniques and to calculate radiative forcing trends. A −9 ppmv deviation from the
Holocene mean CO2 value is observed at the early Holocene (9300 cal BP), steady
rising to −4.1 ppmv at 7420 cal BP. From this date, the atmospheric CO2 rises to up20

to 10.4 ppmv above the Holocene mean at 5860 cal BP, from which it follows a steeply
decrease to reach −5.5 ppmv at 4110 cal BP from which CO2 averages the Holocene
mean values.

Radiative forcing variations induced by the SI inferred CO2 concentrations are plotted
in Fig. 3a. The CO2 concentration changes throughout the Holocene explain up to25

0.19◦C Northern Hemisphere temperature variation between the CO2 minimum at 9300
cal BP and the Holocene maximum at 5860 cal BP (Fig. 3b). 0.15◦C difference is
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observed in this figure between the Holocene CO2 peak value to a second minimum at
4110 cal BP.

5 Discussion

5.1 Holocene CO2 reconstruction

The CO2 estimates based on Spanish Quercus robur leaf assemblages indicate CO25

concentrations on relatively high levels, with a mean of 320 ppmv for all samples anal-
ysed. This high baseline is a so far unexplained feature common to all reconstructions
based on stomatal frequency, independent of geographical origin of the leaf material
or genus studied (Wagner et al., 1999, 2002; Rundgren and Beerling, 1999; McElwain
et al., 2002; Kouwenberg et al., 2003; Jessen et al., 2007). The reconstructed CO210

concentrations for the mid-Holocene however, equal the levels detected in the Swedish
Lake Njulla record (Rundgren and Beerling, 1999). In contrast to the former study how-
ever, where for the mid-Holocene up to 100 ppmv variability are present in the raw data,
our record follows a successive trend, that indicates gradual changes in the Holocene
CO2 regime.15

Despite the remaining uncertainties in terms of CO2 base-level, normalized stomatal
frequency based CO2 records have been demonstrated to capture amplitude changes
in CO2 that can be lost in ice core CO2 records due to smoothing of the gas concen-
tration in air bubbles during the firn densification process (Trudinger et al., 2003; van
Hoof et al., 2005).20

The most prominent feature in the normalized stomatal index based CO2 reconstruc-
tion is the phase of elevated CO2 between 7400 cal BP and 4100 cal BP, where CO2 is
up to 10 ppmv higher than the Holocene average. Although our record consists of only
a rather small amount of data, the long-term trends are well revealed by the continuity
of the changes reconstructed.25

Comparing the data to Antarctic ice-core CO2 profiles, the general trends during the
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earlier Holocene are in good agreement, with low CO2 levels around 8000 cal BP and a
successive increase until approximately 6000 cal BP (Indermühle et al., 1999; Monnin
et al., 2004). Although the trends are the same, the absolute CO2 increase is 10 ppmv
in Taylor Dome, and 14 ppmv in the stomata based record.

During the later part of the Holocene, the general patterns diverge. While in the5

Antarctic records CO2 increases continuously by another 15 ppmv until 1000 cal BP,
a drawdown of 10 ppmv CO2 between 5800 cal BP and 4100 cal BP is documented in
the stomata based record. The pronounced mid-Holocene maximum is followed by
relatively stable values. Although the period from 4100 to 1100 cannot be interpreted
in detail due to the very low data density in this part, the general trend from 5800 cal BP10

to 1100 cal BP indicates a downwards tendency rather than the continuous increase
deduced from ice-cores.

On millennial time-scales, terrestrial biosphere and the oceans are the most likely
sources and sinks for atmospheric carbon (Bacastow, 1996; Liu et al., 2003). The
common to both records increase in CO2 between 8000 cal BP and 6000 cal BP co-15

incides well with the recovery from the 8.2 kyr cool pulse, where a weakening of the
thermohaline circulation triggered by a catastrophic meltwater release lead to changes
in sea-surface temperature and salinity (Alley et al., 1997). The presence of a CO2 min-
imum around 8.2 kyrs is observed in ice-core data as well as in stomata based records
(Rundgren and Beerling, 1999; Wagner et al., 2002, 2004) which fit well in, and close20

the data gap between 8500 cal BP and 7400 cal BP in our record. Considering the
ocean properties as major constituent to CO2 changes, the continuing increase in CO2
indicated in ice-cores cannot be explained since it would require a warming of 2.3◦C
mean SST between 7000 cal BP and 1000 cal BP (Indermühle et al., 1999). No such
Holocene SST increase is documented so far. On the contrary, recent reconstructions25

of SST over a wide geographical range postulate a widespread, long-term cooling of
the sea surface associated with the transition from the Holocene Hypsithermal to the
Neoglaciation (Marchal et al., 2002). Overall cooling of the ocean surface would poten-
tially provide a significant sink for atmospheric carbon leading to the successive CO2
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decrease as observed in the stomata based record.

5.2 The role of CO2 radiative forcing on Holocene climate change

The calculated radiative forcing for the CO2 shifts reconstructed indicate with
−0.06 W/m2 a negative deviation from Holocene average levels in the oldest part of the
record, with a successive intensification to +0.06 W/m2 to 5800 cal BP, from where CO25

forcing declines again to stabilize around Holocene mean values in the late Holocene.
These changes can be translated in phases of temperature deviations, where atmo-
spheric CO2 radiative forcing contributes +0.1◦C during the mid-Holocene and −0.05◦C
to +0.02◦C in its continuation from 5800 cal BP to 1100 cal BP.

The pacing of the temperature shifts deduced from the CO2 radiative forcing corre-10

sponds very well to known Holocene climate anomalies recorded in a wide variety of
marine and terrestrial proxy records. Most striking is the parallelism of elevated tem-
perature between 7400 cal BP and 5800 cal BP and the Holocene Thermal Maximum
(HTM), concomitant to the positive CO2 anomalies up to +10.4 ppmv from ∼7000 cal
BP to ∼5000 cal BP (shades area in Fig. 3); and the Neoglacial cooling (NC) revealed15

by −5.5 ppmv CO2 deviation at 4110 cal BP (Alley et al., 1997; Kaplan and Wolfe, 2006;
Kaufman et al., 2004).

Correlations between stomata-based CO2 records with existing local palaeotempera-
ture reconstructions during the Holocene are generally hampered by different response
times, sensitivity of individual records and spatial occurrence to climate variations20

(Kaufman et al., 2004). However, reconstructed summer temperature anomalies de-
rived from pollen and chironomid assemblages in the northern Iberian Range (Peñalba
et al., 1997) and in the northern Swiss Alps (Heiri et al., 2003) are both highly sensitive
to regional temperature changes. These records correlate well with our derived radia-
tive forcing fluctuations. The HTM peak is characterised in these records by +1.13 and25

+0.57◦C deviation, and a −0.8/−0.51◦C anomalies at the minimum NC are followed by
an increase to −0.33 / −0.23◦C at ∼1100 cal BP (Fig. 3c, d).

Mean annual temperature reconstructions from boreholes (Dahl-Jensen et al., 1998)
3953
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and spatially averaged Holocene temperature records for the NH (Kaufman et al., 2004)
reveal the same temporal pattern of comparable shifts in temperature. Peak HTM
is reached at 7 kyr BP in the majority of the records (Kaplan and Wolfe, 2006), with
1.6±0.8◦C mean positive anomaly (Kaufman et al., 2004). In some records, these
high temperatures are maintained for 2–3 kyr BP (Fig. 3e) (Dahl-Jensen et al., 1998).5

A steady temperature decrease following the HTM is observed in most of the NH
palaeotemperature reconstructions (Fig. 3f) (Andersen et al., 2004; Kaplan and Wolfe,
2006). A pollen and chironomid based temperature decline is observed from the HTM
to ∼4 kyr BP paralleling the stomatal CO2 reconstruction (Figs. 2b, 3c, 3d). In the
uppermost horizon studied, the temperature increase recorded in NH temperature re-10

constructions (Fig. 3) coincides with the return to Holocene mean CO2 concentrations.
The strong link between the referred Holocene palaeotemperature reconstructions

for the NH and our stomatal CO2 data (Figs. 2, 3) suggest that the 20 ppmv CO2 shifts
observed for this period explain up to 0.2◦C variation. The amplitude of this forcing is
about 10% of the NH Holocene mean temperature anomalies.15

Although it is agreed that climate is driven by Earth’s orbital variation (Kaufman et
al., 2004) the Holocene millennial-scale climatic shifts cannot solely be explained by
the steady reduction of annual mean insolation during this time-period. For example,
the 2 W/m2 reductions at 65◦N from 10 kyr BP to present could only explain 1◦C re-
duction (Crucifix et al., 2002; Liu et al., 2003). Recent studies combining numerical20

climate models with palaeoenvironmental records attribute Holocene climate events to
a range of forcing factors (e.g. Laurentide Ice Sheet albedo and melting, timing of plant
colonization, atmospheric-ocean circulation) (Kaufman et al., 2004). Yet, although at-
mospheric trace gas concentrations have been considered in these studies, CO2 con-
centrations have been disseminated due to the non-variability observed in the widely25

used Antarctic ice cores CO2 reconstructions (Indermühle et al., 1999; Trudinger et al.,
2003; van Hoof et al., 2005).

In contrast, the 0.2◦C CO2 radiative forcing, estimated by the stomatal based
20 ppmv CO2 shifts throughout the Holocene, accounts for ∼20% of the variation in
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annual insolation at 65◦ N. This highlights the magnitude of the atmospheric CO2 forc-
ing on the millennial time scale Holocene climate system.

Therefore, it can be hypothesized that the atmospheric CO2 feedbacks and ampli-
fication of orbital forcing had a strong influence on millennial-scale Holocene climate.
This is also supported by long term Quaternary CO2-temperature coupling and model5

simulations on historical observations that indicated a positive feedback of CO2 on tem-
perature variations (Petit et al., 1999; Raynaud et al., 1993; Shackleton, 2000; Stott and
Kettleborough, 2002).

6 Conclusions

The stomatal frequency based CO2 record for the period from ∼9000 cal BP to10

∼5000 cal BP shows for the comparable trends of continuously increasing CO2 by ap-
proximately 10 ppmv as deduced from Antarctic ice cores. This CO2 increase accounts
for a temperature increase of +0.1◦C. The positive temperature anomaly is concomi-
tant with temperature rises evident from a wide variety of marine and terrestrial proxies
and parallels the HTM.15

From 5000 cal BP to ∼1100 cal BP, the CO2 profiles from stomata and ice diverge.
Where the ice record indicates a further gradual CO2 increase to pre-industrial lev-
els, the stomata records suggests a CO2 decrease driving the temperature back by
−0.05◦C. Although this is in contrast to the evidence from Antarctic ice cores, the es-
timated temperature decline matches the majority of reconstructions for the second20

half of the Holocene, where after peak warmth during the HTM temperatures decrease
again during the Neoglacial cooling.

Thus positive CO2 feedbacks of orbital driven Holocene climate parallels the HTM
warmth and neoglacial cooling. However, the different pattern observed between the
CO2 trend and the steady annual insolation decrease during the Holocene suggests or-25

bital forcing independent mechanisms of CO2 exchange to contribute to the millennial-
scale Holocene climate shifts.
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and keys, Gebrüder Borntraeger, Berlin and Stuttgart, Germany, 558 pp., 1997.

20

3960

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/5/3945/2008/bgd-5-3945-2008-print.pdf
http://www.biogeosciences-discuss.net/5/3945/2008/bgd-5-3945-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
5, 3945–3964, 2008

Holocene Thermal
Maximum revealed by

Iberian oak leaves

I. Garcı́a-Amorena et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 1. Sampled sites list.

Sites Location (UTM) Samples Depth 14C dates Calendar dates Beta code CO2
Zone X Y (m) (BP) (2σ cal BP) (ppmv) (±1σ)

Pravia 29 736 087 4 822 585 PR 6/22 22 8300±90 9250±150 208 813 324.09±11.1
PR 6/18 18 8320±60 9300±170 23 1046 322.20±7.61
PR 12/8 8–13 6500±60 7420±130 208 814 327.13±5.84

Villaviciosa 30 304 006 4 819 233 At 3 1230±70 1130±220 154 347 332.82±10
Ab 6 3750±40 4110±130 231 045 325.65±13.7
B (VIL.10) 8 3620±50 3950±140 179 600 332.72±2.88
D (VIL.D.O) 10 4750±70 5450±190 9094 336.75±7.61
E (VIL.E1) 15 5130±60 5860±140 179 601 341.60±13.8

Merón 30 389 456 4 805 983 M1B 1 5920±70 6750±140 111 250 337.85±6.43
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Fig. 1. Location of sampled sites (Weilnet, 1996–2006, http://www.aquarius.ifm-geomar.de/).
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Fig. 2. (a) Mean stomatal index (SI %) values (dots) of fossil layers based on stomatal counts.
(b) Reconstructed normalized CO2 mixing ratios (ppmv) for 9250–1130 cal PB, based on the
Q. robur SI record and the CO2 inference model for northern Iberia [CO2[ppmv]=−6.25×(SI
−71.09); Garcia-Amorena et al., 2006]. Error bars: ±1 standard deviation for SI, reconstructed
CO2 and cal BP.
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Fig. 3. Comparison of (a) variations in radiative forcing (W/m2) (±1×standard deviation) inferred
from the reconstructed normalised atmospheric CO2 concentrations, (b) temperature changes
(◦C) in the Northern Hemisphere based on the radiative forcing variation induced by the CO2
mixing radios changes, (c) reconstructed July temperature anomalies (◦C) for the Iberian Range
(Quintanar de la Sierra; 1470 m a.s.l.) based on pollen analysis, (d) chironomid-based July
temperature anomalies (◦C) in the northern Swiss Alps (Hinterburgsee; 1515 m a.s.l.), (e) re-
constructed North GRIP surface temperature (◦C) (Dahl-Jensen et al., 1998) (f) North GRIP
δ18O (‰) (Andersen et al., 2004).
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