Supporting information

Figure S1 Drought-induced reductions in NPP and Rh along modeled years in four North American grasslands (Konza: a, e, i and m; Hays: b, f, j and n; Cheyenne: c, g, k and o; Sevilleta: d, h, l and p). ESR is rainfall event size reduction and REN is reduced rainfall event number. Solid line represents ESR treatment and dash line represents REN treatment.

Figure S2 Drought-induced reductions in GPP and ER along modeled years in four North American grasslands (Konza: a and e; Hays: b and f; Cheyenne: c and g; Sevilleta: d and h). ESR is rainfall event size reduction and REN is reduced rainfall event number. Solid line represents GPP and dash line represents ER.
Table S1 Literature review of differential responses of production and respiration to drought in field observations and manipulative experiments across different biomes

<table>
<thead>
<tr>
<th>Site</th>
<th>Biome type</th>
<th>Results</th>
<th>Mechanisms</th>
<th>Reference</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>European forests and one grassland</td>
<td>Pine, oak, beech, spruce, fir, juniper, and grassland</td>
<td>In most sites, extreme drought induced more reduction in GPP than ER except a few Mediterranean ecosystems where the drought effect was smaller for GPP than ER</td>
<td>Not specified</td>
<td>Cias et al., 2005</td>
<td>Eddy flux</td>
</tr>
<tr>
<td>East coast of Japan</td>
<td>Temperate evergreen and deciduous broadleaved tree</td>
<td>GPP was reduced more than ER</td>
<td>Not specified</td>
<td>Kosugi et al., 2005</td>
<td>Eddy flux</td>
</tr>
<tr>
<td>Saskatchewan Canada</td>
<td>Southern boreal forests including aspen, spruce and jack pine</td>
<td>In aspen, first-year drought suppressed ER, but enhanced GPP whereas second- and third-year drought reduced GPP and ER with more reduction in GPP; In spruce and jack pine forests, drought did not significant affected GPP and ER</td>
<td>The enhanced GPP in aspen was due to warmer spring in that year; the lack of response to drought in the two coniferous forests was because of summer rainfall, low topographic position and low soil water holding capacity</td>
<td>Kljun et al., 2006</td>
<td>Eddy flux</td>
</tr>
<tr>
<td>European forests</td>
<td>Beech, Douglas-fir, Scots pine, Spruce, mixed coniferous</td>
<td>Drought inhibited GPP greater than ER</td>
<td>Not specified</td>
<td>Granier et al., 2007</td>
<td>Eddy flux</td>
</tr>
<tr>
<td>Hungaria</td>
<td>Semi-arid sandy grassland</td>
<td>Drought is more effective in reducing plant CO2 uptake than in reducing ER</td>
<td>Uncoupled heterotrophic respiration to photosynthesis is more resistant to drought</td>
<td>Nagy et al., 2007</td>
<td>Eddy flux</td>
</tr>
<tr>
<td>Southern Portugal</td>
<td>Evergreen oak woodland, grassland, and eucalyptus plantation</td>
<td>Severe drought affected more GPP than ER</td>
<td>Not specified</td>
<td>Pereira et al., 2007</td>
<td>Eddy flux</td>
</tr>
<tr>
<td>Location</td>
<td>Species/Environment</td>
<td>Results</td>
<td>Change in Production</td>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>---</td>
<td>----------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Interior Alaska, USA</td>
<td>Black spruce and aspen Oak and red maple</td>
<td>GPP was reduced in the two forests, but ER increased</td>
<td>Drought-associated temperature increase might cause ER to rise</td>
<td>Welp et al., 2007 Eddy flux</td>
<td></td>
</tr>
<tr>
<td>Northwest Ohio, USA</td>
<td></td>
<td>Greater suppression of GPP than of ER by drought</td>
<td>Drought caused lower leaf area, lower apparent quantum yield and lower canopy conductance</td>
<td>Noormets et al., 2008 Eddy flux</td>
<td></td>
</tr>
<tr>
<td>Global network of eddy flux towers</td>
<td>Grassland, forest, shrubland, wetland, savannas</td>
<td>Overall, production is 50% more sensitive than respiration to drought, with a few exceptions</td>
<td>Not specified</td>
<td>Schwalm et al., 2010 Eddy flux</td>
<td></td>
</tr>
<tr>
<td>Kendall grassland, USA</td>
<td>Semi-desert grassland</td>
<td>Drought reduced more GPP than ER</td>
<td>Not specified</td>
<td>Scott et al., 2010 Eddy flux</td>
<td></td>
</tr>
<tr>
<td>Southern Portugal</td>
<td>semi-natural Mediterranean grassland</td>
<td>Drought reduced GPP more than ER</td>
<td>Not specified</td>
<td>Jongen et al., 2011 Eddy flux</td>
<td></td>
</tr>
<tr>
<td>Western North America</td>
<td>Grassland, evergreen needle forest (ENF), woody savannas</td>
<td>GPP of grassland and ENF were more sensitive to drought, whereas in woody savannas GPP was less sensitive</td>
<td>Not specified</td>
<td>Schwalm et al., 2012 Eddy flux</td>
<td></td>
</tr>
<tr>
<td>Inner-Mongolia, China</td>
<td>Arid grassland</td>
<td>GPP was more sensitive to seasonal drought than ER</td>
<td>None but suggested drought might have lasted longer for assimilation than respiration in this ecosystem</td>
<td>Yang and Zhou, 2013 Eddy flux</td>
<td></td>
</tr>
<tr>
<td>Southwestern US</td>
<td>Ponderosa pine and grassland</td>
<td>GPP was more sensitive to summer drought than ER in the forest, but less sensitive in the grassland/shrubland</td>
<td>Not specified</td>
<td>Kolb et al., 2013 Eddy flux</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>Mediterranean evergreen oak forest</td>
<td>Drought inhibited GPP greater than ER</td>
<td>Shallow soil water content was not strongly affected by drought and thus soil respiration was less affected than GPP</td>
<td>Misson et al., 2010 Manipulative experiment</td>
<td></td>
</tr>
<tr>
<td>Wyoming, USA</td>
<td>High Plains Grassland</td>
<td>GPP was more sensitive to reduced rainfall than ER</td>
<td>Not specified</td>
<td>Chimner et al., 2010 Manipulative experiments</td>
<td></td>
</tr>
<tr>
<td>Northern Arizona</td>
<td>Desert grassland, pinyon-juniper, ponderosa pine forest, mixed conifer forest</td>
<td>Precipitation reduction did not impact both GPP and ER</td>
<td>Not specified</td>
<td>Wu et al., 2011 Manipulative experiments</td>
<td></td>
</tr>
<tr>
<td>Cairngorms, Scotland</td>
<td>Grassland</td>
<td>Drought reduced more reduction in GPP than in ER</td>
<td>Not specified</td>
<td>Johnson et al., 2011 Manipulative experiment</td>
<td></td>
</tr>
<tr>
<td>Southern California</td>
<td>Coastal grassland</td>
<td>Imposed drought reduced GPP more than ER</td>
<td>Not specified</td>
<td>Potts et al., 2012 Manipulative experiment</td>
<td></td>
</tr>
</tbody>
</table>
Table S2 Slopes of the linear regression between rainfall and C variables (NPP, Rh, and NEE) in each of three rainfall scenarios, and the significance (p) in slope difference between ambient and rainfall treatments. “-” means not applicable.

<table>
<thead>
<tr>
<th>Sites</th>
<th>Rainfall vs. NPP</th>
<th>Rainfall vs. Rh</th>
<th>Rainfall vs. NEE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Konza</td>
<td>Hays</td>
<td>Cheyenne</td>
</tr>
<tr>
<td>Rainfall scenarios</td>
<td>Slopes</td>
<td>p</td>
<td>Slopes</td>
</tr>
<tr>
<td>Ambient</td>
<td>0.16</td>
<td>-</td>
<td>0.27</td>
</tr>
<tr>
<td>ESR</td>
<td>0.46</td>
<td>0.002</td>
<td>0.48</td>
</tr>
<tr>
<td>REN</td>
<td>0.55</td>
<td>0.001</td>
<td>0.5</td>
</tr>
<tr>
<td>Ambient</td>
<td>0.04</td>
<td>-</td>
<td>0.06</td>
</tr>
<tr>
<td>ESR</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>REN</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ambient</td>
<td>-0.14</td>
<td>-</td>
<td>-0.25</td>
</tr>
<tr>
<td>ESR</td>
<td>-0.56</td>
<td>0.0005</td>
<td>-0.45</td>
</tr>
<tr>
<td>REN</td>
<td>-0.63</td>
<td><.0001</td>
<td>-0.48</td>
</tr>
</tbody>
</table>
Figure S1 Drought-induced reductions in NPP and Rh along modeled years in four North American grasslands (Konza: a, e, i and m; Hays: b, f, j and n; Cheyenne: c, g, k and o; Sevilleta: d, h, l and p). ESR is rainfall event size reduction and REN is reduced rainfall event number. Solid line represents ESR treatment and dash line represents REN treatment.
Figure S2 Drought-induced reductions in GPP and ER along modeled years in four North American grasslands (Konza: a and e; Hays: b and f; Cheyenne: c and g; Sevilleta: d and h). ESR is rainfall event size reduction and REN is reduced rainfall event number. Solid line represents GPP and dash line represents ER.