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Abstract

The large magnitudes of soil carbon stocks provide potentially large feedbacks to cli-
mate changes, highlighting the need to better understand and represent the environ-
mental sensitivity of soil carbon decomposition. Most soil carbon decomposition mod-
els rely on empirical relationships omitting key biogeochemical mechanisms and their5

response to climate change is highly uncertain. In this study, we developed a multi-layer
mechanistically based soil decomposition model framework for boreal forest ecosys-
tems. A global sensitivity analysis was conducted to identify dominating biogeochemi-
cal processes and to highlight structural limitations. Our results indicate that substrate
availability (limited by soil water diffusion and substrate quality) is likely to be a ma-10

jor constraint on soil decomposition in the fibrous horizon (40–60 % of SOC pool size
variation), while energy limited microbial activity in the amorphous horizon exerts a pre-
dominant control on soil decomposition (> 70 % of SOC pool size variation). Elevated
temperature alleviated the energy constraint of microbial activity most notably in amor-
phous soils; whereas moisture only exhibited a marginal effect on dissolved substrate15

supply and microbial activity. Our study highlights the different decomposition proper-
ties and underlying mechanisms of soil dynamics between fibrous and amorphous soil
horizons. Soil decomposition models should consider explicitly representing different
boreal soil horizons and soil-microbial interactions to better characterize biogeochem-
ical processes in boreal ecosystems. A more comprehensive representation of critical20

biogeochemical mechanisms of soil moisture effects may be required to improve the
performance of the soil model we analyzed in this study.

1 Introduction

Decomposition of the large stocks of soil organic matter in northern high latitude
ecosystems is one of the largest potential feedbacks to climate change (Bond-25

Lamberty and Thomson, 2010; Tarnocai et al., 2009). The already significant and ex-
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pected to be more pronounced warming in the Arctic regions (ACIA, 2004) in conjunc-
tion with the large carbon (C) storage in northern permafrost soils (1672 Pg, 50 % of
total global belowground organic C. Tarnocai et al., 2009) makes the understanding of
how soil dynamics (especially soil respiration) respond to warming climate in boreal re-
gions an increasingly critical issue. Regional and global scale soil C models (e.g. earth5

system models) are often used to project future feedbacks between terrestrial ecosys-
tem C cycle and climate. However, these models often predict a wide range of soil C
response (Todd-Brown et al., 2013) and they omit key biogeochemical mechanisms
based on empirical regression analyses (Conant et al., 2011; Schmidt et al., 2011).
In contrast, recent mechanistically based models that explicitly account for microbial10

biomass pools and enzyme kinetics that catalyze soil C decomposition produce no-
tably different results and a closer match to contemporary observations (Allison et al.,
2010; Wieder et al., 2013).

Some of the issues with empirical modeling of soil C dynamics lie in the site-specific
model parameterizations, which compromise the broad applicability of the model and15

intercomparison between models (Davidson et al., 2012; Knoblauch et al., 2013). The
use of empirical regulating scalars for environmental factors (e.g., temperature and
moisture scalars) makes it difficult to explicitly estimate parameters from experimental
data as parameters of fitted empirical functions have little or no biophysical meaning
and hence introduce uncertainties in model parameterization and extrapolations (Med-20

lyn et al., 2005; Tang and Zhuang, 2008). Although first-order representations of soil
organic C decomposition are found in most biogeochemical models (Todd-Brown et al.,
2013), it is not clear if these models are robust under changing environmental condi-
tions (Lawrence et al., 2009; Schimel et al., 2007; Schmidt et al., 2007; Tucker et al.,
2013). A challenge for empirical soil model is the reconciliation of observed attenuation25

in temperature responses of soil respiration within several years of warming (Luo et al.,
2001; Oechel et al., 2000; Rustad et al., 2001) with the continued decomposition of
soil organic matter in response to temperature that occurs in most ecosystem models
(Cox et al., 2000; Friedlingstein et al., 2006; Lloyd and Taylor, 1994). The control that
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microbial activity and enzymatic kinetics impose on this soil “acclimation” phenomena
suggests the need for explicit representation of microbial physiology, enzymatic activity,
the direct effects of temperature and soil moisture on substrate diffusion and availability
(Davidson et al., 2005; Schimel and Weintraub, 2003), and the extreme heterogeneity
of soil organic C (substrate quality and availability, and temperature sensitivity) (David-5

son and Janssens, 2006; Knorr et al., 2005).
In addition, model robustness and reliability should also be evaluated via a holis-

tic understanding of the system, as demonstrated in the European (EC, 2009) and
American (EPA, 2009) guidelines for best modeling practices. One way to achieve this
goal is via sensitivity analysis. In contrast to parameter adjustments which can often10

compensate structural uncertainties and generate satisfactory model performance that
matches well with observations (Beven, 2006; Bonan et al., 2011; Keenan et al., 2011;
Medlyn et al., 2005), sensitivity analysis helps to identify the assumptions that have
the most important weight in the modeling system. Sensitivity analysis thus helps to
understand the contribution of the various sources of uncertainty to the model output15

and also to quantify the relative importance of the assumptions, to highlight model lim-
itations, and to provide direction for further improvements (Medlyn et al., 2005; Saltelli
and Scott, 1997; Saltelli et al., 2000b). Rigorous sensitivity analysis is an essential in-
gredient of model building and quality assurance (confidence in the model) when the
model includes a large number of parameters and has a relatively high intrinsic com-20

plexity (Cox et al., 2006; Jarvis, 1995; Kimmins et al., 2008; Lawrie and Hearne, 2007;
Manson, 2001).

In this study, we developed a multi-layer mechanistically based soil decomposi-
tion modeling framework that represents soil C dynamics for boreal forest ecosys-
tems. This framework incorporates the Dual Arrhenius and Michaelis–Menten kinetics25

model proposed by Davidson et al. (2012) and the generic microbial-enzyme model
of Allison et al. (2010) to explore the underlying mechanisms of soil respiration. This
model framework is built upon the existing biochemical kinetics theory (Arrhenius and
Michaelis–Menten type of functions), and explicitly represents the direct impact of tem-
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perature and moisture on biochemical reactions and the indirect effects on soil decom-
position via substrate availability, enzyme activities and microbial physiology. Elevated
temperature and altered moisture regimes were simulated to elucidate the impact of
temperature and soil moisture on soil C dynamics. Due to the physically-based frame-
work of most process-based soil decomposition models, we postulate that the sensi-5

tivity embedded in modeling processes should also reflect the sensitivity of the real
processes. Therefore, we conducted a global sensitivity analysis to evaluate model
limitations and gain heuristic understanding of the processes and mechanisms to fur-
ther improve the model. In particular, the following questions are addressed: (1) is this
modeling framework able to reflect the sensitivity of the real processes? and (2) what10

are the dominating parameters and processes in regulating soil C dynamics in fibrous
and amorphous (fibric and humic in Canadian Soil Classifications, or Oi and Oa US
Soil Classifications) organic soil horizons? Specifically, the sensitivity analysis will help
to evaluate (1) how well the model structure represents the real soil decomposition
processes; (2) identify the factors that mostly contribute to the output variability (thus15

the processes where accurate parameterization is critical); and (3) the important inter-
actions among factors in the model.

2 Methods

2.1 Model description

We simulate the soil using general organic horizon types to represent vertical soil het-20

erogeneity in boreal ecosystems (Yi et al., 2009) (Fig. 1). The three soil horizon types
are (1) live moss at the surface (“live”); (2) slightly decomposed, fibrous organic layer
made up of both dead moss and live/dead roots (“fibrous”); and (3) moderately to highly
decomposed amorphous organic material (“amorphous”). Note that in the model, only
heterotrophic respiration (i.e. soil organic C mineralization in fibrous and amorphous25

horizons) is simulated. Autotrophic respiration from live roots is not represented. Fi-
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brous and amorphous horizons are subdivided into a maximum of three layers each
based on the total thickness of a soil organic horizon, similar to the structure of soil
organic horizons in Yi et al. (2010). This architecture of layers is typical for boreal black
spruce (Picea mariana (Mill.) BSP) forests, one of the major boreal forest ecosystem
types in North America (Yarie, 2000). The model simulates the soil C dynamics in5

organic layers up to 1 m in thickness. The thickness of a layer can be modified for ap-
plication in other ecosystems. Temperature and moisture profiles are depth dependent
variables needed for modeling soil C dynamics in each layer (see below). Each layer
of fibrous and amorphous horizons consists of four C pools: soil organic C pool (SOC),
soluble C pool (solubleC), microbial biomass C pool (MIC), and enzyme C pool (ENZ)10

(Fig. 2). Litterfall, as part of C input to the soil in addition to root exudates, is prescribed
as a portion of net primary production (NPP) and contributes to the fibrous and amor-
phous horizon with 70 % and 30 % respectively (follows the fine root distribution of black
spruce in Canadian boreal regions, Steele et al., 1997). Since only C is simulated, the
model implicitly assumes a constant C : Nitrogen (N) ratio for each pool in the system15

and the effect of changes in N limitation is not simulated. C transport and conversion
between pools are simulated with Arrhenius/Michaelis–Menten type equations, except
for enzyme production and turnover, which is modeled as a prescribed portion of the
enzyme pool. The enzymatic decay of SOC where polymer breakdown into monomers,
microbial assimilation of the dissolved organic C, and microbial respiration are simu-20

lated as:

DECAY = V maxSOC×Enz× SOC
kMSOC +SOC

(1)

ASSIM = V maxuptake×MIC×
[Sx]

kM[Sx ] + [Sx]
(2)

CO2 = V maxCO2
×

[Sx]

kM[sx ] + [Sx]
×

[O2]

kMO2
+ [O2]

×MIC (3)
25
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where V maxSOC, V maxuptake, and V maxCO2
are the maximum velocity of the corre-

sponding reaction with a generic formula V maxx = V maxx0
×exp

(
− Eax

R×(temp+273)

)
with

x denoting corresponding process. Ea is the activation energy for the specific reaction
(Jmol−1), R is the ideal gas constant (8.314 Jmol−1 K−1) and temp is the temperature
in Celsius under which reaction occurs. kM (substratecm−3 soil) is the correspond-5

ing Michaelis–Menten constant. The concentration of dissolved organic substrates at
the reactive site of the enzyme ([Sx]) is affected by soil water content, and specifi-
cally by diffusion of substrates through soil water films (Davidson et al., 2012). [Sx]
is calculated from [Sxsoluble] (total soluble C, i.e. SolubleC pool in the model) through
[Sx] = [Sxsoluble]×Dliq ×θ3, where θ is the volumetric water content of the soil and Dliq10

is the diffusion coefficient of the substrate in liquid phase (Davidson et al., 2012).
The soil model runs on an hourly time step driven by soil moisture, soil temperature

and NPP. For detailed model description see Supplement.

2.2 Inverse parameter estimation and initial values

We parameterized the model for a black spruce dominated forest ecosystem underlain15

by permafrost (soil or rock that remains at or below 0 ◦C for 2 or more years at depths
of about 40 cm) in central Alaska (Donnelly Flats, lat 63◦51′ N, long 145◦42′ W) (Manies
et al., 2004). Monthly soil temperature and moisture were recorded at depths of 5, 10,
and 15 cm for soil temperature, and 6 cm for soil moisture (Wickland et al., 2010). The
temperature and moisture profile below the above mentioned depth (up to 70 cm for soil20

temperature, 40 cm for soil moisture) were specified with data from Manies et al. (2003).
Note here that for model sensitivity analysis purpose, we used the same monthly tem-
perature and moisture for all the days within a month, therefore the diurnal variation
of soil C dynamics are not reflected in the modeling results. Although the model does
not explicitly simulate permafrost dynamics, the use of measured soil temperature and25

moisture content implicitly accounts for seasonal freeze/thaw and their physical con-
trols on soil decomposition (e.g., the moisture limitation imposed by permanently frozen
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horizons). However, we acknowledge that the seasonal freeze-thaw processes and per-
mafrost ice may have a great impact on microbial activity (see Sect. 4.2 in Discussion),
which is not represented in the model. Site-level monthly NPP used in the model is
specified based on Fan et al. (2008) who used data from Mack et al. (2009), where the
total annual NPP (aboveground as in stem, branch and moss, plus belowground as in5

root) is 250 gCm−2 yr−1. Average bulk density, C fraction, and horizon thickness at the
black spruce site were determined based on Maines et al. (2004) (Table 1). Initial pool
sizes for each horizon were prescribed accordingly. The initial pool size for MIC, Sol-
ubleC and ENZ are prescribed according to the proportion used in Allison et al. (2010).
Other SOC and microbial activity specific parameters are determined based on other10

studies (Table 2).
We used a global optimization algorithm (Shuffled complex evolution method devel-

oped at the University of Arizona (Duan et al., 1992; Duan et al., 1994)) to constrain
the poorly documented V max-related parameters of fibrous and amorphous horizons
(Vmax_uptake0, Vmax_CO20 and Vmax SOC0). The global optimization method is15

used to seek the minimum of a cost function defined by the sum of squared residuals:

Obj =Wresp ×
k∑

i=1

(Respobs, i −Respsim, i )
2 +Wmic/soc ×

k∑
i=1

(
MICsim, i

SOCsim, i
−0.02

)2

+Wcue ×
k∑

i=1

(CUEsim, i −0.4)2

(4)

where the simulated soil respiration is matched with observation (Respsim, Respobs),
the ratio between MIC pool and SOC pool is assumed to fluctuate around 2 %, and20

simulated carbon use efficiency (CUE, 1−CO2/assimilation, for details see Supple-
ment) should fluctuate around 0.4 (consider potential low quality substrates in boreal
forest soils, Frey et al., 2013; Manzoni et al., 2012; Sinsabaugh et al., 2013). Wresp,

Wmic/soc, and Wcue are the weighting function set to 6.0×106, 1000 and 100, respec-
tively, to reconcile the different magnitudes of metrics with approximately equal weight25
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on MIC/SOC ratio and CUE, and a higher weight on respiration. k is the number
of data pairs available to compare observation and simulation. The chamber mea-
sured monthly soil respiration during 2003 (March–October) at the black spruce site
(Wickland et al., 2010) was used for the inverse modeling. 50 % of the measured total
soil respiration was assumed to be heterotrophic respiration (Schuur and Trumbore,5

2006; Wang et al., 2002). The minimized cost function featured an adjusted R2 of 0.89
and slope of 1.19 (p < 0.05) for simulated and observed heterotrophic soil respiration
(Fig. 3). The inversed parameters together with other parameters (Table 2) were then
used in the global sensitivity analysis.

2.3 Model experimental design10

We performed a global model sensitivity analysis of recorded annual temperature
and moisture conditions at the black spruce site in 2003 on decomposition parame-
ters. Hereafter we refer to 2003 conditions as standard. Permafrost degradation under
warmer climate can lead to complex hydrological consequences with wetter or drier
soil condition depending on local microtopography, hydrology, ice content, vegetation15

and other factors, (Jorgenson and Osterkamp, 2005; O’Donnell et al., 2012). To test
how the sensitivity of decomposition parameters may change under warmer climate
and the complex moisture conditions, we also set up three scenarios for sensitivity
tests: (1) elevated temperature and standard moisture; (2) elevated temperature and
raised moisture; and (3) elevated temperature and lowered moisture. We raised the20

monthly average temperature by 3 ◦C as the scenario of the elevated temperature, and
moisture is varied by 30 % around the standard value to account for the raised and
lowered moisture scenarios. Such temperature and moisture perturbations are based
on observed thermokarst features in interior Alaska (O’Donnell et al., 2012).
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2.4 Model sensitivity analysis

In the sensitivity analysis, we ran the model for 5 yr with the output as time series
of annual pool sizes for SOC, MIC, Soluble C, and ENZ. The pool sizes from each
layer (3 layers total for each horizon) in fibrous and amorphous horizons are summed
up respectively as our output of interest representing the four pools in fibrous and5

amorphous soils. We first implemented a screening test (Sect. 2.4.1) over the total 23
parameters (Table 2) to identify the most important parameters at low computational
cost; a quantitative, explicit evaluation (Sect. 2.4.2) of the importance and interactions
among the selected 9 parameters (Table 3) was then performed to provide detailed
sensitivity analysis over those most influential parameters. The theoretical basis for the10

need of screening test is the Pareto principle (also known as the 80–20 rule), i.e., 80 %
of the variation in model outputs can be attributed to 20 % of all parameters (Saltelli
et al., 2000a). The identification of the few influential parameters and the noninfluen-
tial ones can help reduce the uncertainty and computation load for more explicit and
computational expensive variance-based sensitivity analysis.15

For detailed description of the theoretical background for the sensitivity analysis
methods used in this study can be found in Pappas et al. (2013). Below we briefly
outlined the steps we took.

2.4.1 Elementary effects analysis

The Morris elementary effects (EE) method for global sensitivity analysis is catego-20

rized as a one-step-at-a-time method, meaning that in each model run, only one in-
put parameter is given a new value while other parameters remain the same (Morris,
1991). It is a full factorial sensitivity analysis of all calibrated parameters. An analysis of
variance was used to determine the significance of each parameter on the variance of
model outputs of interest. The Euclidian distance from origin (0,0) of the basic statistics25

(ε =
√
µ∗

EE
2 +σ2

EE, where µ∗
EE is the absolute value of mean µEE and σEE is standard
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deviation of incremental ratios from each model run) is calculated as a robust sensitivity
metric (Campolongo et al., 2007). While the EE method can provide the relative impor-
tance of a given parameter over others in one sensitivity test, its sensitivity measure
cannot be compared between sensitivity tests of different outputs due to its qualitative
characters (e.g., a parameter scoring 0.5 on ENZ sensitivity test is not necessarily less5

influential than the same parameter scoring 5 on SOC sensitivity test), and it cannot
quantify the interactions among parameters (Saltelli et al., 2000b, 2004). The altered
temperature and soil moisture model experiment design were also implemented on the
screening test to elucidate the impact of abiotic factors on soil C dynamics. For each
sensitivity test with certain model output of interest, 100 uniformly distributed parame-10

ter samples were selected from 1000 repetitions of experiment design via space-filling
improvement (Campolongo et al., 2007) and a total of 100× (23+1) = 2400 model
runs were conducted. To maximize the sensitivity difference among parameters, the
parameters were generated with 50 % variation around their original values. 9 out of
23 parameters were selected as more important parameters for the relatively compu-15

tationally expensive variance-based sensitivity test.

2.4.2 Variance-based sensitivity analysis

We applied the Quasi-Monte Carlo estimation of Sobol’s indices (Saltelli et al., 2010;
Sobol et al., 2007) on parameter samples generated from low-discrepancy Sobol se-
quence. The parameters were designed to vary by 20 % around original values to re-20

duce the uncertainty introduced by overestimated parameter range. The Sobol indices
consist of two indices: (1) the first-order sensitivity index (i.e., main effect index) repre-
senting the contribution to the output variance of the main effect (the effect of varying
the parameter Xi alone) of a specific parameter; and (2) the total-order sensitivity index
which accounts for not only first- but also higher-order effects in a sense that it mea-25

sures the contribution to the output variance of the parameter Xi , including all variance
caused by the interactions between Xi and any other parameter/parameters.
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The model was developed in C++ with ordinary differential equation solved using
Runge–Kutta–Fehlberg 4(5) method. A portable implementation of the message pass-
ing interface, MPICH2 (1.4.1p1 with Intel 12.0.084 compiler) was used for parallel com-
puting of parameter sweep to reduce computational cost. The sensitivity analysis was
performed in the R statistical system (http://www.r-project.org). The inverse estimation5

of model parameters was conducted using MATLAB optimization toolbox (Mathworks,
2012a). Any use of trade, firm, or product names is for descriptive purposes only and
does not imply endorsement by the US Government.

3 Results

3.1 Morris elementary effect test10

Fibrous and amorphous horizons are controlled by different parameters, and thus by
different processes. Microbial biomass (MIC) in the fibrous horizon is most sensitive
to parameters associated with solubilization, or the process of degrading SOC to sol-
uble C (Ea_SOC_f and Vmax_SOC0_f, Fig. 4a), likely due to the low water holding
capacity/higher porosity. MIC in the fibrous horizon is also highly sensitive to the activa-15

tion energy of microbial assimilation (Ea_micup) and the external C input from litterfall
(litter_NPPfrac), followed by enzyme kinetics related parameters and the turnover of
dead microbes to the SOC pool (MICtoSOC) (Fig. 4a). MIC in the amorphous horizon
is generally dominated by the same set of parameters controlling fibrous C dynam-
ics, with the exception that microbial assimilation (Ea_micup) exerts a much higher20

control in amorphous soil while solubilization (Ea_SOC_h) is not as influential as in
fibrous soil (Fig. 4a). SOC generally resembled the sensitivity pattern of MIC except
that SOC in the fibrous horizon is more sensitive to the external organic matter input
(Litter_NPPfrac) (Fig. 4b). Soluble C in the fibrous horizon does not show a notably
different response among parameters, while amorphous soil was most evidently re-25

sponsive to microbial assimilation (Ea_micup) followed by the solubilization process
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(Ea_SOC_h) (Fig. 5a). Enzyme pool (ENZ) in general exhibited similar sensitivity pat-
terns with that of MIC and SOC (Fig. 5b). These results indicate that microbial assimi-
lation and substrate availability (solubilization process) are equally important factors for
amorphous soil, while substrate availability superimposed over microbial assimilation
are the most important controls of decomposition in fibrous soil.5

Elevated temperature has overall greater effects on parameter sensitivity than al-
tered moisture schemes and such effects are more pronounced in amorphous soil.
Elevated temperature reduced the sensitivity of activation energy parameters in micro-
bial assimilation (Ea_micup) in both horizons, likely due to alleviated energy limitation
in the microbial activity, while only further alleviated the constrain of substrate supply10

(decreased sensitivity to c_SOC) in amorphous soil MIC and SOC. Temperature and
moisture both have a notable effect on SolubleC and ENZ in amorphous soil. Similar
to MIC and SOC in amorphous soil, elevated temperature alleviated energy limitation
in microbial assimilation resulting in less sensitivity to Ea_micup. Raised soil moisture
content with higher substrate diffusion likely increased the substrate supply (dissolved15

organic C) and thus further weakened the biochemical controls of microbial assimila-
tion. This mechanism was also confirmed as responsible for the reduced sensitivity of
SolubleC and ENZ to Ea_micup as the effects of increased temperature and moisture
were offset by moisture limitation under the lowered moisture scheme (Et and Lm),
rendering an increased sensitivity to activation energy related parameters.20

Through the Morris’ elementary effect analysis, we selected 10 parameters (Table 3)
out of the original 23 parameters for Sobol’ sensitivity test to further investigate their
importance.

3.2 Sobol’ sensitivity test

A sufficiently large sample size was determined by a convergence test of sensitivity25

indices where sample size of 500, 1000, 2000, 4000, and 8000 were tested, respec-
tively. The results showed that a sample size of 2000 produced similar indices to that
of 4000 and 8000 and with narrower standard deviation compared with smaller sample
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sizes (Fig. SI1). We therefore chose sample size of 2000 to conduct the Sobol’ sensi-
tivity test for the 10 parameters selected via the screening test. This corresponded to
2000× (10+2) = 24000 simulations.

3.2.1 Decomposition in current environments

In the fibrous horizon under standard temperature and moisture scenario, about 50–5

90 % of the variability in the pool sizes of MIC, SOC, Soluble C and ENZ can be ex-
plained by the uncertainty of Ea_micup, Ea_SOC_f, MICtoSOC and enzyme turnover
related parameters respectively (Fig. 6b). Slightly less than half of this variability (20–
40 %) is attributed to first-order effects (Fig. 6a) while the rest was due to interac-
tions with other parameters (Fig. 6b). c_SOC and enzyme kinetics related parameters10

(r_EnzProf, r_EnzLoss) also explained about 10–40 % of the variability of four pools
in the fibrous horizon, with the interactive effects mostly exhibited in SOC and ENZ
(first order index less than half of total) (Fig. 6). These interactions indicate a tight cou-
pling between soil C decomposition and microbial extracellular hydrolytic enzymes. In
the amorphous horizon, the majority (> 80 % of total effect) of the variability in each15

pool can be attributed to parameters related to microbial activity and enzyme turnover
(Ea_micup, MICtoSOC, r_EnzProd or r_EnzLoss) (Fig. 6b). Ea_micup, MICtoSOC and
r_death exerted half of their impacts on MIC and SOC via interactions with other param-
eters. Soluble C in amorphous soil was almost exclusively controlled by Ea_micup with
the first order index responsible for about 70 % of the pool size variability (Fig. 6a), while20

interactions with other parameters only added less than 5 % (Fig. 6b), suggesting the
paramount importance of microbial assimilation to the simulated soluble C pool size.
ENZ pool was largely controlled by parameters related to enzyme turnover (r_EnzLoss
and r_EnzProd) and soil enzymatic decay (Ea_SOC_f) with the majority of contribution
coming from interactive effects (first order index less than half of total).25
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3.2.2 Decomposition in altered environments

The general pattern of sensitivity in fibrous and amorphous horizons is similar to that
under the standard environment except for several distinctions in response to altered
temperature and moisture level. MIC and SOC in the fibrous horizon was primarily
controlled by solubilization with high sensitivity to Ea_SOC_f and c_SOC, followed by5

microbial assimilation (Ea_micup) (Fig. 7a and b), while the amorphous horizon was
predominantly regulated by microbial dynamics related processes (Ea_micup, MIC-
toSOC and r_death) (Fig. 7e and f). Temperature lowered the sensitivity of both hori-
zons to activation energy terms but this effect was more notable in amorphous soil.
Elevated temperature greatly reduced the sensitivity to energy threshold of microbial10

assimilation (Ea_micup) in the amorphous horizon by about 20 % (from 0.7 in Fig. 6b
to 0.58 in Fig. 7f Et and STDm), while only about 10 % in the fibrous horizon (from
0.38 in Fig. 6b to 0.34 in Fig. 7b), indicating temperature associated energy limitation
could be a major cause for low microbial activity in amorphous soil. Alleviated energy
limitation likely yield in greater MIC biomass and subsequently raises the sensitivity15

to microbial turnover (r_death, Fig. 7e and f). Altered moisture condition is expected
to affect all 4 pools in the fibrous horizon, but only seems to have a slightly notable
impact on Soluble C while other pools did not show a significant response (Fig. 7c).
In contrast, raised moisture likely alleviated the moisture-constrained substrate supply
in the amorphous horizon and favors microbial growth, the greater MIC biomass re-20

sults in higher sensitivity of parameters associated with processes of microbial activity
(e.g., r_death, MICtoSOC, Fig. 7e and f Et and STDm and Et and Em), while reduced
moisture condition offset the temperature effect and yield in similar sensitivity level with
that under standard environment (Fig. 7e and f Et and Lm). The moisture response
was overall less significant than the temperature effect with only marginal influence on25

parameter sensitivity (Fig. 7).
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4 Discussion

While differences may exist in model conceptualization and the mathematical represen-
tation of specific processes among soil biogeochemical models, our model framework
serves as a good example of mechanistic-based model structure and is likely to be the
direction for future soil model developments with the increasing demand of explicit rep-5

resentation of microbial activity and the use of mechanistic-based parameters that can
be estimated with observations. Therefore, we argue that our findings are not limited
to this proposed modeling framework but also to other mechanistic-based soil biogeo-
chemical models.

4.1 Different dominating process in fibrous and amorphous soils10

Amorphous soil is predominantly controlled by microbial activity (Figs. 4b and 6b),
likely because the temperature induced energy limitation suppressed microbial activity.
Increased moisture can alleviate the constraint to some extent, but microbial processes
are still the primary controlling factors, inferred by the greater response of sensitivity to
elevated temperature than to altered moisture (Fig. 7f). In fibrous soil, which is primarily15

limited by substrate supply and the solubilization process, increased moisture content
does not have a significant effect on decomposition (Fig. 7b). This may partly be ex-
plained by the higher porosity (low water holding capacity) of fibrous soil. However,
moisture effects in this model were only weakly captured in both horizons, indicating
that key moisture control pathways may be missing in the model. For example, studies20

in a temperature forest ecosystem demonstrated that low soil moisture can strongly
limit in-situ enzyme activity in soils, compromising positive effects of warming (Stein-
weg et al., 2012). This moisture effect on enzyme activity was not represented in our
model. The high sensitivity of the fibrous horizon to Ea_SOC_f indicates the enzyme-
accessible substrate quality is a determinant factor of soil C decomposition in fibrous25

soil (Fig. 6b).
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Many microorganisms produce exoenzymes that catalyze the breakdown of com-
plex polymers to usable monomers (Ratledge, 1993). The importance of this enzyme
kinetic process has been identified (Lawrence et al., 2009; Moorhead and Sinsabaugh,
2000) and proposed as a key mechanism for microbial C limitation due to low quality
of soil or plant-derived substrate (Schimel and Weintraub, 2003). The increased sen-5

sitivity of SOC enzymatic parameters under elevated temperature (Figs. 6b and 7b
and f) is in line with the established kinetic theory and with laboratory incubations or
field measurements (Lenton and Huntingford, 2003; Liski et al., 2003; Lloyd and Taylor,
1994; Sanderman et al., 2003), where the larger portion of SOC converted to soluble
form under elevated temperature causes larger variation in the SOC pool. The appar-10

ent limited response of fibrous soil to moisture variation in this study is likely to be
directly attributed to the model structure where SOC decay is not directly regulated by
soil moisture content. Such formulation is based on the concern that exoenzymes are
usually released on or near the reactive site of the enzyme and thus at the surface
of substrate. In reality, reactions can continue even under relatively low soil moisture15

content because of exoenzymes (Lawrence et al., 2009). In contrast to the amorphous
horizon for which external C input does not have a direct impact, the high sensitivity
of fibrous SOC to the litterfall C input (sensitivity measure of SOC to litterfall C input
in Sobol test is small due to smaller parameter range than in screening test) indicates
the importance of site productivity (e.g., leaf area index) to fibrous decomposition (see20

a modeling experiment in Reichstein et al., 2003).
Our model sensitivity results suggest that while fibrous soil is dominated by the ex-

tracellular enzyme catalyzed SOC decomposition, the microbial biomass’ ability to use
the breakdown products (microbial assimilation) appear to be the major controlling
process in deeper amorphous horizons. Note here that the intrinsic microbial assimi-25

lation potential is prescribed to be the same in the two horizons (same Ea_micup). As
the polymer breakdown and microbial assimilation of breakdown products can be dis-
connected (Schimel and Weintraub, 2003), such apparent sensitivity of the metabolic
status of microbial community may mask the control of SOC enzymatic decay process
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and substrate availability. It suggests that despite the recalcitrant SOC (as prescribed
in the parameters for amorphous soils), substrate supply is not the predominate factor
limiting decomposition as in contrast with the fibrous horizon, but rather the imposed
temperature and moisture limitation on microbial and enzyme activity and the subse-
quent reduced microbial population size and metabolic activities. Our results provide5

a mechanistic explanation that agrees favorably with the molecular study of permafrost
soils in Alaska, which concludes that permafrost soils are likely to have high inherent
decomposability (which is prescribed as recalcitrant in the model), but low microbial
abundances and activities are still the major limitations on decomposition rates (Wal-
drop et al., 2009). In addition to the low temperature sensitivity of microbial-related10

parameters, as also suggested by Waldrop et al. (2009), our sensitivity analysis identi-
fies the high sensitivity of SOC decomposition to moisture conditions via the control on
substrate availability (Waldrop and Harden, 2008). As microbial assimilation of DOC
is directly regulated by the soil moisture content, reduced soil moisture could aggra-
vate the limitation, making SOC decomposition even more sensitive to the microbial15

metabolism associated parameter (Ea_micup). Given the identified importance of mi-
crobial activities in amorphous soils and permafrost, changes in microbial composition
and moisture condition may have a significant impact on soil C dynamics in boreal re-
gions. As thawing permafrost alleviates diffusion constrains on substrate and hence
enzyme activity, which concurrently enables growth of microbial biomass, permafrost20

degradation may generate greater SOC losses to the atmosphere (Schuur et al., 2008;
Schuur et al., 2009). The apparent response of microbial activity to moisture under
thawing permafrost may also relieve the nutrient constraints on microbial assimilation,
which although is not discussed in this study, may have implications for greater SOC
loss via enhanced enzymatic decay (Mack et al., 2004; Schimel and Weintraub, 2003).25

Our modeling framework demonstrates the importance of microbial activity in amor-
phous soils/permafrost, and highlights the insufficiency of representing soil decompo-
sition based solely on temperature and soil moisture content in most empirical models.
This mechanism is especially crucial in simulating soil C dynamics in boreal ecosys-
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tems where fire is a key component of ecosystem dynamics (Balshi et al., 2007, 2009;
Kasischke and Turetsky, 2006), as postfire reduction in microbial population size may
have reduced the potential of soil heterotrophs to decompose organic matter despite
the warmer soil temperature in burned sites (Waldrop and Harden, 2008). The appar-
ent differences in sensitivity patterns between fibrous and amorphous soils should be5

explicitly represented in future modeling practices as soil organic matter is composed
of different substrate pools exhibiting different sensitivities to environmental conditions
(Conant et al., 2011; Hartley et al., 2007; Kirschbaum, 2004; Knorr et al., 2005). Such
differentiation of soil substrate pools is critical in understanding long term soil C dynam-
ics, as soil components featured in long mean residence time (decades to centuries)10

comprise the majority of total soil C stocks (Conant et al., 2011).

4.2 Limitations and implications

Our modeling framework accounts for the microbial activity and the enzymatic dynam-
ics between SOC decomposition and the microbial physiology. However, it does not en-
compass several critical microbial physiological traits which may influence ecosystem-15

level C balance consequences. The freeze-thaw cycles that often occur in high-latitude
permafrost regions may remobilize previously frozen DOC stocks and induce a pulse in
microbial respiration (Hicks Pries et al., 2013; Schimel and Clein, 1996; Schuur et al.,
2009; Vonk et al., 2013), reduce microbial biomass (Christiansen et al., 2012), and
may also alter N mineralization which subsequently will lead to consequences in nutri-20

ent availability (Keuper et al., 2012; Schimel et al., 2007). Microbial community com-
position changes that may be induced by disturbance such as warming, fire, and soil
freeze-thaw process may also result in impacts on soil C dynamics (Billings and Bal-
lantyne, 2013). For example, changes in relative abundances of microbial functional
groups may induce varying ability to compete for SOC and thus likely varying mass25

specific respiration rate, eventually lead to variation in soil respiration (Eliasson et al.,
2005; Luo et al., 2001; Oechel et al., 2000). Shifts in microbial community structure
could also alter the temperature sensitivity of decomposition (Bradford et al., 2008;
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Bradford et al., 2009). These complex feedback mechanisms are not included in cur-
rent model due to lack of sufficient theoretical understanding. Our results only weakly
captured the effects of soil moisture on soil C mineralization as a driving variable, which
can directly compromise the model’s ability to reproduce spatial patterns in soil C dy-
namics. As soil moisture has been shown to be an important control on heterotrophic5

respiration at both regional and local scales (Brito et al., 2013; le Roux et al., 2013;
Suseela et al., 2012). Incorporation of currently omitted processes and the improve-
ment of mathematical representation in soil decomposition models may be needed.

Despite the above mentioned limitations of our model structure, the conclusions we
draw using this simplified conceptual model of soil C dynamics and the implications10

obtained from sensitivity analysis are still robust. This study demonstrates how global
sensitivity analysis can be used as a powerful tool to identify principal mechanisms of
soil C dynamics under various soil and environmental conditions and to highlight criti-
cal aspects of model structure and uncertainty. The sensitivity results are of particular
implication for future ecosystem specific model parameterization as it identifies criti-15

cal parameters whose uncertainty may have a large impact on model outputs (Cacuci
et al., 2005). It is worthy to note here that for model applications in ecosystems other
than the one presented in this study, differences in parameter ranges could result in
different sensitivity results (Wallach and Genard, 1998). For example, we might expect
moisture to have a less important role in SOC pool size variations in mesic systems20

than in arid ecosystems. Wallach and Genard (1998) suggested global sensitivity anal-
ysis to have a detailed coverage of parameter space over the entire spectrum of plausi-
ble values. In this study, as most of the parameters (Table 2) are not well-documented
at the site level or biome/plant-functional-type level, we therefore chose to approximate
a plausible range based on current knowledge. For future model applications, detailed25

optimization may be desired for accurately estimating model parameters from obser-
vations.
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5 Conclusion

In this study, we presented a mechanistically based soil C dynamic model and evalu-
ated the temperature and moisture effects on C stocks in fibrous and amorphous soil
horizons via a global sensitivity analysis. Our results showed that substrate availability,
limited by both soil water diffusion and substrate quality, is a major constraint on SOC5

decomposition in the fibrous horizon, while energy limitation induced microbial activity
is a primary control in amorphous soils. The tight coupling between soil organic mat-
ter mineralization and microbial extracellular hydrolytic enzymes is a critical process
in both horizons. Elevated temperature alleviated the energy constraint of microbial
activity most notable in amorphous soils; whereas moisture only exhibited a marginal10

effect on dissolved substrate supply and microbial activity. The apparent differences in
sensitivity patterns between fibrous and amorphous soils in our results suggest that
soils with different decomposition properties are controlled by different dominating pro-
cesses. Soil decomposition models should consider explicitly representing different bo-
real soil horizons and soil-microbial interactions to better characterize biogeochemical15

processes in boreal ecosystems. A more comprehensive representation of critical bio-
geochemical mechanisms of soil moisture effects (e.g. plant root-soil interactions) may
be required to improve the performance of the soil model we analyzed in this study.

Supplementary material related to this article is available online at
http://www.biogeosciences-discuss.net/11/2227/2014/20

bgd-11-2227-2014-supplement.pdf.

Acknowledgements. We acknowledge with gratitude the intellectual advice from Steven D. Al-
lison, Eric A. Davidson, and Yingping Wang on various issues related to the study. This re-
search is supported with a NSF project (DEB-0919331), the NSF Carbon and Water in the
Earth Program (NSF-0630319), the NASA Land Use and Land Cover Change program (NASA-25

NNX09AI26G), Department of Energy (DE-FG02-08ER64599), and the NSF Division of Infor-

2248



D
iscussion

P
a

per
|

D
iscussion

P
a

per
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

mation & Intelligent Systems (NSF-1028291). Support was also provided by Bonanza Creek
Long-Term Ecological Research program (funded jointly by NSF the USDA Forest Service).

References

ACIA: Impacts of a Warming Arctic-Arctic Climate Impact Assessment, Cambridge University
Press, Cambridge, UK, 144 pp., 2004.5

Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon response to warming depen-
dent on microbial physiology, Nat. Geosci., 3, 336–340, 2010.

Balshi, M. S., McGuire, A. D., Duffy, P., Flannigan, M., Kicklighter, D. W., and Melillo, J.: Vulner-
ability of carbon storage in North American boreal forests to wildfires during the 21st century,
Glob. Change Biol., 15, 1491–1510, 2009.10

Balshi, M. S., McGuire, A. D., Zhuang, Q., Melillo, J., Kicklighter, D. W., Kasischke, E., Wirth, C.,
Flannigan, M., Harden, J., Clein, J. S., Burnside, T. J., McAllister, J., Kurz, W. A., Apps, M.,
and Shvidenko, A.: The role of historical fire disturbance in the carbon dynamics of the
pan-boreal region: a process-based analysis, J. Geophys. Res.-Biogeo., 112, G02029,
doi:10.1029/2006JG000380, 2007.15

Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320, 18–36, 2006.
Billings, S. A. and Ballantyne, F.: How interactions between microbial resource demands, soil

organic matter stoichiometry, and substrate reactivity determine the direction and magnitude
of soil respiratory responses to warming, Glob. Change Biol., 19, 90–102, 2013.

Bonan, G. B., Lawrence, P. J., Oleson, K. W., Levis, S., Jung, M., Reichstein, M.,20

Lawrence, D. M., and Swenson, S. C.: Improving canopy processes in the Community Land
Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data, J.
Geophys. Res.-Biogeo., 116, G02014, doi:10.1029/2010JG001593, 2011.

Bond-Lamberty, B. and Thomson, A.: Temperature-associated increases in the global soil res-
piration record, Nature, 464, 579–582, 2010.25

Bradford, M. A., Davies, C. A., Frey, S. D., Maddox, T. R., Melillo, J. M., Mohan, J. E.,
Reynolds, J. F., Treseder, K. K., and Wallenstein, M. D.: Thermal adaptation of soil micro-
bial respiration to elevated temperature, Ecol. Lett., 11, 1316–1327, 2008.

Bradford, M. A., Watts, B. W., and Davies, C. A.: Thermal adaptation of heterotrophic soil res-
piration in laboratory microcosms, Glob. Change Biol., 16, 1576–1588, 2009.30

2249

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Brito, P., Trujillo, J. L., Morales, D., Jiménez, M. S., and Wieser, G.: Soil moisture overshadows
temperature control over soil CO2 efflux in a Pinus canariensis forest at treeline in Tenerife,
Canary Islands, Acta Oecol., 48, 1–6, 2013.

Cacuci, D. G., Ionescu-Bujor, M., and Navon, I. M.: Sensitivity and uncertainty analysis, in:
Applications to Large-Scale Systems, vol. II, CRC Press, 2005.5

Campolongo, F., Cariboni, J., and Saltelli, A.: An effective screening design for sensitivity anal-
ysis of large models, Environ. Modell. Softw., 22, 1509–1518, 2007.

Christiansen, C. T., Svendsen, S. H., Schmidt, N. M., and Michelsen, A.: High arctic heath soil
respiration and biogeochemical dynamics during summer and autumn freeze-in – effects of
long-term enhanced water and nutrient supply, Glob. Change Biol., 18, 3224–3236, 2012.10

Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E.,
Evans, S. E., Frey, S. D., Giardina, C. P., Hopkins, F. M., Hyvönen, R., Kirschbaum, M. U. F.,
Lavallee, J. M., Leifeld, J., Parton, W. J., Megan Steinweg, J., Wallenstein, M. D., Martin Wet-
terstedt, J. Å., and Bradford, M. A.: Temperature and soil organic matter decomposition rates
– synthesis of current knowledge and a way forward, Glob. Change Biol., 17, 3392–3404,15

2011.
Cox, G., Gibbons, J., Wood, A., Craigon, J., Ramsden, S., and Crout, N.: Towards the system-

atic simplification of mechanistic models, Ecol. Model., 198, 240–246, 2006.
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.: Acceleration of global

warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 408, 184–187,20

2000.
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon decomposition and

feedbacks to climate change, Nature, 440, 165–173, 2006.
Davidson, E. A., Janssens, I. A., and Luo, Y.: On the variability of respiration in terrestrial

ecosystems: moving beyond Q10, Glob. Change Biol., 12, 154–164, 2005.25

Davidson, E. A., Samanta, S., Caramori, S. S., and Savage, K.: The Dual Arrhenius and
Michaelis–Menten kinetics model for decomposition of soil organic matter at hourly to sea-
sonal time scales, Glob. Change Biol., 18, 371–384, 2012.

Duan, Q., Sorooshian, S., and Gupta, V.: Effective and efficient global optimization for concep-
tual rainfall–runoff models, Water Resour. Res., 28, 1015–1031, 1992.30

Duan, Q., Sorooshian, S., and Gupta, V. K.: Optimal use of the SCE-UA global optimization
method for calibrating watershed models, J. Hydrol., 158, 265–284, 1994.

EC: Impact assessment guidlines, Technical Report, 92, SEC, 2009.

2250



D
iscussion

P
a

per
|

D
iscussion

P
a

per
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Eliasson, P. E., McMurtrie, R. E., Pepper, D. A., Strömgren, M., Linder, S., and Ågren, G. I.: The
response of heterotrophic CO2 flux to soil warming, Glob. Change Biol., 11, 167–181, 2005.

EPA: Guidance on the Development, Evaluation, and Application of Environmental Models,
Office of the Science Advisor, Council for Regulatory Environmental Modeling, 2009.

Frey, S. D., Lee, J., Melillo, J. M., and Six, J.: The temperature response of soil microbial effi-5

ciency and its feedback to climate, Nature Clim. Change, 3, 395–398, 2013.
Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Von Bloh, W., Brovkin, V., Cadule, P., Doney, S.,

Eby, M., and Fung, I.: Climate–carbon cycle feedback analysis: results from the C4MIP model
intercomparison, J. Climate, 19, 3337–3353, 2006.

Hartley, I. P., Heinemeyer, A., and Ineson, P.: Effects of three years of soil warming and shading10

on the rate of soil respiration: substrate availability and not thermal acclimation mediates
observed response, Glob. Change Biol., 13, 1761–1770, 2007.

Hicks Pries, C. E., Schuur, E. A. G., and Crummer, K. G.: Thawing permafrost increases old
soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and
δ14C, Glob. Change Biol., 19, 649–661, 2013.15

Jarvis, P.: Scaling processes and problems, Plant Cell Environ., 18, 1079–1089, 1995.
Jorgenson, M. and Osterkamp, T.: Response of boreal ecosystems to varying modes of per-

mafrost degradation, Can. J. Forest Res., 35, 2100–2111, 2005.
Kasischke, E. S. and Turetsky, M. R.: Recent changes in the fire regime across the North Amer-

ican boreal region – spatial and temporal patterns of burning across Canada and Alaska,20

Geophys. Res. Lett., 33, L09703, doi:10.1029/2006GL025677, 2006.
Keenan, T. F., Carbone, M. S., Reichstein, M., and Richardson, A. D.: The model–data fusion

pitfall: assuming certainty in an uncertain world, Oecologia, 167, 587–597, 2011.
Keuper, F., van Bodegom, P. M., Dorrepaal, E., Weedon, J. T., van Hal, J., van

Logtestijn, R. S. P., and Aerts, R.: A frozen feast: thawing permafrost increases plant-25

available nitrogen in subarctic peatlands, Glob. Change Biol., 18, 1998–2007, 2012.
Kimmins, J. P., Blanco, J. A., Seely, B., Welham, C., and Scoullar, K.: Complexity in modelling

forest ecosystems: how much is enough?, Forest Ecol. Manag., 256, 1646–1658, 2008.
Kirschbaum, M. U. F.: Soil respiration under prolonged soil warming: are rate reductions caused

by acclimation or substrate loss?, Glob. Change Biol., 10, 1870–1877, 2004.30

Knoblauch, C., Beer, C., Sosnin, A., Wagner, D., and Pfeiffer, E.-M.: Predicting long-term carbon
mineralization and trace gas production from thawing permafrost of Northeast Siberia, Glob.
Change Biol., 19, 1160–1172, 2013.

2251

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Knorr, W., Prentice, I. C., House, J. I., and Holland, E. A.: Long-term sensitivity of soil carbon
turnover to warming, Nature, 433, 298–301, 2005.

Lawrence, C. R., Neff, J. C., and Schimel, J. P.: Does adding microbial mechanisms of decom-
position improve soil organic matter models? A comparison of four models using data from
a pulsed rewetting experiment, Soil Biol. Biochem., 41, 1923–1934, 2009.5

Lawrie, J. and Hearne, J.: Reducing model complexity via output sensitivity, Ecol. Model., 207,
137–144, 2007.

le Roux, P. C., Aalto, J., and Luoto, M.: Soil moisture’s underestimated role in climate change
impact modelling in low-energy systems, Glob. Change Biol., 19, 2965–2975, 2013.

Lenton, T. M. and Huntingford, C.: Global terrestrial carbon storage and uncertainties in its10

temperature sensitivity examined with a simple model, Glob. Change Biol., 9, 1333–1352,
2003.

Liski, J., Nissinen, A., Erhard, M., and Taskinen, O.: Climatic effects on litter decomposition
from arctic tundra to tropical rainforest, Glob. Change Biol., 9, 575–584, 2003.

Lloyd, J. and Taylor, J.: On the temperature dependence of soil respiration, Funct. Ecol., 8,15

315–323, 1994.
Luo, Y., Wan, S., Hui, D., and Wallace, L. L.: Acclimatization of soil respiration to warming in

a tall grass prairie, Nature, 413, 622–625, 2001.
Mack, M. C., Schuur, E. A. G., Bret-Harte, M. S., Shaver, G. R., and Chapin, F. S.: Ecosystem

carbon storage in arctic tundra reduced by long-term nutrient fertilization, Nature, 431, 440–20

443, 2004.
Manies, K. L., Harden, J. W., Yoshikawa, K., and Randerson, J.: The effect of soil drainage on

fire and carbon cycling in central Alaska, US Geological Survey Professional Paper, 1678,
145–152, 2003.

Manies, K. L., Harden, J. W., Silva, S. R., Briggs, P. H., and Schmid, B.: Soil data from Picea25

mariana stands near Delta Junction, Alaska of different ages and soil drainage type, US
Geological Survey, 2004.

Manson, S. M.: Simplifying complexity: a review of complexity theory, Geoforum, 32, 405–414,
2001.

Manzoni, S., Taylor, P., Richter, A., Porporato, A., and Ågren, G. I.: Environmental and stoichio-30

metric controls on microbial carbon use efficiency in soils, New Phytol., 196, 79–91, 2012.

2252



D
iscussion

P
a

per
|

D
iscussion

P
a

per
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Medlyn, B. E., Robinson, A. P., Clement, R., and McMurtrie, R. E.: On the validation of models
of forest CO2 exchange using eddy covariance data: some perils and pitfalls, Tree Physiol.,
25, 839–857, 2005.

Moorhead, D. L. and Sinsabaugh, R. L.: Simulated patterns of litter decay predict patterns of
extracellular enzyme activities, Appl. Soil Ecol., 14, 71–79, 2000.5

Morris, M. D.: Factorial sampling plans for preliminary computational experiments, Technomet-
rics, 33, 161–174, 1991.

O’Donnell, J. A., Jorgenson, M. T., Harden, J. W., McGuire, A. D., Kanevskiy, M. Z., and Wick-
land, K. P.: The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics
in an Alaskan peatland, Ecosystems, 15, 213–229, 2012.10

Oechel, W. C., Vourlitis, G. L., Hastings, S. J., Zulueta, R. C., Hinzman, L., and Kane, D.:
Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate
warming, Nature, 406, 978–981, 2000.

Pappas, C., Fatichi, S., Leuzinger, S., Wolf, A., and Burlando, P.: Sensitivity analysis of
a process-based ecosystem model: pinpointing parameterization and structural issues, J.15

Geophys. Res.-Biogeo., 118, 505–528, 2013.
Ratledge, C.: Biochemistry of Microbial Degradation, Kluwer Academic Publishers, 1993.
Reichstein, M., Rey, A., Freibauer, A., Tenhunen, J., Valentini, R., Banza, J., Casals, P.,

Cheng, Y., Grünzweig, J. M., and Irvine, J.: Modeling temporal and large scale spatial vari-
ability of soil respiration from soil water availability, temperature and vegetation productivity20

indices, Global Biogeochem. Cy., 17, doi:10.1029/2003GB002035, 2003.
Rustad, L., Campbell, J., Marion, G., Norby, R., Mitchell, M., Hartley, A., Cornelissen, J., and

Gurevitch, J.: A meta-analysis of the response of soil respiration, net nitrogen mineralization,
and aboveground plant growth to experimental ecosystem warming, Oecologia, 126, 543–
562, 2001.25

Saltelli, A. and Scott, M.: Guest editorial: the role of sensitivity analysis in the corroboration of
models and itslink to model structural and parametric uncertainty, Reliab. Eng. Syst. Safe.,
57, 1–4, 1997.

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., and Tarantola, S.: Variance based
sensitivity analysis of model output. Design and estimator for the total sensitivity index, Com-30

put. Phys. Commun., 181, 259–270, 2010.
Saltelli, A., Chan, K., and Scott, E. M.: Sensitivity Analysis, Wiley New York, New York, 2000a.

2253

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Saltelli, A., Tarantola, S., and Campolongo, F.: Sensitivity Analysis as an Ingredient of Modeling,
Stat. Sci., 15, 377–395, 2000b.

Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M.: Sensitivity Analysis in Practice:
a Guide to Assessing Scientific Models, Wiley, New York, 2004.

Sanderman, J., Amundson, R. G., and Baldocchi, D. D.: Application of eddy covariance mea-5

surements to the temperature dependence of soil organic matter mean residence time,
Global Biogeochem. Cy., 17, doi:10.1029/2001GB001833, 2003.

Schimel, J. P. and Clein, J. S.: Microbial response to freeze–thaw cycles in tundra and taiga
soils, Soil Biol. Biochem., 28, 1061–1066, 1996.

Schimel, J. P. and Weintraub, M. N.: The implications of exoenzyme activity on microbial carbon10

and nitrogen limitation in soil: a theoretical model, Soil Biol. Biochem., 35, 549–563, 2003.
Schimel, J. P., Balser, T. C., and Wallenstein, M.: Microbial stress-response physiology and its

implications for ecosystem function, Ecology, 88, 1386–1394, 2007.
Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kle-

ber, M., Kögel-Knabner, I., Lehmann, J., and Manning, D. A.: Persistence of soil organic15

matter as an ecosystem property, Nature, 478, 49–56, 2011.
Schmidt, S., Costello, E., Nemergut, D., Cleveland, C., Reed, S., Weintraub, M., Meyer, A., and

Martin, A.: Biogeochemical consequences of rapid microbial turnover and seasonal succes-
sion in soil, Ecology, 88, 1379–1385, 2007.

Schuur, E. A. G. and Trumbore, S. E.: Partitioning sources of soil respiration in boreal black20

spruce forest using radiocarbon, Glob. Change Biol., 12, 165–176, 2006.
Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B., Goryachkin, S. V.,

Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H., Mazhitova, G., Nelson, F. E., Rinke, A., Ro-
manovsky, V. E., Shiklomanov, N., Tarnocai, C., Venevsky, S., Vogel, J. G., and Zimov, S. A.:
Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle,25

Bioscience, 58, 701–714, 2008.
Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., and Osterkamp, T. E.:

The effect of permafrost thaw on old carbon release and net carbon exchange from tundra,
Nature, 459, 556–559, 2009.

Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L., and Richter, A.: Carbon use efficiency of30

microbial communities: stoichiometry, methodology and modelling, Ecol. Lett., 16, 930–939,
2013.

2254



D
iscussion

P
a

per
|

D
iscussion

P
a

per
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Sobol, I., Tarantola, S., Gatelli, D., Kucherenko, S., and Mauntz, W.: Estimating the approxi-
mation error when fixing unessential factors in global sensitivity analysis, Reliab. Eng. Syst.
Safe., 92, 957–960, 2007.

Steele, S. J., Gower, S. T., Vogel, J. G., and Norman, J. M.: Root mass, net primary production
and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba,5

Canada, Tree Physiol., 17, 577–587, 1997.
Steinweg, J. M., Dukes, J. S., and Wallenstein, M. D.: Modeling the effects of temperature and

moisture on soil enzyme activity: linking laboratory assays to continuous field data, Soil Biol.
Biochem., 55, 85–92, 2012.

Suseela, V., Conant, R. T., Wallenstein, M. D., and Dukes, J. S.: Effects of soil moisture on10

the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate
change experiment, Glob. Change Biol., 18, 336–348, 2012.

Tang, J. and Zhuang, Q.: Equifinality in parameterization of process-based biogeochemistry
models: a significant uncertainty source to the estimation of regional carbon dynamics, J.
Geophys. Res., 113, G04010, doi:10.1029/2008JG000757, 2008.15

Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., and Zimov, S.: Soil
organic carbon pools in the northern circumpolar permafrost region, Global Biogeochem.
Cy., 23, GB2023, doi:10.1029/2008GB003327, 2009.

Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C.,
Schuur, E. A. G., and Allison, S. D.: Causes of variation in soil carbon simulations from20

CMIP5 Earth system models and comparison with observations, Biogeosciences, 10, 1717–
1736, doi:10.5194/bg-10-1717-2013, 2013.

Tucker, C. L., Bell, J., Pendall, E., and Ogle, K.: Does declining carbon-use efficiency explain
thermal acclimation of soil respiration with warming?, Glob. Change Biol., 19, 252–263,
2013.25

Vonk, J. E., Mann, P. J., Davydov, S., Davydova, A., Spencer, R. G. M., Schade, J.,
Sobczak, W. V., Zimov, N., Zimov, S., Bulygina, E., Eglinton, T. I., and Holmes, R. M.: High
biolability of ancient permafrost carbon upon thaw, Geophys. Res. Lett., 40, 2689–2693,
2013.

Waldrop, M. P. and Harden, J. W.: Interactive effects of wildfire and permafrost on microbial30

communities and soil processes in an Alaskan black spruce forest, Glob. Change Biol., 14,
2591–2602, 2008.

2255

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Waldrop, M. P., Wickland, K. P., White III, R., Berhe, A. A., Harden, J. W., and Ro-
manovsky, V. E.: Molecular investigations into a globally important carbon pool: permafrost
protected carbon in Alaskan soils, Glob. Change Biol., 16, 2543–2554, 2009.

Wallach, D. and Genard, M.: Effect of uncertainty in input and parameter values on model
prediction error, Ecol. Model., 105, 337–345, 1998.5

Wang, C., Bond-Lamberty, B., and Gower, S. T.: Soil surface CO2 flux in a boreal black spruce
fire chronosequence, J. Geophys. Res.-Atmos., 107, WFX 5-1–WFX 5–8, 2002.

Wickland, K. P. and Neff, J. C.: Decomposition of soil organic matter from boreal black spruce
forest: environmental and chemical controls, Biogeochemistry, 87, 29–47, 2008.

Wickland, K. P., Neff, J. C., and Harden, J. W.: The role of soil drainage class in carbon dioxide10

exchange and decomposition in boreal black spruce (Picea mariana) forest stands, Can. J.
Forest Res., 40, 2123–2134, 2010.

Wieder, W. R., Bonan, G. B., and Allison, S. D.: Global soil carbon projections are improved by
modelling microbial processes, Nature Clim. Change, 3, 909–912, 2013.

Yarie, J.: Boreal forest ecosystem dynamics I. A new spatial model, Can. J. Forest Res., 30,15

998–1009, 2000.
Yi, S., Manies, K., Harden, J., and McGuire, A. D.: Characteristics of organic soil in black spruce

forests: Implications for the application of land surface and ecosystem models in cold regions,
Geophys. Res. Lett., 36, L05501, doi:10.1029/2008GL037014, 2009.

Yi, S., McGuire, A. D., Kasischke, E., Harden, J., Manies, K., Mack, M., and Turetsky, M.: A dy-20

namic organic soil biogeochemical model for simulating the effects of wildfire on soil envi-
ronmental conditions and carbon dynamics of black spruce forests, J. Geophys. Res., 115,
G04015, doi:10.1029/2010JG001302, 2010.

2256



D
iscussion

P
a

per
|

D
iscussion

P
a

per
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 1. Bulk density, carbon fraction, horizon thickness for different organic horizon types in
soil profiles of black spruce stand in this study.

Fibrous Amorphous References

Bulk density (gcm−3)
Mean 0.06 0.28

(Manies et al., 2004)
STD (n) 0.049 (5) 0.097 (4)

Carbon fraction (%)
Mean 41.12 21.13

(Manies et al., 2004)
STD (n) 2.24 (5) 6.77 (4)

Particle density (gcm−3)
Mean 1.33 1.33

(Wickland and Neff, 2008)
STD (n) – –

Horizon thickness (cm)
Mean 12 19.25

(Manies et al., 2004)
STD (n) 3.33 (4) 3.4 (4)
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Table 2. Parameters used in the model. Inversed estimates of specific parameters and param-
eter range used are listed.

Process Parameter Unit Initial Value Description Parameter range References

Assimilation Ea_micup Jmol−1 47 000 Soluble and diffused Sx uptake by microbial – Allison et al. (2010)
Vmax_uptake0_f mgSx cm−3 soil (mg

biomass cm−3 soil)−1 h−1
9.97e6 Maximum microbial uptake rate in fibrous horizon [1.0e4, 1.0e8] –

Vmax_uptake0_h mgSx cm−3 soil (mg
biomass cm−3 soil)−1 h−1

5.26e6 Maximum microbial uptake rate in amorphous
horizon

[1.0e4, 1.0e8] –

c_uptake mgSx cm−3 soil 0.1 Temperature regulator of MM for Sx uptake by mi-
crobes (kM_uptake)

– Allison et al. (2010)

m_uptake mgSx cm−3 soil ◦C−1 0.01 Temperature regulator of MM for Sx uptake by mi-
crobes (kM_uptake)

– Allison et al. (2010)

Ea_Sx_f Jmol−1 48 092 Activation energy of microbes assimilating Sx to
CO2 in fibrous horizon

– Knorr et al. (2005)

Ea_Sx_h Jmol−1 64 334 Activation energy of microbes assimilating Sx to
CO2 in amorphous horizon

– Knorr et al. (2005)

c_Sx∗ mg assimilated Sx cm−3

soil
0.1 Temperature regulator of MM for microbial assimi-

lation of Sx (kM_Sx)
– Allison et al. (2010)

m_Sx∗ mg assimilated Sx cm−3

soil ◦C−1
0.01 Temperature regulator of MM for microbial assimi-

lation of Sx (kM_Sx)
– Allison et al. (2010)

Decay Ea_SOC_f Jmol−1 41 000 Activation energy of decomposing SOC to soluble
C in fibrous horizon

– Modified from
Davidson et al. (2012)

Ea_SOC_h Jmol−1 58 000 Activation energy of decomposing SOC to soluble
C in amorphous horizon

– Modified from
Davidson et al. (2012)

Vmax_SOC0_f mg decomposed SOC cm−3

soil (mgEnzcm−3 soil)−1 h−1
9.17e7 Maximum rate of converting SOC to soluble C in

fibrous horizon
[1.0e5, 1.0e8] –

Vmax_SOC0_h mg decomposed SOC cm−3

soil (mgEnzcm−3 soil)−1 h−1
3.76e7 Maximum rate of converting SOC to soluble C in

amorphous horizon
[1.0e5, 1.0e8] –

c_SOC mgSOCcm−3 soil 400 Temperature regulator of MM for enzymatic decay
of SOC to soluble C (kM_SOC)

– Allison et al. (2010)

m_SOC mgSOCcm−3 soil ◦C−1 5 Temperature regulator of MM for enzymatic decay
of SOC to soluble C (kM_SOC)

– Allison et al. (2010)

kM_O2 cm3O2 cm−3 soil 0.121 Michaelis–Menten constant (MM) for O2 (at mean
value of volumetric soil moisture)

– Davidson et al. (2012)

CO2 production Vmax_CO20_f mg respired Sx cm−3 soil h−1 1.9e7 Maximum microbial respiration rate in fibrous hori-
zon

[1.0e6, 1.0e8] –

Vmax_CO20_h mg respired Sx cm−3 soil h−1 6.4e7 Maximum microbial respiration rate in amorphous
horizon

[1.0e6, 1.0e8] –

c_Sx∗ mg assimilated Sx cm−3 soil 0.1 Temperature regulator of MM for microbial respira-
tion of assimilated Sx (kM_Sx)

– Allison et al. (2010)

m_Sx∗ mg assimilated Sx cm−3

soil ◦C−1
0.01 Temperature regulator of MM for microbial respira-

tion of assimilated Sx (kM_Sx)
– Allison et al. (2010)

C input Litter_NPPfrac % 30 Fraction of NPP allocated to litterfall – Fan et al. (2008)

MIC turnover MICtoSOC % 50 Partition coefficient for dead microbial biomass be-
tween the SOC and Soluble C pool

– Allison et al. (2010)

r_death %h−1 0.02 Microbial death fraction – Allison et al. (2010)

ENZ turnover r_EnzProd %h−1 5.0e-4 Enzyme production fraction – Allison et al. (2010)
r_EnzLoss %h−1 0.1 Enzyme loss fraction – Allison et al. (2010)

∗ c_Sx and m_Sx are used in both assimilation and CO2 production calculations.
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Table 3. Parameters selected based on the Morris elementary effect test and the corresponding
processes.

Simulated Processes Parameters

Microbial assimilation Ea_micup
SOC enzymatic decay to soluble C Ea_SOC_f
SOC enzymatic decay to soluble C Ea_SOC_h
MIC turnover MICtoSOC
External SOC input Litter_NPPfrac
SOC enzymatic decay to soluble C Vmax_SOC0_f
SOC enzymatic decay to soluble C c_SOC
MIC mortality and turnover r_death
ENZ turnover r_EnzProd
ENZ turnover r_EnzLoss
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Figure 1778

779

35

Fig. 1. Schematic representation of the soil decomposition model.

2260



D
iscussion

P
a

per
|

D
iscussion

P
a

per
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

36

Figure 2780

781

SOC Soluble C MIC

ENZ

Enzymatic
decay

CO2

Enzyme 
turnover

Litterfall and 
root input

Microbial 
assimilation

O2 & 
moisture

Microbial death

Fig. 2. Conceptual representation of soil decomposition dynamic in each layer. Note that litterfall
only occurs to the surface layer (1st fibrous layer) and root input occurs according to root
distribution at depth. Rectangles represent stocks; solid arrows denote C flows; dashed arrows
represent other controls.
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Figure 3782

783

Fig. 3. Simulated vs. observed soil heterotrophic respiration.
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Figure 4784

785

Fig. 4. Screening test results (sensitivity index ε =
√
µ∗

EE
2 +σ2

EE) for microbial biomass C pool
(MIC) and soil organic C pool (SOC) under standard soil temperature and moisture (STDt and
STDm) scenario.
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Figure 5786

787

788

Fig. 5. Screening test results (sensitivity index ε =
√
µ∗

EE
2 +σ2

EE) for soluble C pool (Soluble
C) and enzyme pool (ENZ) under standard soil temperature and moisture (STDt and STDm)
scenario.
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Figure 6789

790

Fig. 6. Sobol’s estimates of first and total order parameter sensitivity indices of microbial
biomass (MIC), soil organic C (SOC), soluble C (SolubleC), and enzyme (ENZ) pools with
their 95 % confidence intervals (vertical lines) under standard soil temperature and moisture
(STDt and STDm).
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Figure 7791

792

Fig. 7. Coxcomb plot of Sobol’s estimates of total order parameter sensitivity indices for mi-
crobial biomass (MIC), soil organic C (SOC), soluble C (SolubleC), and enzyme (ENZ) pools
under three altered environmental scenarios: elevated temperature and standard moisture (Et
and STDm), elevated temperature and elevated moisture (Et and Em), elevated temperature
and lowered moisture (Et and Lm) for fibrous horizon (first panel, a–d) and amorphous horizon
(second panel, e–h).
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