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Abstract

One of the more frequently applied methods for integrating controls on primary produc-
tion through satellite data is the Light Use Efficiency (LUE) approach. Satellite indices
such as the Enhanced Vegetation Index (EVI) and the Shortwave Infrared Water Stress
Index (SIWSI) have previously shown promise as predictors of primary production in5

several different environments. In this study, we evaluate EVI and SIWSI derived from
the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensor against
in-situ measurements from central Sudan in order to asses their applicability in LUE-
based primary production modelling within a water limited environment. Results show
a strong correlation between EVI against gross primary production (GPP), demonstrat-10

ing the significance of EVI for deriving information on primary production with relatively
high accuracy at similar areas. Evaluation of SIWSI however, reveal that the fraction of
vegetation apparently is to low for the index to provide accurate information on canopy
water content, indicating that the use of SIWSI as a predictor of water stress in satellite
data-driven primary production modelling in similar semi-arid ecosystems is limited.15

1 Introduction

With the emergence of international environmental treaties such as United Nations
Framework convention on Climate Change (UNFCCC) and its Kyoto Protocol, there is
an urgent request to quantify the global carbon budget and its temporal and spatial
variations (IPCC, 2007). One of the least well-covered regions by studies on carbon20

dynamics and climate change is Africa, a continent with widespread poverty and slow
economic development (2007).

Droughts and famines occur frequently for the people living in the African Sahel,
a semi-arid grass- and shrubland region located south of the Saharan desert. The
region has recently been flagged as a hotspot for climatic change as findings from polar25

orbiting satellites reveal a widespread increase in vegetation greenness (Eklundh and
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Olsson, 2003; Herrmann et al., 2005; Seaquist et al., 2006). This observed greening
has partly been explained by variations in rainfall (Hickler et al., 2005) and could be
part of a residual terrestrial sink (Houghton, 2003). Knowledge on primary production
in this region is therefore of key importance, both in the light of the climatic fluctuations
that have occurred in this region over the last decades (Hulme, 2001) and in the light5

of the predicted effects of climate change (IPCC, 2007).
Photosynthesis, the process by which plants harness solar energy and carbon

needed for ecosystem maintenance, is key for determining ecosystem primary pro-
duction, the net amount of carbon captured by land living plants (Hanan et al., 1998).
Most existing estimates of primary production at continental to global scales have been10

made with the use of sophisticated process-based ecosystem models driven mainly by
climate data (Sitch et al., 2003). However, during the last decade, rapid developments
in satellite sensor technology have allowed remote sensing based primary production
models to emerge as an attractive approach. Considering the spatial and temporal vari-
ations of the processes related to plant growth, repetitive and accurate satellite based15

measurements may contribute significantly to our knowledge on vegetation dynam-
ics and responses to changing environmental conditions. The improved spatial and
spectral resolution of satellite sensors such as the Moderate Resolution Imaging Spec-
troradiometer (MODIS), in comparison to the extensively used Advanced Very High
Resolution Radiometer (AVHRR), has further allowed a reassessment of the potential20

for modelling primary production solely by the use of satellite data.
One of the more widely applied concepts within the domain of satellite based pri-

mary production models is the Light Use Efficiency (LUE) approach, first described by
Monteith (1972, 1977). They are generally formulated as:

GPP = ε × PAR × fPAR, (1)25

where GPP is gross primary production, the carbon assimilated by plants, ε is the
conversion efficiency, PAR is incoming photosynthetically active radiation between the
wavelengths 400–700 nm and fPAR represents the fraction of PAR absorbed by the
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canopy. FPAR is generally estimated through the use of spectral vegetation indices
such as the Normalized Difference Vegetation Index (NDVI) (Daughtry et al., 1983;
Asrar et al., 1984; Sellers et al., 1994) and the Enhanced Vegetation Index (Xiao et
al., 2004) whereas the PAR received at the Earths surface can be estimated by inter-
polating point measurements from light sensors or be derived from the use of Earth5

observation data (Eck and Dye, 1991; Seaquist and Olsson, 1999; Van Laake and
Sanchez-Azofeifa, 2005; Liang et al., 2006; Olofsson et al., 2007b). The conversion
efficiency factor ε was originally regarded as a fixed empirical constant when first in-
troduced (Monteith, 1972) but during the past decade it has become more common to
estimate or scale ε using models or satellite retrievals. Numerous stress factors control10

ε and estimating this critical parameter can be difficult due to high spatial and temporal
variability inherent to site specific and meteorological conditions (Hilker et al., 2007).

In semi-arid environments such as the Sahel, water is generally the most limiting
factor for growth and numerous satellite sensor-based primary production studies have
focused on the derivation of information related to plant water stress in order to scale15

ε with the use of modelling (Nemani and Running, 1989; Field et al., 1995; Prince and
Goward, 1995; Seaquist et al., 2003). But progress has recently been made using
satellite data to detect canopy water stress (Ceccato and Flasse, 2002; Ceccato et
al., 2002; Fensholt and Sandholt, 2003; Xiao et al., 2004). However, efforts are still
required to strengthen our knowledge regarding indices related to water stress as well20

as their applicability for estimating primary production using satellite remote sensing.
In this paper, we aim to test satellite-based variables that can be used to upscale

estimates of carbon in semi-arid Sahel by comparing these against site-specific mea-
surements of CO2 fluxes from central Sudan. We further investigate the applicability
of these variables by including them in a simple parametric LUE-model, a model that25

should be regarded merely as a point of progress for future proceedings on satellite
data-driven primary production modelling in semi-arid regions.
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2 Study area and instrumentation

2.1 Study area

The flux tower is located at the village Demokeya (13.3◦ N, 30.5◦ E) in Northern Kordo-
fan state in central Sudan approximately 35 km northeast of the state capital El Obeid
(Fig. 1). Soils in the area are mainly sandy and vegetation at the site consists primarily5

of sparse Acacia senegal savanna with a canopy cover of 5–10%, and a ground cover
composed mainly of C4 grasses and herbs, mainly Aristida pallida, Eragrostis tremula
and Cenchrus biflorus. Mean annual precipitation is about 320 mm and generally falls
from June–October, and mean annual temperature is around 26◦C. The deep sandy
soil (96.5% sand and 3.5% silt) have estimated minimum (wilting point) and maximum10

(field capacity) water holding capacities of 5% and 15% respectively, and hence a max-
imum plant available water content of around 10%. The landscape is gently undulating
due to stabilized parallel sand dunes with a N-S orientation.

2.2 Instrumentation

Fluxes of CO2 (FCO2), H2O (FH2O) and energy were measured with the eddy co-15

variance technique according to the EUROFLUX methodology (Aubinet et al., 2000).
Measurements were done at 20 Hz using an open path eddy covariance system (In
Situ Flux Systems AB, Ockelbo, Sweden) and stored as 30-min averages. Instruments
include a LI7500 (Li-Cor, Lincoln, Nebraska) open path infrared CO2 and H2O gas
analyzer and a GILL R3 Ultrasonic Anemometer (GILL Instruments, Lymington, UK)20

mounted at 9 m above the ground, approximately 4 m above the sparse canopy.
Located approximately 400 m from the flux tower is a separate climate station that

measures temperature, relative humidity, precipitation, wind and global radiation us-
ing standard equipment. Additional measurements at this station include net radia-
tion (NR-Lite, Kipp and Zonen), incoming PAR (JYP1000, SDEC, France), soil mois-25

ture (TDR, CS615/CS616, Campbell Scientific) and soil temperature (soil temperature
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probe 107/108, Campbell Scientific).

3 Data and methods

3.1 Eddy covariance data

The carbon budget is described by three components: i) gross primary productiv-
ity (GPP), the carbon captured through photosynthesis; ii) net ecosystem exchange5

(NEE), the net exchange of carbon between the ecosystem and atmosphere and; iii)
ecosystem respiration (Reco), which is the sum of plant and heterotrophic respiration.
NEE, GPP and Reco were derived from half-hourly values of CO2 from July to Decem-
ber for the 2007 season (data prior to July were not available).

In order to obtain seasonal estimates of CO2 exchange eddy covariance data was10

gap filled according to the method used by Reichstein et al. (2005) (amount of gaps
was 39% for the period). This method considers both the covariance between fluxes
and meteorological drivers and temporal structure.

Previous studies from the Sahel have shown that soil respiration not only depends
on temperature but also on soil moisture content (e.g. Friborg et al., 1997). Reco was15

thus estimated by using the exponential regression model of Lloyd and Taylor (1994) in
combination with a soil water content factor (Fw ) derived from volumetric soil moisture
(Wang and Leuning, 1998):

Fw = min
(

1,
10 (θ − θMin)

3(θMax − θMin)

)
, (2)

where θ is the actual soil water content in the upper soil layer (5 cm), θmin and θmax is20

the minimum and maximum soil water content. Using typical values for sandy soils, Fw
is thus scaled between wilting point and field capacity (i.e. approximately 5 and 15%)
and then integrated with the Lloyd and Taylor (1994) expression:

Reco = FwR10e
308.56

(
1

56.02−
1

Tsoil−227.15

)
. (3)
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Daytime GPP was estimated as GPP=Re–NEE whereas nighttime GPP=0 based on a
global radiation threshold of 20 Wm−2.

3.2 Satellite data

We used satellite data from the MODIS/EOS Terra product MOD09A1, which provides
an estimate of surface spectral reflectance in seven bands as it would have been mea-5

sured at the ground (Vermote et al., 2002). The MOD09A1 surface reflectance product
includes correction for the effects of aerosols, thin cirrus clouds and atmospheric gases
and serves as an input for several higher order land products such as FPAR/LAI and
vegetation indices. The spatial resolution of the MOD09A1 data set is 500 m and data
is composed of the best observations during an 8-day period with regards to overall10

pixel quality and observational coverage (Justice et al., 2002).
The Enhanced Vegetation Index (EVI) was developed to enhance the vegetation sig-

nal by reducing influences from the atmosphere and canopy background (Huete et al.,
1997; Huete et al., 2002). As with the NDVI, EVI is estimated from surface reflectance
in the red (ρred) and Near Infrared (NIR, ρnir) bands but it also uses reflectance in the15

blue band (ρblue) to correct for effects of aerosols. Using surface reflectance data from
MODIS, EVI is calculated as:

EVI = 2.5 ×
ρnir − ρred

ρnir + (6 × ρred − 7.5 × ρblue) + 1
. (4)

Several studies have previously revealed a good general relationship between EVI and
GPP (Xiao et al., 2004; Rahman et al., 2005; Sims et al., 2006b; Olofsson et al.,20

2007a). Building on this, Sims et al. (2008) developed a temperature and greenness
model solely based on the MODIS Land Surface Temperature (LST) and EVI products.
Modeled GPP estimates were in good agreement with measured values, highlighting
EVI’s potential for use as a predictor of GPP, and further demonstrating that GPP can
be estimated with relatively high accuracy using only remote sensing data.25
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In the Sahel region, water is generally assumed to be the limiting factor for pho-
tosynthesis and several attempts have previously been made at developing satellite
based stress factors that account for canopy or soil water deficits. The Short wave
Infrared Water Stress Index (SIWSI) (Fensholt and Sandholt, 2003) is such an attempt.
The Short-wave Infrared (SWIR, ρswir) and NIR bands available on the MODIS sensor5

present opportunities to quantify equivalent water thickness (EWT), a term denoting
spectral absorption resulting from the leaf water content. SIWSI is based on NIR and
SWIR surface reflectance information, and has previously been shown to correlate well
with soil moisture (Fensholt and Sandholt, 2003). SIWSI is estimated as:

SIWSI =
ρnir − ρswir

ρnir + ρswir
. (5)10

SIWSI is thus a normalized index with values theoretically ranging between –1 and 1.
As the water content increases, the reflectance in the SWIR diminishes. Thus, a high
SIWSI value, would indicate sufficient amounts of water whereas a low value would
indicate water stress (Fensholt and Sandholt, 2003).

We acquired the MOD09A1 8-day product from Earth Observing Systems Data15

Gateway (EDG, http://edcimswww.cr.usgs.gov/pub/imswelcome/) for the year 2007.
Data for surface reflectance were extracted from the site pixel, centred on the flux
tower and climate station, and its 8 surrounding pixels. The extracted data were then
used to calculate EVI and SIWSI according to Eqs. (4) and (5). In order to minimize the
effects of sensor disturbances estimated EVI was seasonally adjusted by an adaptive20

Savitzky-Golay filtering method using the TIMESAT program package (Jönsson and
Eklundh, 2002, 2004). TIMESAT fits a function to the upper envelope of the satellite
time series data, effectively filtering out negatively biased noise due to, for instance,
atmospheric effects (Eklundh and Olsson, 2003; Olofsson et al., 2007a).
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3.3 LUE-model

In order to further assess the applicability of satellite-based measurements we incor-
porated indices in a simple parametric LUE-model formulated as follows:

GPP = εp × ε × EVI × PAR, (6)

where εp represents the maximum biological efficiency of PAR conversion to dry matter5

(g C mol−1 PAR).
Most herb layers in the Sahel region consist of a combination of C3 and C4 species,

where C3 often dominates in the early part of the growing season (Hanan and Prince,
1997). We therefore prescribed a fixed value of 0.489 g C mol−1 PAR for εp (Seaquist
et al., 2003; Seaquist et al., 2006), which indicates a mixture of C3 and C4 plants with10

the assumption that C4 grasses dominate for the greater part of the growing season.
SIWSI was linearly scaled as ε using maximum and minimum values during the

2007 season to assess its potential as a scalar of maximum light use efficiency. The
index has previously been shown to increase predictions of above ground net primary
production in the semi-arid Sahel (Fensholt et al., 2006).15

EVI has been shown to be highly correlated with processes that are dependent on
light absorption (Huete et al., 2002; Xiao et al., 2004; Rahman et al., 2005; Olofsson
et al., 2007a). It therefore replaces fPAR in Eq. (1) whereas the PAR component, in
turn, represents 8-day sums of measurements from the climate station in order to be
consistent with the temporal resolution of the MOD09A1 product.20

4 Results

4.1 Seasonal variation in carbon exchange, climate and EVI

Figure 2a shows day-to-day variation in GPP, NEE and Reco from July until December
2007, whereas Fig. 2b shows cumulative fluxes together with aboveground net primary
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production (AGNPP) assessments of herbs and grasses (negative values denote net
ecosystem CO2 uptake). It is apparent in these data that net uptake increases as
conditions gradually become more favourable for plant growth with the onset of the
rain in June (Fig. 2c). Total annual rainfall for the 2007 season was 364 mm, which is
slightly higher than the annual average of 320 mm and noticeably higher compared to5

previous season as Demokeya received a total of 273 mm in 2006. Peak uptake occurs
in late August and early September. GPP and Reco decline rapidly as soil water content
decreases with the last rains falling on 22 September (Fig. 2c).

The seasonal progression of TIMESAT-adjusted EVI is shown in Fig.‘2d. Although
vegetation index values are relatively low, the site shows a distinct seasonal variation10

in EVI which corresponds rather well to the seasonal dynamics of 8-day sums of GPP.

4.2 GPP relationships and modelling

Linear regressions between EVI and SIWSI against GPP were computed and results
are shown in Fig. 3. A strong linear relationship was observed between EVI and GPP
(Fig. 3a) with a coefficient of determination, R2=0.89 and RMSE=4.90 C m−2 8d−1 (Ta-15

ble 1). We also performed a linear regression analysis between EVI and tower GPP for
the central 500 m pixel. Although the analysis did not show a considerable difference
with R2=0.85 and RMSE=5.73 g C m−2 8d−1 we continued to use 3×3 pixel averages
throughout our analyses. Nonetheless, the high correlations between tower GPP and
EVI suggest that the latter may be usable in estimating seasonal variation of fPAR for20

semi-arid environments.
Furthermore, a strong relationship between SIWSI and GPP was detected (Fig. 3b).

This is not surprising as an overall relation between vegetation intensity and water
availability as observed by satellite could be expected. However, Fensholt and Sand-
holt (2003) found SIWSI to be highly correlated with NDVI, indicating a redundancy25

between SIWSI and EVI. A comparison between EVI and SIWSI was subsequently
performed (Fig. 4a). With time series fluctuations occurring at practically the same
pace, results showed that there was a significant redundancy between 8-day values of
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EVI and SIWSI for this specific site (R2=0.91).
We further assessed SIWSI’s potential as a scalar by testing the index against mea-

surements of soil moisture at a depth of 5 cm (Fig. 4b). Although it can be argued that
superficial soil moisture can be regarded as a surrogate measure of EWT, only a weak
relationship (R2=0.45) with a RMSE of 1.57% was observed. It is also apparent in5

Fig. 4b that the correlation is mainly attributed to dry season measurements. Addition-
ally, it was also observed that EVI was stronger correlated to soil moisture with a higher
R2 of 0.57 and a lower RMSE of 1.46%.

As previously stated, EVI and SIWSI preformed well when compared against 8-day
sums of GPP (Fig. 3). However, results acquired through multiple linear regression,10

with LUE-model parameters EVI and ε as independent variables, showed that ε did
not add further explanation to the observed variance of GPP values (Table 1).

Figure 5 shows 8-day modeled GPP at Demokeya with observed 8-day sums from
July to December 2007, where modeled GPP was calculated every 8-day according
to Eq. (6). As shown in Fig. 6, seasonal dynamics of modeled GPP agreed well with15

measured GPP (R2=0.83), with cumulative sums over the period from model start on
12 July to the end on 27 December differing by 3.58% (Fig. 5b). The data points are
shown by the equation GPPobs=0.93 GPPmod+0.68, which is close to a 1:1 line (Fig. 6).
However, the model fails at the beginning of the growing season with the unexplained
variance in the measured versus modeled data (6.15 g C m−2 8d−1, Table 1) mainly20

originating from the effects of ε.

5 Discussion

The aim of this study involved assessing the applicability of two satellite-based indices
from MODIS data (EVI and SIWSI) for primary production modelling in a semi-arid
environment in the Sahel. Indices were tested through comparison with site-specific25

measurements of CO2 fluxes from central Sudan. In order to evaluate the applicability
of satellite indices, tower measurements of NEE were used to derive GPP. Soil moisture
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and soil temperature are usually regarded being the primary environmental factors
controlling Reco in semi-arid environments and as such Reco was estimated by using
a soil water content factor, representing the relative availability of soil water for plants
(Wang and Leuning, 1998) together with the exponential regression model of (Lloyd
and Taylor, 1994). This step is critical, as accurate estimation of Reco is important5

with regards to validation of terrestrial carbon models as an erroneous estimate of
Reco in turn will result in an error in the estimation of GPP. However, a full evaluation
of the environmental factors driving respiration at this site and the applicability of the
multiplicative model used to derive Reco is beyond the scope of this study.

A strong relationship between EVI and tower GPP was observed at the Demokeya10

flux site (Fig. 3a). This clearly indicates the usefulness of EVI in terrestrial carbon
modelling. The good correlation was not unexpected, as the utility of this index in
satellite-driven primary production modelling has previously been demonstrated for
several different biome types (Xiao et al., 2004; Rahman et al., 2005; Sims et al.,
2006b; Olofsson et al., 2007a). The highly linear relationship further suggests that15

GPP can be estimated through a linear regression model for similar environments with
relatively high accuracy, using only EVI as independent variable.

We further detected a high correlation between SIWSI and measured tower GPP
(Fig. 3b). Although linear regression parameters differed in comparison to the EVI-
GPP relationship (Fig. 3a), a similar value range between SIWSI and EVI was ap-20

parent. Additionally, the strong relationship between the two MODIS indices (Fig. 4a)
indicates that they both may measure the same process at this specific site. Simi-
lar results have been reported with NDVI. For instance, Ceccato et al. (2001; 2002)
designed a spectral index, the Global Vegetation Moisture Index (GVMI), using NIR,
blue and SWIR reflectance data from the VEGETATION sensor onboard the SPOT25

(Satellite Pour l’Observation de la Terre). The authors demonstrated that GVMI was
fully capable of predicting EWT for complete canopy cover, but comparisons between
GVMI and NDVI for savanna regions showed a highly linear relationship (Ceccato and
Flasse, 2002). Although Ceccato and Flasse (2002) found similar values of NDVI with

2996



different values of GVMI, the authors mention that NDVI could be used to retrieve veg-
etation water content for some types of species, mainly for those where the degree of
senescence is proportional to moisture content, which seems to be the case at the site
used in our study. It is however important to mention that SIWSI does require a certain
amount of vegetation to be present in order to be useful (Fensholt and Sandholt, 2003).5

The rather weak correlation between SIWSI and soil moisture (Fig. 4b) indicates that
the sparse vegetation cover at the site causes the index to fail as an indicator of water
stress. Furthermore, the stronger, but still rather weak relationship observed between
EVI and soil moisture could, to some extent, indicate that the effects of water stress
are already manifested through the EVI signal. Cheng et al. (2006) compared several10

indices, including SIWSI and EVI, to retrievals of EWT from Advanced Visible Infrared
Imaging Spectrometer (AVIRIS) imagery. The authors showed that EVI had the high-
est correlation among indices for an agricultural site and a semi-arid savanna shrub
site. However, it would have to be further investigated if EVI can mimic the temporal
dynamics of EWT at these specific sites as Cheng et al. (2006) further concluded that15

errors due to soil background reflectance and canopy architecture where inherent in
the retrievals of EWT in both the AVIRIS and MODIS data.

Results derived using a simple parametric LUE-model were shown to agree rather
well with measured tower GPP over the 2007 season (Fig. 5). Although correlations
showed that the relationship between EVI and GPP was highly linear (Fig. 3a), there20

are still a number of factors that influence the vegetation signal recorded at the sensor
that in turn can greatly influence the 1:1 relationship assumed between fPAR and EVI.
Even though TIMESAT minimizes negatively biased noise due to the interference of
clouds and atmospheric constituents, effects of varying solar zenith angles on satellite
vegetation index data has previously been shown to be considerable at intermediate25

Leaf Area Index (LAI) values between 0.25 and 2 (Goward and Huemmrich, 1992).
A higher solar zenith angle in the beginning and in the end of the season, tends to
increase vegetation index values whereas a lower solar zenith angle in the middle of
the season results in more soil being directly illuminated, thus reducing values. Al-
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though the site did show a distinct seasonal variation in EVI (Fig. 2d), the applicability
of vegetation indices to estimate GPP can still be greatly reduced due to solar angle
effects, specifically for sites in semi-arid regions where vegetation is sparse (Sims et
al., 2006a). But none of the reflectance values in the 3×3 window during 2007 were
acquired at a solar zenith angle of more than 45◦, and as vegetation indices estimated5

by using red and NIR reflectance are relatively unaffected at solar zenith angles less
than 50◦ (Goward and Huemmrich, 1992), the effects of solar angle on derived EVI
may be minimal.

The large differences between modeled GPP and observed GPP, specifically for a
few 8-day periods early in the model run (Fig. 4a), can be attributed to ε (i.e. scaled10

SIWSI) which primarily fails due to the low vegetation cover at the beginning of the
growing season. As the water content of the soil gradually increases over time with
the first rainfall, the overall albedo of the soil decreases. The reflectance in the SWIR,
in turn, rapidly diminishes, causing a peak in the modeled GPP during the middle of
the growing season. This rather deceptive temporal pattern of ε in the early vegetative15

stage is further enhanced due to scaling. Finally, multiple linear regression analysis
confirmed that no significant improvement was obtained by adding ε to the model,
suggesting that, in this case, the parameter is of limited predictive use.

6 Conclusions

In order to test the applicability of MODIS EVI and SIWSI in primary production mod-20

elling for semi-arid areas in the Sahel, tower measurements of CO2 fluxes from central
Sudan were partitioned into Reco and GPP using a model that incorporates the Lloyd
and Taylor (1994) equation together with a soil water factor (Wang and Leuning, 1998).
Both indices showed consistent agreement with GPP with EVI having the highest cor-
relation. The strong GPP-EVI relationship observed demonstrates that EVI show sig-25

nificant promise for efficient determination of primary production at similar ecosystems.
SIWSI was compared against data on soil moisture to assess its applicability as a
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measure of water stress. A rather weak correlation was observed and comparison
between SIWSI and EVI illustrated that there is a considerable redundancy between
the two indices. Results obtained through multiple linear regression as well as through
implementing a simple parametric LUE-model demonstrated that SIWSI did not add
further explanatory power to measured GPP values. The index broke down early in the5

season due most likely to low vegetation cover, indicating that its use as a predictor
of water stress in similar ecosystems, where vegetation fraction is low, is restricted.
Research using multi-year and site-wide flux tower and climate data sets is however
required to further test the use of EVI and SIWSI in satellite data-driven primary pro-
duction modelling over semi-arid areas in the Sahel.10
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Table 1. Linear regression and multiple linear regression statistics with observed GPP as
dependant variable (number of observations=22).

Independent variable(s) B0 B1 B2 R2 RMSE (g C m−2 8d−1)

EVI –39.73 265.38 – 0.89 4.90
SIWSI –6.26 55.44 – 0.81 6.46
EVI, ε –35.06 224.73 9.56 0.89 4.96
Modeled GPP 0.68 0.94 – 0.83 6.15
– – – – – –
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Fig. 1. Map showing the location of the study area in central Sudan. Yellow denotes areas of
>70% sand whereas isohyets show mean annual rainfall in mm.
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Fig. 2. Seasonal patterns of (a) daily GPP, NEE and Reco, (b) cumulative GPP, NEE, Reco and
assessments of above ground biomass, (c) daily average soil temperature (5 cm), soil moisture
(5 cm) and cumulative rainfall (dotted gray line denotes maximum plant-available water content)
and (d) 8-day sums of GPP plotted against 8-day values of EVI for the Demokeya site from June
to 31 December 2007.
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Fig. 3. Linear regression analysis between 8-day sums of GPP and (a) EVI and (b) SIWSI
for the Demokeya site 2007, July–December (squares denote points not within the growing
season).
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Fig. 4. Linear regression analysis between 8-day values of SIWSI and (a) EVI and (b) 8-day
average soil moisture measured at a depth of 5 cm (soil moisture measurements failed during
May and June) for the Demokeya site 2007, January–December (squares denote points not
within the growing season).
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Fig. 5. Seasonal dynamics of (a) 8-day sums of measured GPP and modeled GPP and (b)
measured and modeled cumulative GPP for the Demokeya site 2007, July–December.
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Fig. 6. Linear regression analysis between 8-day sums of measured GPP and modeled GPP
for the Demokeya site 2007, July–December (squares denote points not within the growing
season).
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