Appendix A. CNP fluxes
The fluxes of carbon, nitrogen, and phosphorus coming from the upstream pool (i) to the downstream pool (j) due to SOM decomposition are calculated as:
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where gi is the percentage of carbon remaining in the soil after decomposition of the ith SOM pool (i.e., CUE, with the rest being released as CO2); fij is the fraction of SOM leaving the ith pool and entering the jth pool; and   is the first order decay of the ith SOM pool. CN and CP are soil C:N and C:P ratios.
If the upstream-decomposed soil organic nitrogen (phosphorus) is more than enough to sustain the downstream C:N (C:P) ratio, then the excess nitrogen (phosphorus) enters the soil NH4+ (POx) pool. POx represents the sum of PO43-, HPO42-, and H2PO4- that could be utilized by plants and microorganisms, and adsorbed by mineral surface. 
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where FmobN,ij and FmobP,ij are the nitrogen and phosphorus gross mineralization rates. Eqn. A4 - A5 ensure that gross mineralization is not less than zero. In contrast, if nitrogen (phosphorus) is insufficient, soil microbes immobilize free NH4+ and NO3- (POx) according to uptake kinetics:
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where , , and  are microbial NH4+, NO3-, and POx uptake rates, respectively. VMAX and ECA are maximum uptake rates and ECA competition terms, respectively. The soil CNP stoichiometry is flexible and depends on the predicted immobilization rates. In addition to microbial uptake, plants also consume a portion of soil nutrients, which is modeled analogously to the approach described above for microbial immobilization:
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where , , and  are plant NH4+, NO3-, and POx uptake rates, respectively. Other soil nutrient consumers are nitrifiers, denitrifiers, and mineral surfaces:
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where , , and  are NH4+ nitrification, NO3- denitrification, and mineral surface POx adsorption rates, respectively; [NH4] is the free NH4+ pool; and  is the maximum fraction of free NH4+ pool that could be utilized by nitrifiers. The nitrification rate is controlled by soil temperature () and soil moisture (), soil oxygen status (1-fanox), and a competition factor (). The denitrificaiton rate () is either constrained by substrate availability (f(decomp)) or NO3- availability (f([NO3])) [Del Grosso et al., 2000], taking into account the soil anaerobic condition (fanox) and competition (ECAdenNO3).  is derived from the Langmuir adsorption model [Barrow, 1978], where actual adsorption P is equal to . Taking the time derivative leads to a relationship for the adsorption rate [Wang et al., 2010].

Soil NH4+ content is altered by inputs from deposition () and biological N2 fixation (FBNF) [Cleveland et al., 1999]:

								(A15) where NPPannual is annual net primary production. Controls on biological N2 fixation are complex and several models have been developed for large-scale land BGC models [Cleveland et al., 1999; Fisher et al., 2010; Hartwig, 1998; Parton et al., 1993; Running et al., 1989; Vitousek and Field, 1999]. However, the emergent responses predicted across these model structures are inconsistent [Galloway et al., 2004]. Recognizing this important structural uncertainty, we used a simple model where biological N2 fixation (FBNF) is modeled as a function of annual NPP [Cleveland et al., 1999].


Soil NO3- content is modified by external deposition inputs () and leaching losses ():

								(A16)
where soil nitrate concentration ([NO3]: gN m-2) divided by soil water content (W: gH2O m-2) results in the concentration of dissolved nitrate (DIN). The hydrologic discharge (Qdis: gH2O m-2 s-1) applied to DIN (gN gH2O-1) leads to the leaching loss (gN m-2 s-1). 


Soil POx content is affected by external inputs from parent material weathering (Fweather) and leaching losses (). Sorbed P (PS) could be further strongly occluded and become unavailable for plant and microbial uptake. Parent material stock can be increased by atmospheric dust deposition () [Mahowald et al., 2008]:

									(A17)

									(A18)

									(A19)
where parent material weathering (Fweather) is calculated using a weather rate (kweather) and parent material P content ([PP]). POx leaching loss is modeled with a similar approach to nitrate leaching (Eqn. A16). Phosphorus occlusion rate is modeled as the product of a constant rate (koccl) and the sorbed P content ([PS]).
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Appendix B. Derivation of VMAX

The enzyme substrate reaction is:, where the enzyme (E) and substrate (S) reaction is reversible and forms complex (C). The irreversible reaction releases product (P) and liberates enzyme (E). At steady state, the formation rate of the enzyme substrate complex is equal to the consumption rate: 

								(B1)
To simply the equation, we define an affinity parameter:

								(B2)



By definition, the total enzymes  in the system is the sum of free enzymes  and enzymes that are bound with the substrate : 

									(B3)
Substituting Eqn. (9) into (8), we have:

								(B4)
Collecting terms containing [C], we have:

								(B5)
The production rate is:

										(B6)
Substituting Eqn. (11) into (12), we have:

								(B7)
[bookmark: _GoBack]Comparing Eqn. (13) with the classic Michaelis-Menten equation, it is clear that the definition of maximum production rate is the product of the reaction rate and enzyme abundance in the system:

								(B8)
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